• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 99
  • 30
  • 9
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 181
  • 57
  • 44
  • 43
  • 28
  • 27
  • 20
  • 20
  • 19
  • 15
  • 14
  • 14
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Theorical and experimental study of plasmonic metamaterials for infrared application / Etude théorique et expérimentale de métamatériaux plasmiques pour l'application infrarouge

Omeis, Fatima 15 September 2017 (has links)
Le contrôle des ondes électromagnétiques joue un rôle fondamental dans les technologies photoniques actuelles. De nos jours, on assiste à une demande croissante de composants agiles capable d'absorber efficacement les ondes électromagnétiques dans divers gamme de fréquences. Habituellement, ces absorbeurs s'appuient sur les résonances plasmoniques qui apparaissent dans les métaux nobles dans la gamme visible. Cependant, l'extension des propriétés plasmoniques aux spectres infrarouge et THz nécessite des matériaux adéquats ayant un comportement métallique à ces fréquences. Dans ce travail, nous étudions numériquement et expérimentalement les structures métal-isolant-métal (MIM) réalisées à partir de semi-conducteur hautement dopé Si: InAsSb qui a un comportement métallique dans la gamme infrarouge. Dans la deuxième partie, nous avons amélioré l'efficacité des résonateurs MIM en utilisant des métamatériaux hyperboliques qui miniaturisent les résonateurs. Dans la dernière partie, nous proposons un design universel ultra-mince qui permet de dépasser les contraintes associées au choix des matériaux et permettant la réalisation d'un absorbeur fonctionnant sur une gamme spectrale allant de l'infrarouge aux micro-onde. / The control of light absorbance plays a fundamental role in today's photonic technologies. And the urge to design and develop flexible structures that can absorb electromagnetic waves is very growing these days. Usually, these absorbers relies on plasmonic resonances that arise in noble metals in the visible range. However, the extension of the plasmonic properties to the infrared and THz spectra requires adequate materials that have a metallic behavior at these frequencies. In this work, we study numerically and experimentally the metal-insulator-metal (MIM) structures realized from highly doped semiconductor Si:InAsSb that has a metallic behavior in the infrared range. In the second, part we improved the efficiency of the MIM resonators by using hyperbolic metamaterials that also miniaturize the resonators. In the last part, we propose an ultra-thin universal design that overcomes the material barrier so that the total absorption can be achieved for different spectral ranges without changing the material.
82

Plazmonické antény pro vysoké vlnové délky / Plasmonic antennas for high wavelengths

Beneš, Adam January 2021 (has links)
Tato diplomová práce se zabývá vlastnostmi plazmonických antén v oblasti vysokých vlnových délek. Důraz je kladen na popis rezonančních vlastností jednotlivých antén i antén uspořádaných do periodických polí. Těžiště práce spočívá v počítačovém modelování navýšení magnetického pole v blízkosti antén, které lze využít ve vysokofrekvenční elektronové paramagnetické rezonanci (HFEPR) k zesílení měřeného signálu. Autor se zabývá kvantifikací zesílení v anténách s odlišnou geometrií a navrhuje i geometrii vlastní. Značná část práce se také věnuje snaze rozlišit příspěvky k navýšení magnetického pole od různých zdrojů při měření HFEPR v uspořádání s dvojitou transmisí záření.
83

Évaluation de la technologie photonique sur silicium pour le développement de liens sans fil innovants visant 40 Gb/s au-delà de 200 GHz / Evaluation of silicon photonic technology for the development of innovative 40 Gbps wireless link above 200 GHz

