Spelling suggestions: "subject:"bewitch"" "subject:"eswitch""
321 |
Programmable Control of Protein Activity Via Formation of Biomolecular Condensates in BacteriaMrugesh Krishna Parasa (16384935) 16 June 2023 (has links)
<p> </p>
<p>Biomolecular condensates or membrane-less organelles are phase separated proteins and/or other biomolecules that are ubiquitous in eukaryotic cells. While these condensates may be liquid with exchange and diffusion of their components with the rest of the cell (e.g., cytoplasm), they locally concentrate their constituent biomolecules altering their interactions in normal cellular processes. This phenomenon has been exploited for static control of protein activity in <em>E. coli</em>. However, neither dynamic control of protein activity using external triggers nor programmable tuning of protein activity has been explored so far.</p>
<p>To address these gaps, I fused proteins of interest to elastin-like polypeptides (ELP) that aggregate in response to an increase in temperature. In so doing, I sequester their fusion partners from the cytoplasm, limiting their ability to participate in cytoplasmic reactions. I have demonstrated this concept<em> in vivo</em> with enzymes and transcription factors for switchable control of protein activity with temperature. For example, I-SceI mediated cleavage of a host genome can be inhibited by increasing the cultivation temperature, creating a simple temperature-sensitive kill switch; accidental release will lower the culture temperature leading to cell death. Similarly, coupled transcription factors exhibit a 2-fold increase in transcription relative to unfused transcription factor controls at elevated temperatures. More importantly, the threshold for coacervate formation and control of protein activity may be tuned through appropriate design of the ELP used for fusion. Furthermore, the temperature response of the ELP fusion is unique to each protein and depends on the structure of the fusion partner, which dictates the structure of the ELP fused aggregate. Our results introduce a simple yet effective, rapid, and tunable approach to control protein activity via induction of coacervate formation that may form a powerful new tool for synthetic biology.</p>
|
322 |
A Reliability and Survivability Analysis of US Local Telecommunication Switches that Experience Frequent OutagesShyirambere, Aimee S. 13 June 2013 (has links)
No description available.
|
323 |
New Insight into the Physical, Catalytic and Recognition Properties of Cucurbituril MacrocyclesLu, Xiaoyong 25 September 2013 (has links)
No description available.
|
324 |
Synaptic Plasticity in GABAergic Inhibition of VTA NeuronsMabey, Jennifer Kei 01 May 2014 (has links) (PDF)
Past research has demonstrated that the motivational effects of opiates causes a change in ventral tegmental area (VTA) γ-amino butyric acid (GABA) subtype A receptor [GABA(A)R] complexes in opiate-dependent animals, which switch from a GABA-induced hyperpolarization of VTA GABA neurons to a GABA-induced depolarization. Previously shown in naïve animals, superfusion of ethanol (IC50 = 30 mM) and the GABA(A)R agonist muscimol (IC50 = 100 nM) decreased VTA GABA neuron firing rate in a dose-dependent manner. The aim of this study was to evaluate VTA GABA neuron excitability, GABA synaptic transmission to VTA GABA neurons, and a potential switch in GABA(A)R functionality produced by alcohol dependence. To accomplish these studies, we used standard whole-cell, perforated patch, and attached-cell mode electrophysiological techniques to evaluate chronic ethanol effects on VTA GABA neurons in CD-1 GAD GFP mice, which enable the visual identification of GABA neurons in the slice preparation. In order to more conclusively demonstrate synaptic plasticity in VTA neurons associated with alcohol dependence, three studies were proposed to elucidate the mechanism underlying the switch in GABA synaptic function with dependence. First, we evaluated the effects of withdrawal from chronic ethanol exposure on muscimol-induced inhibition of VTA GABA neuron firing rate. Second, we evaluated the effects of withdrawal from chronic ethanol exposure on GABA(A)R-mediated synaptic responses in VTA GABA neurons by looking at eIPSCs, and corresponding changes in VTA DA neuron firing rate. Third, we evaluated chloride reversal potentials in VTA GABA neurons using perforated patch recordings in VTA GABA neurons.Through these studies, we found that there was less sensitivity to muscimol in animals treated with ethanol versus air-exposed controls. However, it is yet to be shown more conclusively if VTA GABA neurons undergo a switch in GABA(A)R function with chronic ethanol.
