1 |
3D Printed Heat Exchangers: An Experimental StudyJanuary 2018 (has links)
abstract: As additive manufacturing grows as a cost-effective method of manufacturing, lighter, stronger and more efficient designs emerge. Heat exchangers are one of the most critical thermal devices in the thermal industry. Additive manufacturing brings us a design freedom no other manufacturing technology offers. Advancements in 3D printing lets us reimagine and optimize the performance of the heat exchangers with an incredible design flexibility previously unexplored due to manufacturing constraints.
In this research, the additive manufacturing technology and the heat exchanger design are explored to find a unique solution to improve the efficiency of heat exchangers. This includes creating a Triply Periodic Minimal Surface (TPMS) geometry, Schwarz-D in this case, using Mathematica with a flexibility to control the cell size of the models generated. This model is then encased in a closed cubical surface with manifolds for fluid inlets and outlets before 3D printed using the polymer nylon for thermal evaluation.
In the extent of this study, the heat exchanger developed is experimentally evaluated. The data obtained are used to derive a relationship between the heat transfer effectiveness and the Number of Transfer Units (NTU).The pressure loss across a fluid channel of the Schwarz D geometry is also studied.
The data presented in this study are part of initial experimental evaluation of 3D printed TPMS heat exchangers.Among heat exchangers with similar performance, the Schwarz D geometry is 32% smaller compared to a shell-and-tube heat exchanger. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2018
|
2 |
Utvärdering av sårbarheter hos moderna fordonWarling, Peter, Mehmeti, Armend January 2018 (has links)
Fordon utvecklas till att innehålla mer avancerade komponenter och funktioner vilka bidrar till att dess framfart görs allt mer säker och effektiv. Baksidan av denna utveckling är att nya attackytor uppstår. Under tidigare arbeten har svagheter konstaterats i många av de olika trådlösa system som ett fordon använder. Då bilindustrin kontinuerligt utvecklas fokuserar detta arbete på att undersöka vilka trådlösa enheter som finns i moderna fordon, vilket av dessa system som utgör störst risk för att sedan föreslå teoretiska åtgärder för hur riskerna kan motverkas. Slutligen utförs ett praktiskt experiment för att utvärdera om en välkänd attack fortfarande är ett hot hos dagens fordon. Under arbetet konstateras det att i samtliga av de populäraste bilmodellerna som såldes i landet under förra året påträffas trådlösa system vilka alla under tidigare experiment visats innehålla tekniska svagheter. Arbetet fastställer genom en riskanalys att fjärrstyrda låssystem utgör den största risken men också att riskerna teoretiskt kan motverkas genom enkla metoder. Avslutningsvis konstateras det att även fordon av 2017 års modell är mottagliga för enklare attacker resulterande i att de ej kan låsas.
|
3 |
Trustworthy Computing Approach for Securing Ad Hoc Routing ProtocolsThotakura, Vinay 30 April 2011 (has links)
Nodes taking part in mobile ad hoc networks (MANET) are expected to adhere to the rules dictated by the routing protocol employed in the subnet. Secure routing protocols attempt to reduce the ill-effect of nodes under the control of malicious entities who deliberately violate the protocol. Most secure routing protocols are reactive strategies which include elements like redundancies and cryptographic authentication to detect inconsistencies in routing data advertised by nodes, and perhaps explicit measures to react to detected inconsistencies. The approach presented in this dissertation is a proactive approach motivated by the question “what is a minimal trusted computing base for a MANET node?” Specifically, the goal of the research was to identify a small set of well-defined low-complexity functions, simple enough to be executed inside highly resource limited trusted boundaries, which can ensure that nodes will not be able to violate the protocol. In the proposed approach every node is assumed to possess a low complexity trusted MANET module (TMM). Only the TMM in a node is trusted - all other hardware and software are assumed to be untrusted or even hostile. TMMs offer a set of interfaces to the untrusted node housing the TMM, using which the node can submit data to the TMM for cryptographic verification and authentication. As other nodes will not accept packets that are not authenticated by TMMs, the untrusted node is forced to submit any data that it desires to advertise, to its TMM. TMMs will authenticate data only if the untrusted node can convince the TMM of the validity of the data. The operations performed by TMMs are to accept, verify, validate data submitted by the untrusted node, and authenticate such data to TMMs housed in other nodes. We enumerate various TMM interfaces and provide a concrete description of the functionality behind the interfaces for popular ad hoc routing protocols.