Lacombe, Elsa 05 November 2018 (has links)
Avec l’explosion du trafic de données mobiles, des débits supérieurs au Gb/s deviennent nécessaires pour l’utilisateur. Ainsi, le réseau de communication est en cour d’amélioration afin de promouvoir le déploiement de la 5G, notamment grâce au développement et à l’installation de systèmes sans fil d’onde millimétrique (mmW) à 10 Gb/s. Néanmoins, pour délivrer de tels débits, les liens fronthaul/backhaul sans fil connectés au cœur de réseau devront supporter des flux de données supérieurs à 40 Gb/s. Cet enjeu suscite un intérêt croissant pour les fréquences sub-mmW et THz (0.1 THz – 1 THz) autour desquelles des bandes passantes (BPs) de 100 GHz sont accessibles. Il serait en effet possible d’atteindre un débit de 100 Gb/s, tout en utilisant des formats de modulation simples et ainsi réduire la consommation d’énergie du système. Visant le marché de masse des applications haut-débits, la technologie Photonique sur Silicium est particulièrement attractive pour générer des BPs naturellement larges et pour sa capacité à forts niveaux d’intégration et faible cout de fabrication. Dans cette thèse, une technologie Photonique sur Silicium industrielle a donc été évaluée durant le développement d’un émetteur intégré THz fonctionnant sur la base d’une photodiode et pouvant délivrer 100 Gb/s. Le développement d’une antenne THz faible cout et compacte est également un aspect majeur de cette thèse afin de permettre la transmission point-à-point du signal THz. En effet, une antenne intégrée sur substrat organique faible cout et à faibles pertes et une lentille fabriquée par impression 3D ont été développées afin d’évaluer ces technologies de prototypage industriel au-delà de 200 GHz. / With the booming of mobile data traffic, the need for higher data-rates is clearly felt. To cope with this strong demand and support the 5G roll-out, the capacity of the mobile communication network is being improved every day with many solutions, among which the development and installation of millimeterwave (mmW) wireless systems operating at up to 10 Gb/s. However, in order to deliver such high speeds to the user, the fronthaul/backhaul network sending data back to the core network would require above 40 Gb/s data-rate wireless links. This challenge generates a growing interest for sub-mmW and THz frequencies (0.1 THz – 1 THz) at which up-to 100 GHz bandwidth (BW) is accessible. In such BW, it would be possible to achieve up to 100 Gb/s data-rates while using simple modulation schemes to reduce the wireless system’s power consumption. Targeting mass-market high data-rates applications, Silicon Photonics technology seems very promising as it benefits from wide intrinsic BW and powerefficient components, as well as high integration levels and low manufacturing costs. In this context, a main aspect of this PhD project is the evaluation of an industrial Silicon Photonics technology for the development of a THz system-on-chip transmitter capable of reaching up to 100 Gb/s using a photodiode. Since THz antennas are also a hot topic for THz point-to-point transmission, a second aspect of this PhD study is the design of a low-cost and compact THz antenna-system. Hence, a planar antenna using low-loss organic packaging technology and a 3D-printed plastic lens were developed in order to assess those industrial prototyping techniques above 200 GHz.
84

2 μm Pulsed Fiber Laser Sources and Their Application in Terahertz Generation

Fang, Qiang January 2012 (has links)
In this dissertation, an all-fiber-based single frequency nanosecond pulsed laser system at ~ 1918.4 nm in master-oscillator-power-amplifier (MOPA) configuration is present. The nanosecond pulse seed is achieved by directly modulating a continuous wave (CW) single frequency fiber laser using a fast electro-optical modulator (EOM) driven by an arbitrary waveform generator (AWG). One piece of single mode, large core, polarization-maintaining (PM) highly thulium-doped (Tm-doped) germanate glass fiber (LC-TGF) is used to boost the pulse power and pulse energy of these modulated pulses in the final power amplifier. This laser system can work in both high power and high energy regime: in high power regime, to the best of our knowledge, the highest average power 16 W and peak power 78.1 kW are achieved for single frequency transform-limited ~2.0 ns pulses at 500 kHz and 100 kHz repetition rate, respectively: In high energy regime, nearly 1 mJ and half mJ pulse energy is obtained for ~15 ns pulses at 1 kHz repetition rate and 5 kHz repetition rate, respectively. Theoretical modeling of the large-core highly Tm-doped germanate glass double-cladding fiber amplifier (LC-TG-DC-FA) is also present for 2&mum nanosecond pulse amplification. A good agreement between the theoretical and experimental results is achieved. The model can simulate the evolution of pump power, signal energy, pulse shape and the amplified stimulated emission (ASE) in the amplifier. It can also be utilized to investigate the dependence of the stored energy in the LC-TGF on the pump power, seed energy and repetition rate, which can be used to design and optimize the LC-TG-DC-FA to achieve higher pulse energy and average power. Two channel of high energy nanosecond pulses (at 1918.4 nm and 1938 nm) are utilized to generate THz wave in a quasi-phase-matched (QPM) gallium arsenide (GaAs) based on difference frequency generation. THz wave with ~ 5.4μW average power and ~18 mW peak power has been achieved. Besides, one model is built to simulate a singly resonated THz parametric oscillator. The threshold, the dependence of output THz energy on pump energy has been investigated through this model. One pump enhanced THz parametric oscillator has been proposed. The enhancement factor of the nanosecond pulses in a bow-tie ring cavity has been calculated for different pulse duration, cavity length and the transmission of the coupler. And the laser resonances in the ring cavity have been observed by using a piezo to periodically adjust the cavity length. We also build an all-fiber thulium-doped wavelength tunable mode-locked laser operating near 2&mum. Reliable self-starting mode locking over a large tuning range (>50 nm) using fiber taper based carbon nanotube (FTCNT) saturable absorber (SA) is observed. Spectral tuning is achieved by stretching another fiber taper. To the best of our knowledge, this is the first demonstration of an all-fiber wavelength tunable mode-locked laser near 2&mum.
85

