• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 15
  • 14
  • 4
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 92
  • 23
  • 21
  • 17
  • 17
  • 14
  • 14
  • 13
  • 13
  • 13
  • 12
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

[en] MATHEMATICAL MODELLING OF THE INTERFERENCE PRODUCED BY VSAT/MF-TDMA SATELLITE NETWORKS / [pt] MODELAGEM MATEMÁTICA DA INTERFERÊNCIA PRODUZIDA POR REDES VSAT/MF-TDMA

AMERICO ARIEL RUBIN DE CELIS VIDAL 14 July 2017 (has links)
[pt] Neste trabalho é desenvolvido um modelo matemático para descrever o comportamento estatístico da interferência produzida por redes VSAT/MFTDMA. O modelo proposto é utilizado para avaliar a interferência produzida pelos lances de subida de enlaces VSAT/MF-TDMA em enlaces de uma outra rede que utiliza um satélite vizinho. No modelo proposto, expressões analíticas foram desenvolvidas para levar em conta os efeitos de variações nas potências transmitidas, nos tamanhos das antenas e nos erros de apontamento das antenas transmissoras. As posições geográficas das estações terrenas são modeladas por processos pontuais de Poisson, bi-dimensionais. O modelo proposto é suficientemente geral para acomodar outros tipos de processos pontuais, além de situações envolvendo áreas de serviço contendo múltiplos tipos de distribuição geográfica das estações terrenas. Resultados numéricos obtidos com o modelo proposto são comparados àqueles baseados em valores reais de parâmetros (e.g. localização das estações terrenas, tamanhos de antenas e potências de transmissão) que foram fornecidos por um operador brasileiro de satélites. / [en] In this work a mathematical model to describe the statistical behavior of the interference produced by VSAT/MF-TDMA networks is developed. The model is used to assess the interference produced by the uplinks of a VSAT/MF-TDMA network into links of a network that uses a neighboring satellite. In the proposed model, analytical expressions were developed to account for the effects of the varying transmitting powers, antenna sizes, and transmitting antenna pointing errors. The earth station locations are modeled by a two dimensional Poisson point process. The model is general enough to accommodate other types of point processes and can be applied to situations involving service areas containing multiple types of earth station geographical distribution. Numerical results obtained with the proposed model are compared to those based on the actual parameters values (e.g. earth station locations, antenna sizes and transmitting powers) which were provided by a Brazilian satellite operator.
72

Indoor positioning system using ultrasound combined with multilateration

Eiselt, Jonas, Mahmoud, Danial January 2018 (has links)
Under det senaste decenniet har inomhuspositionering fått en ökad popularitet och stått i fokus för forskning och utveckling, eftersom det ger praktiska möjligheter till att spåra och navigera objekt och människor i inomhusmiljöer. Det finns ingen global lösning för inomhuspositionering baserat på en enstaka teknologi såsom det gör för utomhuspositionering med sin satellitbaserade globala positioneringssystem. Många inomhusteknologier står inför många utmaningar såsom låg positioneringsnoggrannhet samt dyr och stor hårdvara. Den här uppsatsen beskriver hur en simpel och kostnadseffektiv lösning, som addresserar problemen med noggrannheten och hårdvarukostnaden, genom en iterativ forskningsmetod, utvecklades. Vår lösning är ett ultraljudsbaserat passivt sändare-mottagare system som kombinerar multilateration som positioneringsteknik och tidsskillnad av ankomst (TDOA) som mätprincip för att beräkna en 3D-position inuti en 4x2x2 m testyta med en övergripande noggrannhet på 16 cm inom ett 95% konfidensintervall. Vi registrerade noggranna TDOA-värden med en komparatorkrets som fungerade som en amplitud-trigger. Det här tillvägagångssättet var mycket enklare än vad andra relaterade arbeten använde sig av, vilket var sampling för att bearbeta inkommande signaler från sändarna. / During the past decade, indoor positioning has gained more popularity and has become a focus of research and development as it provides practical possibilities to track and navigate objects and people in indoor environments. There is no overall solution for indoor positioning based on a single technology like the solution for outdoor positioning with its satellite-based global positioning system. Many indoor positioning technologies today face many challenges such as low positioning accuracy, expensive and large hardware. This thesis describes how a simple and cost-effective solution, that addresses the problem of accuracy and space cost with regards to hardware being used, was developed through an iterative research methodology. Our solution is an ultrasound-based passive receiver-transmitter system that combines multilateration as a positioning technique and time difference of arrival (TDOA) as a measuring principle. This combination is used to calculate a 3D position within a 4x2x2 m test area with an overall accuracy of 16 cm within a 95% confidence interval. We registered accurate TDOA values with a comparator circuit that acts as an amplitude trigger. This approach was much more simple than that of other related works which used sampling to process incoming signals from the transmitters.
73