|
4 |
En studie av TPMS-baserade nätverksstrukturer tillverkade i PA11 : A study of TPMS-based network structures made in PA11Sundbom, Johan, Delahunt, Jakob January 2023 (has links)
SammanfattningTriply Periodic Minimal Surface (TPMS)-baserade nätverksstrukturer har snabbt blivit populära i flera tillämpningar, exempelvis medicinska implantat, värmeväxlare, stötdämpareoch lättviktskonstruktioner. Gyroidstrukturen är förmodligen den mest kända och använda, men en mängd varianter existerar med extremt goda egenskaper vid additiv tillverkning. Nätverkenkan printas helt utan stödstrukturer och kan erhålla mekaniska egenskaper i nivå̊ med de relativa bulkegenskaperna. I detta projekt skall mekaniska egenskaper för TPMS-baserade provbitar SLS-printade i PA11 undersökas genom dragprov, böjprov, slagseghetsprov och kompressionsprov. Dessutom ska det undersökas om byggriktning och orientering i skrivarens byggkammare har betydelse för materialets mekaniska egenskaper. Utöver detta kommer även en materialmodell byggas upp för analys med hjälp av Abaqus.Slutsatserna från examensarbetet var att både byggriktning och orientering i skrivarens kammare har betydelse för materialegenskaperna. Med resultaten från proverna ges rekommendationen att rikta stavarna från kammarens dörr inåt och med orienteringen liggandes. Även drogs slutsatsen att nätverksstrukturer når upp i nivå med de relativa bulkegenskaperna för trepunkts böjprov, dock endast med en ram runt hela provbiten. Det räckte ej med endast ram under och över / Triply Periodic Minimal Surface (TPMS)-based structures have quickly become popular inmany applications, for example medicinal implants, heat exchangers, shock absorbers and lightweight constructions. The gyroid structure is probably the most known and used, but plenty of variations exist with extremely good properties for additive manufacturing. The networks can be printed completely without support structures and can obtain mechanical properties in line with the relative bulk properties.This project shall evaluate the mechanical properties of TPMS-based test specimens SLSprinted in PA11 through compression testing, tensile testing, impact testing and three-point flexural testing. It shall also be determined if build direction and orientation in the printer’s build chamber effects the material’s mechanical properties. In addition to this will a material model be constructed for finite element analysis in Abaqus.The conclusions from this bachelor’s thesis are that both build direction and orientation in the printer’s build chamber effects the material mechanical properties. Based on the results from the tests the recommendation is given to direct the test specimens inward from the chamber’s door and to orient the specimens flat. The conclusion is also drawn that network structures can reach the relative bulk properties in three-point flexural test, however only with a frame encompassing the entire specimen. A frame only on top and bottom wasn’t enough.
|
5 |
Technology Survey of Wireless Communication for In-vehicle ApplicationsHaque, Md Ansarul, Hossain, Md Delwar January 2013 (has links)
Currently, wireless communication technologies are expected to be widely employed for in-vehicle communication where in-vehicle communication is built upon the interactions of different parts inside the vehicle. This communication is to enable a variety of applications for driver and passenger needs. To have improved driving assistance, development of in-vehicle applications is very much needed. At present, intelligent systems inside the vehicle are mostly dominated by the wired technologies. The possibilities of wireless communication have inspired us and made an opportunity to analyse replacements for wired communication within a vehicle. In this connection, the scope of our thesis is to define the in-vehicle applications which are preferred by the wireless technologies, to define the applications using wired technologies which could be replaced by the wireless technologies and to identify those applications which are difficult to implement by the wireless technologies. In-vehicle wired networks; and problems of these wired networks, along with several existing applications, have been discussed at the initial stage of this thesis for the purpose of having a clear understanding. After that, existing In-vehicle wireless applications and several challenging applications have also been studied. Studies have been done on the most important wireless technologies with their respective specifications. The requirement of establishing wireless communication has also been explained. Finally, an analysis has been done according to the requirements of the applications and verification of their possible reliance on the wireless technologies. In a brief, comparable studies have been done among the wireless technologies to assess their current and future fitness for In-vehicle applications. The thesis concludes with some recommendations regarding when wireless technologies might be suitable for some in-vehicle applications to replace the wired technologies.
