• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 98
  • 30
  • 9
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 179
  • 56
  • 43
  • 42
  • 28
  • 27
  • 20
  • 19
  • 19
  • 15
  • 14
  • 14
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Conception de tags d'identification sans puce dans le domaineTHz / Study of chipless tag in the THz frequency domain

Hamdi, Maher 01 October 2014 (has links)
Ce travail de thèse a été réalisé dans le cadre d'un contrat avec l'ANR (ANR-09-VERS-013 « THID ») et porte sur le développement d'une nouvelle génération de tags Chipless à bas coûts fonctionnant dans le domaine THz, pour des applications d'identification et/ou authentification unitaire des articles commerciaux, des papiers d'identités, des personnes pour le contrôle d'accès... Les structures proposées, constituées d'un empilement périodique de couches diélectriques d'indices de réfraction différents, utilisent les propriétés particulières des cristaux photoniques 1D de présenter une réponse électromagnétique entrecoupée de bandes interdites photoniques (BIP). Toute perturbation de la périodicité de la structure engendre des pics dans les bandes interdites qui sont utilisés pour coder une information binaire. Cette structuration particulière des matériaux permet donc de manipuler précisément une signature électromagnétique. Pour des raisons liées à l'industrialisation (facilité de fabrication en masse) et aussi de coût, nous avons retenu des matériaux de base déjà couramment utilisés dans l'industrie papetière : le papier et le polyéthylène. Le choix de ces matériaux, qui doivent allier contraste d'indice élevé et faible absorption, représente une étape cruciale dans ce travail. Ainsi, à partir des résultats expérimentaux obtenus par spectroscopie THz dans le domaine temporel (THz-TDS) sur un grand nombre de matériaux, nous avons pu concevoir deux familles de tags sur la base de ces différents matériaux. Par ailleurs, nous avons développé deux méthodes de codage d'une information binaire, toutes deux basées sur l'absence ou la présence de pics dans une BIP, pics dont la position et le nombre dépendent bien évidemment des défauts de périodicité introduits. Pour des applications liées à l'identification, des capacités de codage de près de 20 bits ont été démontrées. Nous avons aussi montré que la richesse d'information contenue dans la réponse électromagnétique de ces Tags THz peut être utilisée pour les applications liées à l'authentification unitaire, en utilisant comme critère de discrimination le coefficient d'autocorrélation. Nous avons ainsi pu évaluer les performances d'un test d'authentification basé sur ce critère dans différents domaines d'analyse : temporel, fréquentiel et temps-fréquence. Nous avons montré qu'une étude du spectrogramme (combinant temps et fréquence) est ainsi bien plus pertinente qu'une étude dans les seuls domaines temporel ou fréquentiel. / This thesis work deals with the development of a new generation of low-cost Chipless tags operating in the THz frequency domain, it has been supported by the french national agency for research (ANR-09-VERS-013 « THID » ). It covers a wide area of applications such as the identification and/or unitary authentication of commercial items, identity papers, access control…To manufacture these tags, we proposed to use a periodic stack of dielectric material layers with different refractive index and whose thickness is of the order of the wavelength, commonly known as a one dimensional photonic crystal. The electromagnetic signature of such a structure exhibits photonic bandgaps (PBG), i.e. frequency windows in which light propagation is prohibited. We suggested modifying the periodicity of the crystal to create defect levels (peaks) for example in the 1st PBG to encode binary information. This particular structure allows to precisely tuned an electromagnetic signature. To ensure a mass and cost effective industrialization, we retained basic materials which are widely used in the pulp and paper industry: paper and polyethylene. The choice of these materials, which must combine high index contrast and low absorption, represents the first and a crucial step in this work. We characterize a wide range of materials using classical THz time domain spectroscopy (THz-TDS) and we propose two families of tags based on paper and polyethylene. Furthermore, we developed two methods to encode binary information, both based on the absence or presence of peaks in a PBG, peaks whose number and position depend on the introduced defects of periodicity. In a real identification test, a coding capacity of nearly 20-bit has been demonstrated. We also showed that the information contained in the electromagnetic response of these THz tags can be used for other applications related to the unitary authentication and by using the correlation coefficient as criterion for discrimination of the different signatures. Therefore, we evaluate the performance of an authentication test based on this criterion in various analysis domains: time, frequency and time-frequency. We showed that a study of the spectrogram (combining time and frequency representation) is much more relevant than a study in the only time or frequency domain.
52