|
325 |
Retrospective simulations of heating consumption in French dwellingsGlotin, David January 2018 (has links)
Res-IRF is an energy-economy model of heating consumption in French dwellings developed at CIRED and calibrated against 2012. It is meant to project the evolution of the building stock and the heating demand by 2050 in response to socio-economic parameters, such as energy price and population, and public policies, such as thermal regulations or incentives for renovation. Res-IRF captures the relevant determinants of household decisions related to energy efficiency improvements and energy demand (sufficiency). The aim of the work presented in this report is to calibrate the model against a past year, to run it from this start date to 2012, and to compare the simulation results with observed data on this period. After an overview of the French residential sector in the last 40 years, this report aims at presenting the model and how it was calibrated against year 1984 and adjusted to the past situation of the building stock. Then, the results of a sensitivity analysis on key parameters of the model are compared to reality and it is discussed how the model can be improved to fit the data better. The main results show that the model accurately replicates the evolution of the building stock until 2012. However, the results do not fit well the data of repartition of heating fuels, especially for fuel oil and natural gas. This may be due to the structure of the model which allows fuel switch only for renovating dwellings; then it could miss possible fuel switches from fuel oil to natural gas without renovation due to the expansion of the natural gas network in France between 1980 and 2000. Furthermore, the actual unit consumption, which is a key output of the model, is well replicated by the model, with an error of 5 to 10%. / Res-IRF är en energi-ekonomi modell av värmebehovet i franska byggnader utvecklad av CIRED och kalibrerad mot data för 2012. Det är avsett att förutsäga utvecklingen för byggnadsbeståndet och värmebehovet fram till 2050 med utgångspunkt från socio-ekonomiska parametrar såsom energipriser och befolkningsmängd, politiska beslut som regleringar rörande uppvärmningssektorn och incitament för renoveringar. Res-IRF fångar upp de relevanta faktorer som påverkar hushållens beslut relaterade till förbättringar av energieffektiviteten och energibehoven. Målet med arbetet som presenteras i denna rapport är att kalibrera modellen mot ett redan passerat år, att köra modellen från startåret till 2012, och att jämföra simuleringsresultaten med verkliga observationer för denna period. Efter en översikt över den franska bostadssektorn de senaste 40 åren, följer i rapporten en presentation av modellen och hur den kalibrerades mot året 1984 och sedan anpassats till det dåvarande läget i byggnadsbeståndet. Därefter jämförs resultaten av en känslighetsanalys av nyckelparametrar i modellen med verkligt utfall och en diskussion följer om hur modellen kan förbättras för att bättre passa verkliga data. Huvudresultaten visar att modellen på ett korrekt sätt avbildar utvecklingen av byggnadsbeståndet fram till 2012. Däremot ger resultaten inte god överensstämmelse vad gäller fördelning av bränslen, speciellt inte fördelningen mellan olja och naturgas. Detta kan bero på modellens struktur, som tillåter bränslebyte bara vid renovering; därmed missar den bränslebyten som görs utan samtidig renovering, som tillkommit på grund av utbyggnaden av naturgasnäten i Frankrike mellan 1980 och 2000. Vidare visar modellen god överensstämmelse vad gäller energitillförsel per enhet, vilket är en nyckelparameter bland resultaten från modellen. Denna parameter predikteras med ett fel av 5 till 10%.