|
6 |
Thermal Resistance Measurements of Triply Periodic Minimal Surface Structures (TPMS) of the Thermogalvanic BrickJanuary 2020 (has links)
abstract: The presence of huge amounts of waste heat and the constant demand for electric energy makes this an appreciable research topic, yet at present there is no commercially viable technology to harness the inherent energy resource provided by the temperature differential between the inside and outside of buildings. In a newly developed technology, electricity is generated from the temperature gradient between building walls through a Seebeck effect. A 3D-printed triply periodic minimal surface (TPMS) structure is sandwiched in copper electrodes with copper (I) sulphate (Cu2SO4) electrolyte to mimic a thermogalvanic cell. Previous studies mainly concentrated on mechanical properties and the electric power generation ability of these structures; however, the goal of this study is to estimate the thermal resistance of the 3D-printed TPMS experimentally. This investigation elucidates their thermal resistances which in turn helps to appreciate the power output associated in the thermogalvanic structure. Schwarz P, Gyroid, IWP, and Split P geometries were considered for the experiment with electrolyte in the thermogalvanic brick. Among these TPMS structures, Split P was found more thermally resistive than the others with a thermal resistance of 0.012 m2 K W-1. The thermal resistances of Schwarz D and Gyroid structures were also assessed experimentally without electrolyte and the results are compared to numerical predictions in a previous Mater's thesis. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2020
|
7 |
Micro-architectured materials for thermal management : Porous graphite/graphene boiling enhancement structuresGhaderidosst, Melody January 2022 (has links)
The convergence of the digital and physical world encourages advances in high-speed telecommunication and fifth generation technology. Two-phase heat transfer systems are common engineering solutions. However, due to the large frequency spectra in 5G, the systematic heat generation increases requiring more efficient thermal management. The surface characteristics of solid materials in these systems is vital making micro-architectured materials a novel pathway to improve heat transfer. The coefficient of thermal expansion and thermal conductivity of the Schoen-Gyroid, a triply periodic minimal surface structure is studied along with a classical cylindrical porous structure. Graphite and graphene are considered as materials with excellent thermal and mechanical properties and are thus the base materials considered in this project. A comprehensive manufacturability study was conducted in order to gain knowledge regarding different graphite/graphene options and it was concluded that commercially available isotropic graphite was the best suited material for the purpose of this project. A decoupled thermo-mechanical analysis of the coefficient of thermal expansion and thermal conductivity of said structures as a function of volume fraction was conducted using computational homogenization with finite element analysis. A linearly elastic constitutive material model in COMSOL Multiphysics was used. As expected, the homogenized effective material is governed by linear constitutive model. Moreover, the results displayed a linear dependency on the porosity for both the CTE and thermal conductivity. The mechanical FEM model was validated using an analytical model derived by Gibson and Ashby and the thermal conductivity FEM model was validated using experimental data.
|
8 |
Low Power Tire Pressure Monitoring SystemGoparaju, Sravanthi January 2008 (has links)
No description available.
|
9 |
Applying Neural Networks for Tire Pressure Monitoring SystemsKost, Alex 01 March 2018 (has links) (PDF)
A proof-of-concept indirect tire-pressure monitoring system is developed using neural net- works to identify the tire pressure of a vehicle tire. A quarter-car model was developed with Matlab and Simulink to generate simulated accelerometer output data. Simulation data are used to train and evaluate a recurrent neural network with long short-term memory blocks (RNN-LSTM) and a convolutional neural network (CNN) developed in Python with Tensorflow. Bayesian Optimization via SigOpt was used to optimize training and model parameters. The predictive accuracy and training speed of the two models with various parameters are compared. Finally, future work and improvements are discussed.
|
10 |
Behavior of 3D Printed Polymeric Triply Periodic Minimal Surface (TPMS) Cellular Structures Under Low Velocity Impact LoadsLeiffer, Jesse James January 2022 (has links)
No description available.
|
Page generated in 0.0308 seconds