401 |
To automatically estimate the surface area coverage of carbon nanotubes on thin film transistors with image analysis : Bachelor’s degree project reportNoring, Martin January 2011 (has links)
This report discuss the developement of a MATLAB-based tool for the analysis ofsurface area coverage of carbon nanotube networks from atomic force microscopyimages. The tool was compared with a manual method and the conclusion was that ithas, at least, the same accuracy as the manual mehtod, and it needs much less time forthe analysis. The tool couldn’t analyze images of carbon nanotube networks if theimages were to noisy or the networks to dense. The tool can help in the research ofthin-film transistors with carbon nanotube networks as the semiconducting channelmaterial.
|
402 |
Design and Evaluation of High Density 5T SRAM Cache for Advanced Microprocessors / Konstruktion och utvärdering av kompakta 5T SRAM cache för avancerade mikroprocessorerCarlson, Ingvar January 2004 (has links)
This thesis presents a five-transistor SRAM intended for the advanced microprocessor cache market. The goal is to reduce the area of the cache memory array while maintaining competitive performance. Various existing technologies are briefly discussed with their strengths and weaknesses. The design metrics for the five-transistor cell are discussed in detail and performance and stability are evaluated. Finally a comparison is done between a 128Kb memory of an existing six-transistor technology and the proposed technology. The comparisons include area, performance and stability of the memories. It is shown that the area of the memory array can be reduced by 23% while maintaining comparable performance. The new cell also has 43% lower total leakage current. As a trade-off for these advantages some of the stability margin is lost but the cell is still stable in all process corners. The performance and stability has been validated through post-layout simulations using Cadence Spectre.
|
403 |
Inkjet and Screen Printed Electrochemical Organic ElectronicsMannerbro, Richard, Ranlöf, Martin January 2007 (has links)
Linköpings Universitet och Acreo AB i Norrköping bedriver ett forskningssamarbete rörande organisk elektrokemisk elektronik och det man kallar papperselektronik. Målet på Acreo är att kunna trycka denna typ av elektronik med snabba trycktekniker så som offset- eller flexotryck. Idag görs de flesta demonstratorer och prototyper, baserade på denna typ av elektrokemisk elektronik, med manuella och subtraktiva mönstringsmetoder. Det skulle vara intressant att hitta fler verktyg och automatiserade tekniker som kan underlätta detta arbete. Målet med detta examensarbete har varit att utvärdera vilken potential bläckstråleteknik respektive screentryck har som tillverkningsmetoder för organiska elektrokemiska elektroniksystem samt att jämföra de båda teknikernas för- och nackdelar. Vad gäller bläckstråletekniken, så ingick även i uppgiften att modifiera en bläckstråleskrivare avsedd för kontor/hemmabruk för att möjliggöra tryckning av de två grundläggande materialen inom organisk elektrokemisk elektronik - den konjugerade polymeren PEDOT och en elektrolyt. I denna uppsats rapporteras om hur en procedur för produktion av elektrokemisk elektronik har utvecklats. Världens första elektrokemiska transistor som producerats helt med bläckstråleteknik presenteras tillsammans med fullt fungerande implementeringar i logiska kretsar. Karaktärisering av filmer, komponenter och kretsar som producerats med bläckstråle- och screentrycksteknik har legat till grund för den utvärdering och jämförelse som har gjorts av teknikerna. Resultaten ser lovande ut och kan motivera vidare utveckling av bläckstrålesystem för produktion av prototyper och mindre serier. En kombination av de båda nämnda teknikerna är också ett tänkbart alternativ för småskalig tillverkning. / Linköping University and the research institute Acreo AB in Norrköping are in collaboration conducting research on organic electrochemical electronic devices. Acreo is pushing the development of high-speed reel-to-reel printing of this type of electronics. Today, most demonstrators and prototypes are made using manual, subtractive patterning methods. More tools, simplifying this work, are of interest. The purpose of this thesis work was to evaluate the potential of both inkjet and screen printing as manufacturing tools of electrochemical devices and to conduct a comparative study of these two additive patterning technologies. The work on inkjet printing included the modification of a commercially available desktop inkjet printer in order to print the conjugated polymer PEDOT and an electrolyte solution - these are the two basic components of organic electrochemical devices. For screen printing, existing equipment at Acreo AB was employed for device production. In this report the successful development of a simple system and procedure for the inkjet printing of organic electrochemical devices is described. The first all-inkjet printed electrochemical transistor (ECT) and fully functional implementations of these ECTs in printed electrochemical logical circuits are presented. The characterization of inkjet and screen printed devices has, along with an evaluation of how suitable the two printing procedures are for prototype production, been the foundation of the comparison of the two printing technologies. The results are promising and should encourage further effort to develop a more complete and easily controlled inkjet system for this application. At this stage of development, a combination of the two technologies seems like an efficient approach.