Quantum-engineered semiconductor photomixers at long wavelength illumination (1.55 μm) for THz generation and detection

Kostakis, Ioannis January 2014 (has links)
This thesis is concerned with the characterisation, fabrication and testing of devices capable of generating and detecting terahertz (THz) radiation. Such devices are based on semiconductor photoconductors grown under low temperature (LT) conditions using the technique of Molecular Beam Epitaxy (MBE). The absorption of a pulsed or continuous wave (CW) signal by these structures in conjunction with the presence of an electric field generates photocurrent, which is fed into an antenna structure fabricated on the surface of the active layers. As a result of such a sequence, a THz signal is generated and radiated from the substrate side into free space. Therefore, the efficiency of the devices is determined by the characteristics of the photoconductors and the geometry of the designed antenna structures. The desired material characteristics are high absorption at the corresponding illumination wavelength, high dark resistivity, high electron mobility and sub picosecond carrier lifetime. The determination of these characteristics for all the structures grown in this work composes the characterisation part of the thesis. The fabrication part comprises of the design of several antenna structures with various geometrical characteristics, while the testing part consists of their evaluation as THz sources and detectors in a time-domain spectroscopy (TDS) system under pulsed excitation. To date, THz devices based on low temperature grown GaAs (LT-GaAs) photoconductors have been reported to be the most efficient. However, their operational wavelength, at 800 nm, requires very expensive and complex components spurring interests in solutions consisting of devices operating at longer wavelengths, where cheaper and simpler components exist. The most desirable and practical operational wavelength is the telecommunication one at 1.55 μm. Thus, the biggest challenge is the development of efficient devices operating at this illumination wavelength. In this work, devices operating at the very important wavelength of 1.55 μm as well as at the wavelengths of 1 μm and 800 nm are presented. The key findings for the long wavelength devices (1.55 μm) demonstrate photoconductors with ultrafast carrier lifetimes (~ 120 fs), high resistivity (> 105 Ω / sq), high mobility (> 1000 cm2 / Vs) and system responses with spectral range up to 3 THz and power-to-noise ratio of 60 dB. These characteristics are among the best ever reported for such material systems, making them efficient THz devices for various optoelectronic applications, especially for telecommunication laser-driven CW THz systems.
53

Advanced In0.8Ga0.2As/AlAs resonant tunneling diodes for applications in integrated mm-waves MMIC oscillators

Md Zawawi, Mohamad Adzhar bin January 2015 (has links)
The resonant tunneling diode (RTD) is the fastest electron device to-date in terms of its ability to generate continuous-wave terahertz frequency at room temperature, owing to its unique characteristic of negative differential resistance (NDR). In this work, a lattice-matched In0.53Ga0.47As (on InP) is used as the cladding layer, while a highly-compressive strained In0.8Ga0.2As is sandwiched between two tensile-strained pseudomorphic AlAs barriers to form the active double barrier quantum well RTD structure grown by Molecular Beam Epitaxy. The ultimate aim of this work was to integrate an optimised RTD into an oscillator circuit to enable a 100 GHz (W-band) MMIC RTD oscillator. One of the key challenges in this work was to improve the DC performance of the RTD, through extensive material and structural characterisations. Growing nano-scale epitaxial layers require a high degree of controllability with mono-layer precision. The dependencies of the NDR components, such as the peak current density, peak voltage and peak-to-valley current ratio (PVCR) towards variations in structural thickness were studied systematically. Through this work, it is found that the peak current density is strongly affected by monolayer variation in barrier thickness. The effect of quantum well thickness variation towards peak current density is relatively weaker. Interestingly, variation in spacer layer thickness has very little influence towards the magnitude of the peak current density. The fabrication of the RTD using a conventional i-line optical lithography created its own challenge. The process capability to reduce mesa active area down to sub-micrometer level to reduce device’s geometrical capacitance for high frequency, THz applications has been made feasible in this work. The conventional i-line optical lithography was combined with a newly developed tri-layer soft reflow technique using solvent vapour resulted in sub-micrometer RTDs. The DC characterisation of the fabricated RTDs showed excellent device scalability, indicating a robust processing. This novel sub-micron processing technique with high throughput and repeatability is a very promising low cost technique. A collaborative effort between the University of Manchester and Glasgow paved the way towards the realisation of an integrated W-band RTD MMIC oscillator. The circuit-combining topology was designed by the High Frequency Electronics Group in Glasgow while the mask-layout and oscillator fabrication took place in Manchester. An active RTD from sample XMBE#301 with peak current density of 1.4 x 105 A/cm2 and PVCR of 4.5 was integrated into a 100 GHz MMIC oscillator to successfully produce a measured frequency of 109 GHz with an un-optimised 5.5 μW output power at room temperature (mesa area = 4x4 μm2).
54