Semiconductor surface plasmons : a route to terahertz waveguides and sensors

Stone, Edmund K. January 2012 (has links)
The terahertz regime has until recently been some what neglected due to the difficulty of generating and measuring terahertz radiation. Terahertz time domain spectroscopy has allowed for affordable and broadband probing of this frequency regime with phase sensitive measurements (chapter 3). This thesis aims to use this tool to add to the knowledge of the interactions between electromagnetic radiation and matter specifically in regard to plasmonics. This thesis covers several distinct phenomena related to plasmonics at terahertz frequencies. The generation of terahertz radiation from metal nanoparticles is first described in chapter 4. It is shown that the field strength of the plasmon appears to relate to the strength of the generated field. It is also shown that the power dependence of the generated terahertz radiation is not consistent with the optical rectification description of this phenomenon. An alternative explanation is developed which appears more consistent with the observations. A simple model for the power dependence is derived and compared to the experimental results. In chapter 5 the parameters that make good plasmonic materials are discussed. These parameters are used to assess the suitability of semiconductors for terahertz surface plasmon experiments. The Drude permittivity of InSb is measured here, leading to a discussion of terahertz particle plasmons in chapter 6. Finite element method modelling is used to show some merits of these over optical particle plasmons. This also includes a discussion of fabrication methods for arrays of these particles. Finally, chapter 7 is a discussion of so called spoof surface plasmons. This includes some experimental work at microwave frequencies and an in depth analysis of open ended square hole arrays supported by model matching method modelling. Perfect endoscope effects are discussed and compared to superlensing. The thesis ends with a brief conclusions chapter where some of the ideas presented are brought together.
86

Compact high-repetition-rate terahertz source based on difference frequency generation from an efficient 2-μm dual-wavelength KTP OPO

Mei, Jialin, Zhong, Kai, Wang, Maorong, Liu, Pengxiang, Xu, Degang, Wang, Yuye, Shi, Wei, Yao, Jianquan, Norwood, Robert A., Peyghambarian, Nasser 03 November 2016 (has links)
A compact optical terahertz (THz) source was demonstrated based on an efficient high-repetition-rate doubly resonant optical parametric oscillator (OPO) around 2 mu m with two type-II phase-matched KTP crystals in the walk-off compensated configuration. The KTP OPO was intracavity pumped by an acousto-optical (AO) Q-switched Nd:YVO4 laser and emitted two tunable wavelengths near degeneracy. The tuning range extended continuously from 2.068 mu m to 2.191 mu m with a maximum output power of 3.29 W at 24 kHz, corresponding to an optical-optical conversion efficiency (from 808 nm to 2 mu m) of 20.69%. The stable pulsed dual-wavelength operation provided an ideal pump source for generating terahertz wave of micro-watt level by the difference frequency generation (DFG) method. A 7.84-mm-long periodically inverted quasi-phase-matched (QPM) GaAs crystal with 6 periods was used to generate a terahertz wave, the maximum voltage of 180 mV at 1.244 THz was acquired by a 4.2-K Si bolometer, corresponding to average output power of 0.6 mu W and DFG conversion efficiency of 4.32x10(-7). The acceptance bandwidth was found to be larger than 0.35 THz (FWHM). As to the 15-mm-long GaSe crystal used in the type-II collinear DFG, a tunable THz source ranging from 0.503 THz to 3.63 THz with the maximum output voltage of 268 mV at 1.65 THz had been achieved, and the corresponding average output power and DFG conversion efficiency were 0.9 mu W and 5.86x10(-7) respectively. This provides a potential practical palm-top tunable THz sources for portable applications.
87