|
326 |
Helical Packing Regulates Structural Transitions In BaxTschammer, Nuska 01 January 2007 (has links)
Apoptosis is essential for development and the maintenance of cellular homeostasis and is frequently dysregulated in disease states. Proteins of the BCL-2 family are key modulators of this process and are thus ideal therapeutic targets. In response to diverse apoptotic stimuli, the pro-apoptotic member of BCL-2 family, BAX, redistributes from the cytosol to the mitochondria or endoplasmic reticulum and primes cells for death. The structural changes that enable this lethal protein to transition from a cytosolic form to a membrane-bound form remain poorly understood. Elucidating this process is a necessary step in the development of BAX as a novel therapeutic target for the treatment of cancer, as well as autoimmune and neurodegenerative disorders. A three-part study, utilizing computational modeling and biological assays, was used to examine how BAX, and similar proteins, transition to membranes. The first part tested the hypothesis that the C-terminal α9 helix regulates the distribution and activity of BAX by functioning as a "molecular switch" to trigger conformational changes that enable the protein to redistribute from the cytosol to mitochondrial membrane. Computational analysis, tested in biological assays, revealed a new finding: that the α9 helix can dock into a hydrophobic groove of BAX in two opposite directions – in a self-associated, forward orientation and a previously, unknown reverse orientation that enables dimerization and apoptosis. Peptides, made to mimic the α9-helix, were able to induce the mitochondrial translocation of BAX, but not when key residues in the hydrophobic groove were mutated. Such findings indicate that the α9 helix of BAX can function as a "molecular switch" to mediate occupancy of the hydrophobic groove and regulate the membrane-binding activity of BAX. This new discovery contributes to the understanding of how BAX functions during apoptosis and can lead to the design of new therapeutic approaches based on manipulating the occupancy of the hydrophobic groove. The second and third parts of the study used computational modeling to examine how the helical stability of proteins relates to their ability to functionally transition. Analysis of BAX, as a prototypical transitioning protein, revealed that it has a broad variation in the distribution of its helical interaction energy. This observation led to the hypothesis tested, that proteins which undergo 3D structural transitions during execution of their function have broad variations in the distribution of their helical interaction energies. The result of this study, after examination of a large group of all-alpha proteins, was the development of a novel, predictive computational method, based on measuring helical interactions energies, which can be used to identify new proteins that undergo structural transitioning in the execution of their function. When this method was used to examine transitioning in other members the BCL-2 family, a strong agreement with the published experimental findings resulted. Further, it was revealed that the binding of a ligand, such as a small peptide, to a protein can have significant stabilizing or destabilizing influences that impact upon the activation and function of the protein. This computational analysis thus contributes to a better understanding of the function and regulation of the BCL-2 family members and also offers the means by which peptide mimics that modulate protein activity can be designed for testing in therapeutic endeavors.
|
327 |
The -go Morpheme and Reference Tracking in Jicarilla ApacheFerrin, Lee Shanideen 14 August 2023 (has links) (PDF)
Jicarilla Apache is a Southern Athabaskan language with a complex verbal structure, including a prefix template with positions for more than ten affixes. Little has been done to document or describe the language grammatically or typologically, but one of the morphemes that has been described in the literature is the suffix -go. The morpheme can be found in elicited speech as well as in narrations. This morpheme is one of the few verbal affixes that can appear after the verb stem and plays a role in many subordinate clause constructions. It has been described as a temporal marker, a feature of certain auxiliary verb constructions, a marker of habitual aspect, and a required part of causative constructions, among others. Such a wide variety of uses can make it difficult for language learners to know when this morpheme should be included. But there is one function that would account for all the previous descriptions and provide a simpler paradigm for funderstanding what triggers the presence of -go: namely, that of reference tracking. No referent tracking function of -go has been described, yet many of the functions of -go provided in the literature can also be explained as the result of a system of reference tracking. This thesis argues that Jicarilla features a reference tracking system that combines foregrounding functions with the features of switch reference, according to the definition of foregrounding found in Simpson (2004) and the definitions of switch reference found in van Gijn (2016a) and Stirling (1993). This is demonstrated by reviewing all the examples of -go in the available literature, including Goddard (1911), Jung (2002), and Phone, Olson, Martinez, & Axelrod (2007).
|
328 |
Energy Harvesting from Exercise Machines: Buck-Boost Converter DesignForster, Andrew E 01 March 2017 (has links) (PDF)
This report details the design and implementation of a switching DC-DC converter for use in the Energy Harvesting From Exercise Machines (EHFEM) project. It uses a four-switch, buck-boost topology to regulate the wide, 5-60 V output of an elliptical machine to 36 V, suitable as input for a microinverter to reclaim the energy for the electrical grid. Successful implementation reduces heat emissions from electrical energy originally wasted as heat, and facilitates a financial and environmental benefit from reduced net energy consumption.