Terahertz Time-Domain Spectroscopy of Low-Dimensional Materials and Photonic Structures

Xia, Chen 12 March 2013 (has links)
No description available.
55

Tunable Terahertz Detectors Based On Plasmon Exciation In Two Dimensional Electron Gasses In Ingaas/inp And Algan/gan Hemt

Saxena, Himanshu 01 January 2009 (has links)
The observation of voltage-tunable plasmon resonances in the terahertz range in two dimensional electron gas (2-deg) of a high electron mobility transistor (HEMT) fabricated from the InGaAs/InP and AlGaN/GaN materials systems is reported. The devices were fabricated from a commercial HEMT wafer by depositing source and drain contacts using standard photolithography process and a semi-transparent gate contact that consisted of a 0.5 [micro]m period transmission grating formed by electron-beam lithography. Narrow-band resonant absorption of THz radiation was observed in transmission in the frequency range 10-100 cm-1. The resonance frequency depends on the gate voltage-tuned sheet-charge density of the 2deg. The fundamental and higher resonant harmonics were observed to shift towards lower frequencies with the implementation of negative gate bias. The theory of interaction of sub millimeter waves with 2deg through corrugated structure on top has been applied to calculate and understand the phenomena of resonant plasmon excitations. The observed separation of resonance fundamental from its harmonics and their shift with gate bias follows theory, although the absolute frequencies are lower by about a factor of 2-3 in InGaAs/InP system. However, calculated values match much better with AlGaN/GaN system.
56

Phase retrieval method for quantitative terahertz spectroscopy in reflection geometry

Jatkar, Kasturie January 2023 (has links)
Terahertz time-domain spectroscopy (THz-TDS) is a reliable technique used for studying the complex optical properties of materials. Its frequency range makes it suitable for detecting low-energy collective excitations such as phonons, magnons, and plasmons. THz-TDS in transmission geometry has gained much attention over the years. However, despite the need for exploring reflective samples, the advancement of THz-TDS in reflection geometry has faced several obstacles, mainly due to its strict requirement for sub-micron precision in the placement of the sample and reference. Here we demonstrate a technique for measuring samples in reflection geometry using THz-TDS which involves systematically resolving the misplacement issue by first isolating and correcting sources of error in the experimental setup. We then use a novel and robust phase retrieval method to detect and rectify the remaining misplacement with nanometer precision. This provides us with precise values for the phase of the THz pulse, which in turn allows us to accurately measure the complex optical properties of different types of materials. We use this technique to study bulk semiconducting samples such as Si and InSb. The experimental results of incident angle and polarization-dependent measurements are shown along with the retrieved complex refractive index of these samples. Our method immensely simplifies the procedure for obtaining the optical properties of samples in the THz range. We anticipate that our technique will be applied to spectroscopic studies of many more quantum materials with collective excitations in the THz range.
57

Non-Contact, Antenna-Free Probes for Characterization of THz Integrated-Devices and Components

Daram, Prasanna Kumar January 2014 (has links)
No description available.
58

Nonlinear systems for frequency conversion from IR to RF

Dolasinski, Brian David January 2014 (has links)
No description available.
59

Highly-Configurable Multi-Objective Optimization for Physical Parameter Extraction using Terahertz Time-Domain Spectroscopy

Niklas, Andrew John 07 June 2018 (has links)
No description available.
60

Origine de la réduction de la durée de vie des photoporteurs dans le InGaAsP implanté à basse température