Ultrafast and continuous-wave spectroscopy of multiferroic oxide thin films

Doig, Katie I. January 2014 (has links)
Thin film multiferroic oxides with co-existing ferroelectric and ferromagnetic ordering have attracted much interest in recent years, partly as a result of the enhancements achieved through the adoption of strained thin film geometries. This thesis presents work on two such thin film oxides; lanthanide substituted BiFeO<sub>3</sub> and Fe substituted PbTiO<sub>3</sub>. Coherent magnons and acoustic phonons were impulsively excited and probed in thin films of the room temperature multiferroic Bi<sub>1-x-y</sub>Dy<sub>x</sub>La<sub>y</sub>FeO<sub>3</sub> using femtosecond laser pulses. The elastic moduli of rhombohedral, tetragonal and rare-earth doped BiFeO<sub>3</sub> were determined from acoustic mode frequencies in conjunction with spectroscopic ellipsometry. A weak ferromagnetic order, induced alternately by magnetization in the growth direction or by tetragonality, created a magnon oscillation at 75 GHz, indicative of a Dzyaloshinskii-Moriya interaction energy of 0.31 meV. Bulk crystals and thin films of PbTi<sub>1-x</sub>Fe<sub>x</sub>O<sub>3</sub> (PTFO) are multiferroic, exhibiting ferroelectricity and ferromagnetism at room temperature. Here we report that the Ruddlesden-Popper phase Pb<sub>n+1</sub>(Ti<sub>1-x</sub>Fe<sub>x</sub>)<sub>n</sub>O<sub>3n+1</sub> forms spontaneously during pulsed laser deposition of PTFO on LaAlO<sub>3</sub> substrates. High-resolution transmission electron microscopy, x-ray difraction and x-ray photoemission spectroscopy were utilised to perform a structural and ompositional analysis, demonstrating that n&sime;8 and x&sime;0.33. The complex dielectric function of the films was determined from far-infrared to ultraviolet energies using a combination of terahertz time-domain spectroscopy, Fourier transform spectroscopy, and spectroscopic ellipsometry. The simultaneous Raman and infrared activity of phonon modes, and the observation of second harmonic generation, establishes a non-centrosymmetric point group for Pb<sub>n+1</sub>(Ti<sub>0.67</sub>Fe<sub>0.33</sub>)<sub>n</sub>O<sub>3n+1-&delta;</sub> consistent with ferroelectricity. No evidence of macroscopic ferromagnetism was found in SQUID magnetometry. The ultrafast optical response exhibited coherent magnon oscillations compatible with local magnetic order, and additionally was used to study photocarrier cooling on picosecond timescales. An optical gap smaller than that of BiFeO<sub>3</sub> and long photocarrier lifetimes may make this system interesting as a ferroelectric photovoltaic.
88

Terahertz time-domain spectroscopy and near-field imaging of microstructured waveguides

Pan, Yi January 2013 (has links)
This thesis presents studies of novel terahertz photonic devices, including photoconductive optoelectronic devices and guided-wave components, aimed at the development of next-generation terahertz systems. In chapter 2, a scalable interdigitated THz transmitter is designed to increase the output power and compared with a conventional 50 μm coplanar transmitter. In chapter 3, we compare four different receivers with different antenna geometries in terms of bandwidth and sensitivity. Then we describe a photoconductive near-field detector with a subwavelength aperture and its system integration and characterization. In chapter 4, a parallel metal plate waveguide is designed with an integrated step inside the waveguide that can couple to higher order TM modes efficiently from the TEM mode. In this chapter, we also experimentally and numerically study a 2-dimensionally tapered parallel plate waveguide, by which a free-space THz beam can be focused into a deep subwavelength-scale volume. In chapter 5, a parallel thin dielectric film waveguide is used to explore the guiding mechanism of an antiresonant optical reflection waveguide. Cylindrical silica single capillaries and a microstructured capillary, which guide in a similar way, are characterized in terms of mode profiles and attenuation. In chapter 6, we study oblique transmission through freestanding thin nickel films, which are perforated with periodic conical hole arrays. Surface modes can be supported by both metallic surfaces with different nonlinear dispersion curves, which results in spectral interferences in a near-field region when the surface modes couple out of the waveguide into free space.
89