Implementation and Evaluation of a TDMA Based Protocol for Wireless Sensor Networks

Fiske, Robert M. January 2010 (has links)
No description available.
74

Distributed TDMA-Scheduling and Schedule-Compaction Algorithms for Efficient Communication in Wireless Sensor Networks

Bhatia, Ashutosh January 2015 (has links) (PDF)
A wireless sensor network (WSN) is a collection of sensor nodes distributed over a geographical region to obtain the environmental data. It can have different types of applications ranging from low data rate event driven and monitoring applications to high data rate real time industry and military applications. Energy efficiency and reliability are the two major design issues which should be handled efficiently at all the layers of communication protocol stack, due to resource constraint sensor nodes and erroneous nature of wireless channel respectively. Media access control (MAC) is the protocol which deals with the problem of packet collision due to simultaneous transmissions by more than one neighboring sensor nodes. Time Division Multiple Access based (TDMA-based) and contention-based are the two major types of MAC protocols used in WSNs. In general, the TDMA-based channel access mechanisms perform better than the contention-based channel access mechanisms, in terms of channel utilization, reliability and power consumption, specially for high data rate applications in wireless sensor networks (WSNs). TDMA-based channel access employs a predefined schedule so that the nodes can transmit at their allotted time slots. Based on the frequency of scheduling requirement, the existing distributed TDMA-scheduling techniques can be classified as either static or dynamic. The primary purpose of static TDMA-scheduling algorithms is to improve the channel utilization by generating a schedule of smaller length. But, they usually take longer time to generate such a schedule, and hence, are not suitable for WSNs, in which the network topology changes dynamically. On the other hand, dynamic TDMA-scheduling algorithms generate a schedule quickly, but they are not efficient in terms of generated schedule length. We suggest a new approach to TDMA-scheduling for WSNs, that can bridge the gap between these two extreme types of TDMA-scheduling techniques, by providing the flexibility to trade-off between the schedule length and the time required to generate the schedule, as per the requirements of the underlying applications and channel conditions. The suggested TDMA-scheduling works in two phases. In the first phase, we generate a valid TDMA schedule quickly, which need not have to be very efficient in terms of schedule length. In the second phase, we iteratively reduce the schedule length in a manner, such that the process of schedule length reduction can be terminated after the execution of an arbitrary number of iterations, and still be left with a valid schedule. This step provides the flexibility to trade-off the schedule length with the time required to generate the schedule. In the first phase of above TDMA-scheduling approach, we propose two randomized, distributed and parallel TDMA-scheduling algorithms viz., Distributed TDMA Slot Scheduling (DTSS) and Randomized and Distributed TDMA (RD-TDMA) scheduling algorithm. Both the algorithms are based on graph coloring approach, which generate a TDMA schedule quickly with a fixed schedule length ( Colouring), where is the maximum degree of any node in the graph to be colored. The two algorithms differ in the channel access mechanism used by them to transmit control messages, and in the generated schedule for different modes of communication, i.e., unicast, multicast and broadcast. The novelty of the proposed algorithms lies in the methods, by which an uncolored node detects that the slot picked by it is different from the slots picked by all the neighboring nodes, and the selection of probabilities with which the available slots can be picked up. Furthermore, to achieve faster convergence we introduce the idea of dynamic slot-probability update as per which the nodes update their slot-probability by considering the current slot-probability of their neighboring nodes. Under the second phase of the proposed TDMA-scheduling approach, we provide two randomized and distributed schedule compaction algorithms, viz., Distributed Schedule Compaction (DSC) and Distributed Schedule Length Reduction (DSLR) algorithm, as the mechanism to trade-off the scheduling time with the generated schedule length. These algorithms start with a valid TDMA schedule and progressively compress it in each round of execution. Additionally, Furthermore, the execution of these algorithms can be stopped after an arbitrary number of rounds as per the requirements of underlying applications. Even though TDMA-based MAC protocols avoid packet loss due to collision, due to erroneous nature of wireless medium, they alone are not sufficient to ensure the reliable transmission in WSNs. Automatic Repeat reQuest (ARQ) is the technique commonly used to provide error control for unicast data transmission. Unfortunately, ARQ mechanisms cannot be used for reliable multicast/broadcast transmission in WSNs. To solve this issue, we propose a virtual token-based channel access and feedback protocol (VTCAF) for link level reliable multicasting in single-hop wireless networks. The VTCAF protocol introduces a virtual (implicit) token passing mechanism based on carrier sensing to avoid the collision between feedback messages. The delay performance is improved in VTCAF protocol by reducing the number of feedback messages. Besides, the VTCAF protocol is parametric in nature and can easily trade-off reliability with the delay as per the requirements of the underlying applications. Finally, by integrating all the works, viz., TDMA-scheduling algorithms (DTSS/RD-TDMA), schedule compaction algorithms and link layer feedback mechanism for reliable multicast/ broadcast, we propose a TDMA-based energy aware and reliable MAC protocol, named TEA-MAC for multi-hop WSNs. Similar to VTCAF, TEA-MAC protocol uses the combination of ACK-based and NACK-based approaches to ensure reliable communication. But, instead of using virtual token-based channel access, it uses contention-based channel access for NACK transmission. All the algorithms and protocols proposed in this thesis are distributed, parallel and fault tolerant against packet losses to support scalability, faster execution and robustness respectively. The simulations have been performed using Castalia network simulator to evaluate the performance of proposed algorithms/protocols and also to compare their performance with the existing algorithms/protocols. We have also performed theoretical analysis of these algorithms/protocols to evaluate their performance. Additionally, we have shown the correctness of proposed algorithms/protocols by providing the necessary proofs, whenever it was required. The simulation results together with theoretical analysis show that, in addition to the advantage of trading the runtime with schedule length, the proposed TDMA scheduling approach achieves better runtime and schedule length performance than existing algorithms. Additionally, the TEA-MAC protocol is able to considerably improve the reliability and delay performance of multicast communication in WSNs.
75