|
404 |
Analysis of the Deep Sub-Micron a-Si:H Thin Film TransistorsFathololoumi, Saeed January 2005 (has links)
The recent developments of high resolution flat panel imagers have prompted interests in fabricating smaller on-pixel transistors to obtain higher fill factor and faster speed. This thesis presents fabrication and modeling of short channel amorphous silicon (a-Si:H) vertical thin film transistors (VTFT). <br /><br /> A variety of a-Si:H VTFTs with different channel lengths, from 100 nm to 1 μm, are successfully fabricated using the discussed processing steps. Different structural and electrical characteristics of the fabricated device are measured. The results of I-V and C-V characteristics are comprehensively discussed. The 100 nm channel length transistor performance is diverged from regular long channel TFT characteristics, as the short channel effects become dominant in the device, giving rise to necessity of having a physical model to explain such effects. <br /><br /> An above threshold model for a-Si:H VTFT current characteristics is extracted. The transport mechanisms are explained and simulated for amorphous silicon material to be used in the device model. The final model shows good agreement with experimental results. However, we used numerical simulation, run in Medici, to further verify the model validity. Simulation allows us to vary different device and material parameters in order to optimize fabrication process for VTFT. The capacitance behavior of the device is extensively studied alongside with a TFT breakdown discussion.
|
405 |
Modeling of a-Si:H TFT I-V Characteristics in the Forward Subthreshold OperationZhu, Lei January 2005 (has links)
The hydrogenated amorphous silicon (a-Si:H) thin-film transistors (TFTs) are widely used as switching elements in LCD displays and large area matrix addressed senor arrays. In recent years, a-Si:H TFTs have been used as analog active components in OLED displays. However, a-Si:H TFTs exhibit a bias induced metastability. This problem causes both threshold voltage and subthreshold slope to shift with time when a gate bias is applied. These instabilities jeopardize the long-term performance of a-Si:H TFT circuits. Nevertheless a-Si:H TFTs show an exponential transfer characteristic in the subthreshold region. Moreover, the typical power consumptions for TFTs in the subthreshold region are in the order of nano-watts, thus making them suitable for low power design. For these reasons, a-Si:H TFT I-V characteristics in the forward subthreshold operation are investigated. First, we have derived the static and dynamic models of a-Si:H TFT in the forward subthreshold region. Second, we have verified our theoretical models with experimental results. Third, we have proven that a-Si:H TFT experiences no subthreshold slope degradation or threshold voltage shift in the forward subthreshold operation. Finally, we have studied a-Si:H TFT current mirror circuit applications. Measurements regarding the fidelity of current matching in the forward subthreshold region have been performed, and results are shown.
|
406 |
Amorphous Silicon Based Large Area Detector for Protein CrystallographySultana, Afrin January 2009 (has links)
Proteins are commonly found molecules in biological systems: our fingernails, hair, skin, blood, muscle, and eyes are all made of protein. Many diseases simply arise because a protein is not folded properly. Therefore, knowledge of protein structure is considered a prerequisite to understanding protein function and, by extension, a cornerstone for drug design and for the development of therapeutic agents. Protein crystallography is a tool that allows structural biologists to discern protein structures to the highest degree of detail possible in three dimensions. The recording of x-ray diffraction data from the protein crystal is a central part of protein crystallography. As such, an important challenge in protein crystallography research is to design x-ray detectors to accurately determine the structures of proteins. This research presents the design and evaluation of a solid-state large area at panel detector for protein crystallography based on an amorphous selenium (a-Se) x-ray sensitive photoconductor operating in avalanche mode integrated with an amorphous silicon (a-Si:H) charge storage and readout pixel. The advantages of the proposed detector over the existing imaging plate (IP) and charge coupled device (CCD) detectors are large area, high dynamic range coupled to single x-ray detection capability, fast readout, high spatial resolution, and inexpensive manufacturing process.
The requirement of high dynamic range is crucial for protein crystallography since both weak and strong diffraction spots need to be imaged. The main disadvantage of a-Si:H thin film transistor (TFT) array is its high electronic noise which prohibits quantum noise limited operation for the weak diffraction spots. To overcome the problem, the x-ray to charge conversion gain of a-Se is increased by using its internal avalanche multiplication gain. Since the detector can be made approximately the same size as the diffraction pattern, it eliminates the need for image demagnification. The readout time of the detector is usually within the ms range, so it is appropriate for crystallographic application. The optimal detector parameters (such as, detector size, pixel size, thickness of a-Se layer), and operating parameters (such as, electric field across the a-Se layer) are determined based on the requirements for protein crystallography. A complete model of detective quantum efficiency (DQE) of the detector is developed to predict and optimize the performance of the detector. The performance of the detector is evaluated in terms of readout time (< 1 s), dynamic range (~10^5), and sensitivity (~ 1 x-ray photon), thus validating the detector's efficacy for protein crystallography.