Vincent, Louis 03 1900 (has links)
Un matériau semi-conducteur utilisé lors de la fabrication d’antennes térahertz (THz), le quaternaire InGaAsP (E_g = 0,79 eV), subit une implantation ionique de Fe suivi d’un recuit thermique rapide (RTA) dans le but d’améliorer ses propriétés d’émission. Le recuit est nécessaire afin de recristalliser la couche amorphisée lors de l’implantation, donnant lieu à un polycristal rempli de défauts de recristallisation. On constate cependant que les matériaux implantés Fe offrent de meilleures performances que ceux simplement endommagés au Ga. Dans le but de départager l’effet des défauts de recristallisation et des impuretés de Fe, des mesures de spectroscopie transitoire des niveaux profonds (DLTS) et de DLTS en courant (I-DLTS), ainsi que de spectrométrie de masse d’ions secondaires par temps de vol (ToF-SIMS) ont été effectuées sur des échantillons non implantés et d’autres recristallisés. Les mesures DLTS et I-DLTS ont pour but de caractériser les niveaux profonds générés par ces deux procédures postcroissance, tout en identifiant le rôle que jouent les impuretés de Fe sur la formation de ces niveaux profonds. De plus, le voisinage des atomes de Fe dans le matériau recristallisé a été étudié à l’aide des mesures ToF-SIMS. Les mesures DLTS sur matériau recristallisé sont peu concluantes, car la mesure de capacité est faussée par la haute résistivité du matériau. Par contre, les mesures I-DLTS sur matériau recristallisé ont permis de conclure que les impuretés de Fe sont responsables de la formation d’une grande variété de niveaux d’énergie se trouvant entre 0,25 et 0,40 eV, alors que les défauts de structure induisent des niveaux de moins de 0,25 eV. La concentration de Fe est élevée par rapport au seuil de solubilité du Fe dans le matériau recristallisé. Il serait donc plausible que des agrégats de Fe se forment. Toutefois, cette hypothèse est infirmée par l'absence de pic aux masses correspondant à la molécule ^(56)Fe_2^+ sur les spectres ToF-SIMS. De plus, un modèle simple est utilisé afin d’estimer si certaines masses présentes sur les spectres ToF-SIMS correspondent à des liaisons non induites par la mesure dans le matériau recristallisé. Bien qu’aucune liaison avec le Ga et l'As n’est détectable, ce modèle n’exclut pas la possibilité de liens préférentiels avec l’In. / A semiconductor material used in the manufacture of terahertz (THz) antennas, the InGaAsP quaternary (E_g = 0,79 eV), is Fe-ion implanted followed by Rapid Thermal Annealing (RTA) in order to improve its emission properties. The annealing is required to recrystallize the layer that was amorphized during implantation, resulting in a polycrystal filled with recrystallization defects. However, the Fe-implanted materials provide better performance than those simply damaged with Ga. In order to disentangle the effect of recrystallization defects and of Fe impurities, Deep-Level Transient Spectroscopy (DLTS) measurements, current DLTS (I-DLTS) measurements and Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) were carried out on non-implanted and on recrystallized samples. The DLTS et I-DLTS measurements aim to characterize deep levels generated by these two post-growth fabrication processes, while identifying the role of Fe impurities on the formation of these deep levels. In addition, a study of the vicinity of Fe atoms in the recrystallized material was performed using ToF-SIMS measurements. The DLTS measurements on recrystallized material were inconclusive because the capacitance measurements were distorted by the high resistivity of the material. On the other hand, the I-DLTS measurements on recrystallized material allowed us to conclude that the Fe impurities are responsible for the formation of a wide variety of energy levels lying between 0.25 and 0.40 eV, while structural defects induce levels lower than 0.25 eV. The Fe concentration is high compared to the solubility threshold of Fe in the material. It is therefore possible that Fe clusters are formed. However, this hypothesis is invalidated by the absence of a peak at the mass channels corresponding to the molecule ^(56)Fe_2^+ on ToF-SIMS mass spectra. Moreover, a simple model is used to estimate whether certain masses present on ToF-SIMS spectra correspond to actual bonds in the recrystallized material, not induced by the measurement. While no bonds with Ga and As were detectable, this model does not exclude the possibility of preferential binding between with In.

Page generated in 0.0505 seconds