Reliable and energy efficient scheduling protocols for Wireless Body Area Networks (WBAN)

Salayma, Marwa January 2018 (has links)
Wireless Body Area Network (WBAN) facilitates efficient and cost-effective e-health care and well-being applications. The WBAN has unique challenges and features compared to other Wireless Sensor Networks (WSN). In addition to battery power consumption, the vulnerability and the unpredicted channel behavior of the Medium Access Control (MAC) layer make channel access a serious problem. MAC protocols based on Time Division Multiple Access (TDMA) can improve the reliability and efficiency of WBAN. However, conventional static TDMA techniques adopted by IEEE 802.15.4 and IEEE 802.15.6 do not sufficiently consider the channel status or the buffer requirements of the nodes within heterogeneous contexts. Although there are some solutions that have been proposed to alleviate the effect of the deep fade in WBAN channel by adopting dynamic slot allocation, these solutions still suffer from some reliability and energy efficiency issues and they do not avoid channel deep fading. This thesis presents novel and generic TDMA based techniques to improve WBAN reliability and energy efficiency. The proposed techniques synchronise nodes adaptively whilst tackling their channel and buffer status in normal and emergency contexts. Extensive simulation experiments using various traffic rates and time slot lengths demonstrate that the proposed techniques improve the reliability and the energy efficiency compared to the de-facto standards of WBAN, i.e. the IEEE 802.15.4 and the IEEE 802.15.6. In normal situations, the proposed techniques reduce packet loss up to 61% and 68% compared to the IEEE 802.15.4 and IEEE 802.15.6 respectively. They also reduce energy consumption up to 7.3%. In emergencies, however, the proposed techniques reduce packets loss up to 63.4% and 90% with respect to their counterparts in IEEE 802.15.4 and 802.15.6. The achieved results confirm the significant enhancements made by the developed scheduling techniques to promote the reliability and energy efficiency of WBAN, opening up promising doors towards new horizons and applications.
76