|
329 |
Dependence of Set, Reset and Breakdown Voltages of a MIM Resistive Memory Device on the Input Voltage WaveformGhosh, Gargi 27 May 2015 (has links)
Owing to its excellent scaling potential, low power consumption, high switching speed, and good retention, and endurance properties, Resistive Random Access Memory (RRAM) is one of the prime candidates to supplant current Nonvolatile Memory (NVM) based on the floating gate (FG) MOSFET transistor, which is at the end of its scaling capability. The RRAM technology comprises two subcategories: 1) the resistive phase change memory (PCM), which has been very recently deployed commercially, and 2) the filamentary conductive bridge RAM (CBRAM) which holds the promise of even better scaling potential, less power consumption, and faster access times. This thesis focuses on several aspects of the CBRAM technology. CBRAM devices are based on nanoionics transport and chemo-physical reactions to create filamentary conductive paths across a dielectric sandwiched between two metal electrodes. These nano-size filaments can be formed and ruptured reliably and repeatedly by application of appropriate voltages. Although, there exists a large body of literature on this topic, many aspects of the CBRAM mechanisms and are still poorly understood. In the next paragraph, the aspects of CBRAM studied in this thesis are spelled out in more detail.
CBRAM cell is not only an attractive candidate for a memory cell but is also a good implementation of a new circuit element, called memristor, as postulated by Leon Chua. Basically, a memristor, is a resistor with a memory. Such an element holds the promise to mimic neurological switching of neuron and synapses in human brain that are much more efficient than the Neuman computer architecture with its current CMOS logic technology. A memristive circuitry can possibly lead to much more powerful neural computers in the future. In the course of the research undertaken in this thesis, many memristive properties of the resistive cells have been found and used in models to describe the behavior of the resistive switching devices.
The research performed in this study has also an immediate commercial application. Currently, the semiconductor industry is faced with so-called latency scaling dilemma. In the past, the bottleneck for the signal propagation was the time delay of the transistor. Today, the transistors became so fast that the bottleneck for the signal propagation is now the RC time delay of the interconnecting metal lines. Scaling drives both, resistance and parasitic capacitance of the metal lines to very high values.
In this context, one observes that resistive switching memory does not require a Si substrate. It is therefore an excellent candidate for its implementation as an o n-chip memory above the logic circuits in the CMOS back-end, thus making the signal paths between logic and memory extremely short. In the framework of a Semiconductor Research Corporation (SRC) project with Intel Corporation, this thesis investigated the breakdown and resistive switching properties of currently deployed low k interlayer dielectrics to understand the mechanisms and potential of different material choices for a realization of an RRAM memory to be implemented in the back-end of a CMOS process flow. / Master of Science
|
330 |
Design of Frequency Reconfigurable Multiband Compact Antenna using two PIN diodes for WLAN/WiMAX ApplicationsAbdulraheem, Yasir I., Oguntala, George A., Abdullah, Abdulkareem S., Mohammed, Husham J., Ali, R.A., Abd-Alhameed, Raed, Noras, James M. 21 February 2017 (has links)
Yes / In this paper, we present a simple reconfigurable multiband antenna with two PIN diode switches for WiMAX/WLAN applications. The antenna permits reconfigurable switching in up to ten frequency bands between 2.2 GHz and 6 GHz, with relative impedance bandwidths of around 2.5% and 8%. The proposed antenna has been simulated using CST microwave studio software and fabricated on an FR-4 substrate. It is compact, with an area of 50 × 45 mm2, and has a slotted ground substrate. Both measured and simulated return loss characteristics of the optimized antenna show that it satisfies the requirement of 2.4/5.8 GHz WLAN and 3.5 GHz WiMAX antenna applications. Moreover, there is good agreement between the measured and simulated result in terms of radiation pattern and gain. / Engineering and Physical Science Research Council through Grant EP/E022936A.
|
Page generated in 0.0688 seconds