Quantum dot-based semiconductor Terahertz transceiver systems

Leyman, Ross January 2014 (has links)
Terahertz (THz) technology is still currently a rapidly developing area of research with applications already demonstrated in the fields of biology, medicine, security, chemical/materials inspection and astrophysics to name a few. The diversity of applications which require the generation and measurement of THz or sub-millimeter (sub-mm) electromagnetic (EM) signals is the result of the vast number of chemical elements and compounds which exhibit molecular transitions and vibrational behavior that occur at frequency ranges corresponding to the so-called 'THz gap', roughly defined as 0.05-10 THz. The THz gap was named as such because of the relative difficulty in generating and analysing EM waves in this frequency band. This was due to the inherent challenges in generating either electrical signals with response periods below 1 picosecond (ps), or optical signals with wavelengths in the far-infrared (FIR) range. High absorption of THz signals in atmosphere via absorption by molecules such as H2O also impeded early developments and is a key issue in THz systems even today. There is now a wide variety of THz system solutions, each of which exhibits a different set of operational advantages and limitations. Arguably, the most well-established THz technique to date is based on the use of photoconductive antennas (PCAs) driven by ultrafast pulsed or dual-wavelength laser systems. This technique is the basis for the work presented in this thesis, which is an investigation into the potential utilisation of quantum dot (QD)-based semiconductor materials and devices in THz systems. This thesis discusses the work carried out in the development of a novel class of PCA devices which were postulated to enable efficient optical-to-THz signal conversion, whilst also overcoming several major limitations normally exhibited by PCA devices such as limited optical wavelength pumping range and thermal breakdown. To summarise briefly, these issues were addressed by considering: the additional pump absorption energy ranges enabled by the inclusion of multiple bandgap-engineered semiconductor materials and quantum-confined structures; the higher thermal conductivity and hence pump tolerance exhibited by relatively high-quality (low defect) absorption layers; and by simultaneously harnessing the ultrafast charge carrier modulation exhibited by the integrated QDs. Additionally, some work was carried out using QD-based lasers as pump sources, with the initial intention to explore the feasibility of a fully QD-based THz transceiver system and draw some conclusions as to the future potential for ultra-compact or even lab-on-chip THz systems, for example.
90

Electro-optic diagnostic techniques for the CLIC Linear Collider

Pan, Rui January 2015 (has links)
One of the most promising devices to provide accurate measurement of the longitudinal bunch profile at the tens of femtosecond level is based on electro-optic techniques. In this thesis, a bunch profile monitor, based on electro-optic spectral decoding (EOSD), is currently developed for the CLIC Test Facility 3 at CERN. The monitor is optimised for bunch lengths over 3.5 ps with effective window of 16 ps, and sub-picosecond resolution. The measurement results from the EO monitor are compared with measurements by coherent transition radiation on a streak camera. The measurement on bunch charge dependence is studied. Timing resolution of the bunch profile monitor is studied in both theory and numerical calculation. This thesis summarises a frequency analysis approach of electro-optic effect based on $\chi^{(2)}$ frequency mixing process. From the theory analysed in frequency domain, a non-crossed polarization measurement includes all three of the probe laser background term, the linear term to Coulomb field and the quadratic term to Coulomb field. Three methods are induced based on this frequency analysis result to retrieve Coulomb field value which is emitted from electron beam. The measured 1.3 MV/m field strength agrees with calculation result. An experiment is designed to study the role of incident beam sizes and non-collinear incident beams in EO technique. Due to the phase matching process, the non-collinear angle of the incident beams induces a frequency dependent angular chirp in the beams emitted after the EO crystal. This frequency offset may lead to frequency loss in fibre coupling, and thus lead to bunch length broadening in a measurement for short electron bunch.

Page generated in 0.0289 seconds