Sistema de comunicações tolerante a falhas e de baixa complexidade para um veículo eléctrico

Santos, Bruno Laranjo dos January 2012 (has links)
Tese de mestrado. Mestrado integrado em Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 2012
77

Multihop Wireless Networks with Advanced Antenna Systems : An Alternative for Rural Communication

Sánchez Garache, Marvin January 2008 (has links)
Providing access to telecommunication services in rural areas is of paramount importance for the development of any country. Since the cost is the main inhibiting factor, any technical solution for access in sparsely populated rural areas has to be reliable, efficient, and deployable at low-cost. This thesis studies the utilization of Multihop Wireless Networks (MWN) as an appealing alternative for rural communication. MWN are designed with a self-configuring capability and can adapt to the addition or removal of network radio units (nodes). This makes them simple to install, allowing unskilled users to set up the network quickly. To increase the performance and cost-efficiency, this thesis focuses on the use of Advanced Antenna Systems (AAS) in rural access networks. AAS promise to increase the overall capacity in MWN, improving the link quality while suppressing or reducing the multiple access interference. To effectively exploit the capabilities of AAS, a proper design of Medium Access Control (MAC) protocols is needed. Hence, the results of system level studies into MAC protocols and AAS are presented in this thesis. Two different MAC protocols are examined: Spatial Time Division Multiple Access (STDMA) and Carrier Sense Multiple Access Collision Avoidance (CSMA/CA) with handshaking. The effects of utilizing advanced antennas on the end-to-end network throughput and packet delay are analyzed with routing, power control and adaptive transmission data rate control separately and in combination. Many of the STDMA-related research questions addressed in this thesis are posed as nonlinear optimization problems that are solved by the technique called "column generation" to create the transmission schedule using AAS. However, as finding the optimal solution is computationally expensive, we also introduce low-complexity algorithms that, while simpler, yield reasonable results close to the optimal solution. Although STDMA has been found to be very efficient and fair, one potential drawback is that it may adapt slower than a distributed approach like CSMA/CA to network changes produced e.g. by traffic variations and time-variant channel conditions. In CSMA/CA, nodes make their own decisions based on partial network information and the handshaking procedure allows the use of AAS at the transmitter and the receiver. How to effectively use AAS in CSMA/CA with handshaking is addressed in this thesis. Different beam selection policies using switched beam antenna systems are investigated. Finally, we demonstrate how the proposed techniques can be applied in a rural access scenario in Nicaragua. The result of a user-deployed MWN for Internet access shows that the supported aggregated end-to-end rate is higher than an Asymmetric Digital Subscriber Line (ADSL) connection. / QC 20100908
78

Design and Development of a Hybrid TDMA/CDMA MAC Protocol for Multimedia Wireless Networks

D, Rajaveerappa 04 1900 (has links)
A wireless local area network (WLAN) provides high bandwidth to users in a limited geographical area. This network faces certain challenges and constraints that are not imposed on their wired counterparts. They are: frequency allocation, interference and reliability, security, power consumption, human safety, mobility, connection to wired LAN,service area, handoff and roaming, dynamic configuration and the throughput. But the wireless medium relies heavily on the features of MAC protocol and the MAC protocol is the core of medium access control for WLANs. The available MAC protocols all have their own merits and demerits. In our research works, we propose a hybrid MAC protocol forWLAN. In the design, we have combined the merits of the TDMA and CDMA systems to improve the throughput of the WLAN in a picocellular environment. We have used the reservation and polling methods of MAC protocols to handle both the low and high data traffics of the mobile users. We have strictly followed the standards specified by IEEE 802.11 for WLANs to implement the designed MAC protocol. We have simulated the hybrid TDMA/CDMA based MAC protocols combined with RAP (Randomly Addressed Polling) for Wireless Local Area Networks. We have developed a closed form mathematical expressions analytically for this protocol. We have also studied the power control aspects in this environment and we derived a closed form mathematical expressions analytically for this power control technique. This hybrid protocol is capable of integrating different types of traffic (like CBR,VBR and ABR services) and compiles with the requirements of next-generation systems.The lower traffic arrival is dealt with the Random Access and the higher traffic arrival is with the Polling methods. This enables us to obtain higher throughput and lowmean delay performance compared to the contention-reservation-based MAC schemes. The protocol offers the ability to integrate different types of services in a flexible way by the use of multiple slots per frame, while CDMA allows multiple users to transmit simultaneously using their own codes. The RAP uses an efficient "back-off" algorithm to improve throughput at higher arrival rates of user's data. The performance is evaluated in terms of throughput, delay, and rejection rate using computer simulation. A detailed simulation is carried out regarding the maximum number of users that each base station can support on a lossy channel. This work has analyzed the desired user's signal quality in a single cell CDMA (Code Division Multiple Access) system in the presence of MAI (Multiple Access Interference). Earlier power control techniques were designed to assure that all signals are received with equal power levels. Since these algorithms are designed for a imperfect control of power, the capacity of the system is reduced for a given BER (Bit-Error Rate). We proposed an EPCM (Efficient Power Control Mechanism) based system capacity which is designed for the reverse link (mobile to base station) considering the path loss, log-normal shadowing and Rayleigh fading. We have simulated the following applications for the further improvement of the performance of the designed MAC protocol:Designed protocol is tested under different traffic conditions. The protocol is tested for multimedia traffic under application oriented QoS requirements. Buffer Management and resource allocation. Call Admission Control (hand-offs, arrival of new users). The adaptability to the variable nature of traffic.The propagation aspects in the wireless medium. The proposed MAC protocol has been simulated and analysed by using C++/MATLAB Programming in IBM/SUN-SOLARIS UNIX environment. The results were plotted using MATLAB software. All the functions of the protocol have been tested by an analysis and also by simulation. Call admission control function of the protocol has been tested by simulation and analysis in a multimedia wireless network topology and from analysis we found that at low traffic the throughput is high and at high traffic the throughput is kept constant at a reasonable high value. The simulation results also justify/ coordinate the analysis results. Dynamic channel allocation function of the protocol was tested and analysed and the coordinated results show that at low traffic, high throughput and at high traffic the throughput is constant. Buffer management function of the protocol simulation shows the results that the packet loss can be controlled to a minimum by adjusting the buffer threshold level at any traffic conditions. Maintenance of data transfer during the hand-offs function was simulated and the results show that the blocked calls are less during low traffic and at high traffic the blocked calls can be kept constant at low value. Thus, the proposed model aimed at having high throughput, high spectral efficiency, low delay, moderate BER and moderate blocking probability. We have considered a pico cell with a maximum of several users and studied the power efficiency of combined channel coding and modulation with perfect power controlled CDMA system. Thus our simulation of the "software radio" has flexibility in choosing the proper channel coders dynamically depending upon the variations of AWGN channel.
79

Medium access protocol (MAC) design for wireless multi-hop ad hoc and sensor networks

SAYADI, Afef 16 January 2013 (has links) (PDF)
Wireless multi-hop ad hoc and sensor networks provide a promising solution to ensure ubiquitous connectivity for the Future Internet. Good network connectivity requires designing a reliable Medium Access Control (MAC) protocol, which is a challenging task in the ad hoc and sensor environments. The broadcast and shared nature of the wireless channel renders the bandwidth resources limited and expose the transmissions to relatively high collisions and loss rates. The necessity to provide guaranteed Quality of Service (QoS) to the upper layers triggered the design of conflict-free MAC protocols. The TDMA synchronization constraint is basically behind the rush of MAC protocol design based on a fixed frame size. This design shows inflexibility towards network variations and creates a network dimensioning issue that leads to a famine risk in case the network is under-dimensioned, and to a waste of resources, otherwise. Moreover, the alternative dynamic protocols provide more adaptive solutions to network topology variations at the expense of a fair access to the channel. Alongside with the efficient channel usage and the fair medium access, reducing the energy consumption represents another challenge for ad hoc and sensor networks. Solutions like node activity scheduling tend to increase the network lifetime while fulfilling the application requirements in terms of throughput and delay, for instance. Our contributions, named OSTR and S-OSTR, address the shortcomings of the medium access control protocol design in the challenging environment of wireless multi-hop ad hoc and sensor networks, respectively. For OSTR the idea consists in adopting a dynamic TDMA frame size that increases slot-by-slot according to the nodes arrival/departure to/from the network, and aiming to achieve a minimum frame size. For this end, OSTR couples three major attributes: (1) performing slot-by-slot frame size increase, (2) providing a spatial reuse scheme that favors the reuse of the same slot if possible, (3) and ensuring an on-demand frame size increase only according to the node requirements in terms of throughput. To tackle different frame sizes co-existence in the network, OSTR brings a cooperative solution that consists in fixing an appointment, a date when the frame size in the network is increased. Concerning S-OSTR, it is an amendment of OSTR for wireless sensor networks. It brings the idea of a dynamic active period, since it deploys a dynamic frame size that is built slot-by-slot according to nodes arrival to the network. S-OSTR enforces the slot-by-slot frame size increase by a node activity scheduling to prolong the inactivity period in the network, and hence prolong the overall network lifetime for wireless sensor networks. Our contributions are both based on the new dynamic TDMA frame size increase that consists in increasing the frame size slot-by-slot aiming to achieve a shorter frame size, and hence improve the channel utilization, and reduce the energy consumption. The performance analysis of OSTR and S-OSTR shows that they present good potentials to support QoS requirements, to provide energy-efficiency, to ensure fair medium access, to accommodate network topology changes and finally, to enhance robustness against scalability. The impact of this new TDMA frame size increase technique on the medium access control protocol performance is highlighted through multiple simulations of OSTR and S-OSTR. Multiple comparative studies are also handled to point out the effectiveness of this new technique and the soundness of our contributions
80

Avaliação de desempenho de redes sem fio Ad Hoc / Performance analysis of wireless Ad Hoc networks

Dias, Renata Rampim de Freitas, 1971- 27 November 2007 (has links)
Orientador: Paulo Cardieri / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-10T16:22:37Z (GMT). No. of bitstreams: 1 Dias_RenataRampimdeFreitas_M.pdf: 1865625 bytes, checksum: 70ea1bddd1636ac34afdff1b6a97bfb1 (MD5) Previous issue date: 2007 / Resumo: As características intrínsecas de uma rede ad hoc sem fio de múltiplos saltos, tais como a ausência de uma entidade controladora central e de infra-estrutura, a possibilidade de comunicação direta entre as estações, além da degradação imposta pelo canal sem fio, impõem desafios à análise do desempenho de tais redes. Tais desafios são ainda maiores quando se deseja empregar uma formulação analítica. Este trabalho apresenta o desenvolvimento de um modelo analítico para o desempenho de uma rede ad hoc sem fio, estendendo os modelos encontrados na literatura, com a inclusão de parâmetros da camada física. Com base neste modelo, é apresentada a análise de uma rede, avaliando como o atraso e a vazão são afetados por diversos parâmetros da rede. A análise mostra que dependendo do controle da interferência e da robustez do sistema de transmissão, a capacidade da rede pode ser limitada pela interferência ou pelo atraso. Foi mostrada também a possibilidade da rede operar com um sistema de modulação adaptativo, através do qual a robustez da modulação é alterada para controlar a perda de pacotes e garantir a máxima vazão de dados, mas às custas do aumento no atraso / Abstract: The intrinsic characteristics of wireless multi-hop ad-hoc networks, such as the absence of a centralized control entity and infrastructure, the possibility of direct communication between stations and the degradation resultant from the wireless channel, impose challenges to the performance analysis of such networks. These challenges are even grater when analysis is done through analytical formulations. This work presents the development of an analytical model for the performance of wireless ad-hoc networks, which extends models found in the literature by including parameters of the physical channel. Having this model as a basis, a practical network analysis is presented, measuring how delay and throughput are affected by various network parameters. The analysis shows that, depending on the interference control and the robustness of the transmission system, the network capacity can be limited by interference or by delay. The possibility of the network operating with an adaptive modulation system is also shown. In this case, the robustness of the modulation is changed to control the packet loss and guarantee the maximum throughput, having as a cost a increase in delay / Mestrado / Telecomunicações e Telemática / Mestre em Engenharia Elétrica

Page generated in 0.0657 seconds