The design of an in-house a-Si:H TFT pixel array for integration with an avalanche a-Se layer is detailed. Results obtained using single pixel are promising and highlight the feasibility of a-Si:H pixels coupled with avalanche a-Se layer for protein crystallography application.
|
407 |
Property Control of Single Walled Carbon Nanotubes and Their DevicesYuan, Dongning 11 December 2008 (has links)
<p>Controlling the properties of single walled carbon nanotubes (SWNTs) is the major challenge toward their future applications. This dissertation describes several contributions to this chanllenge. </p><p>This dissertation begins with the brief review on carbon nanotubes (CNTs), including discovery, structure, properties, challenges, synthesis and applications. The remaining parts can be divided into three sections. They demonstrate the control of SWNT properties as well as their devices by direct synthesis and metal decoration. </p><p>Two studies are described on the control of SWNT properties by direct synthesis. The first demonstrates the controlled synthesis of SWNTs in terms of their diameter, uniformity, and density by the chemical vapor deposition (CVD) method. The approaches employed include using uniform nanoparticles with specific sizes as catalysts to grow different diameter SWNTs, specially small diameter tubes less than 1 nm; using laser irradiation to grow uniform and high quality SWNTs; and changing the gas flow pattern to obtain different density. The second study demonstrates the growth of aligned SWNTs by flow and substrate guidance. Horizontally aligned ultralong nanotubes are synthesized on Si substrate by both high flow and low flow. The guided growth by the quartz substrate is shown by a large variety of metal catalysts to further the understanding of the growth mechanism. Moreover, top gated FETs have been explored for the selective growth of purely semiconducting, horizontally aligned SWNTs grown on quartz by a ethanol/methanol mixture. </p><p>The control of SWNT device performance is also described, in particular, the correlation between the SWNT field effect transistor (FET) configuration and its gate dependence response. The effects of FET channel length, nanotube density and diameter on the device performance are demonstrated. A model has been constructed in order to simulate the electronic behavior. An interesting metallic behavior has been observed. </p><p>Finally, control of SWNT properties by Palladium decoration after growth is used to manipulate their properties. Moreover, two novel applications including improvement of carbon nanotube film conductivity and catalysis of nanostructure growth are developed.</p> / Dissertation
|
408 |
Modulation Effects on Organic ElectronicsChen, Hang 30 November 2005 (has links)
A high aspect ratio epoxy mask has been built with Taiyo PSR4000BN on chemical sensing array chip. Thickness up to 200 and #61549;m and aspect ratio up to 16:1 have been achieved with this material. It is demonstrated that this material satisfies the mechanical and chemical requirements. A three-electrode system has been designed and built for electrochemistry in micro-cell on chip. Tests with poly(phenylenesulfide-phenyleneamine) (PPSA) demonstrates that it is possible to precisely tune the properties (Work function and resistance) of conducting polymer that has been cast on chip surface.
A new test platform GT03 has been fabricated and used to characterize the chemical effects on organic electronics. It is demonstrated that the chemical species in ambient environment can affect organic electronics properties on bulk, interface and electric contact. The contact resistance in organic field-effect transistors (OFETs) has been characterized with modified interdigitated structure (IDS). It is demonstrated that drain and source contact resistances can be calculated separately with modified four-point-probe measurements, and contact resistance and material bulk resistance are actually modulated by the gate electric field. Furthermore, the influence from oxygen doping in poly(3-hexylthiophene) (P3HT) based OFETs has been investigated. A new model of oxygen doping has been suggested and it is demonstrated that oxygen doping can affect all the resistance components in P3HT OFETs.
|
409 |
Digital Circuit-Level Emulation of Transistor-Based Guitar Distortion EffectsOverton, William Ernest 13 April 2006 (has links)
The objective of this thesis was to model the Fuzz Face , a transistor-based guitar distortion effect, digitally at the circuit level, and explore how changes in the discrete analog components change the digital model. The circuit was first simulated using SPICE simulation software. Typically outputs and how they changed based on transistor gains were documented. A test circuit was then constructed in lab to determine true transistor gains. An analog Fuzz Face circuit was then constructed, and physical parameters were recorded. A digital model was then created using MATLAB. Capacitive filtering effects were found to be negligible in terms of the guitar signal and were not modeled. The transistors were modeled using the Ebers-Moll equations. A MATLAB algorithm was written to produce Fuzz Face type distortion given an input guitar signal. The algorithm used numerical techniques to solve the nonlinear equations and stored them in a look-up table. This table was used to process the input clips. The sound of the Fuzz Face was not perfectly modeled, but the equations were found to provide a reasonable approximation of the circuit. Further study is needed to determine a more complete modeling equation for the circuit.
|
410 |
Study of Disposable EGFET-based Hydrogen and Potassium Micro Ion SensorsChang, Chih-Han 08 April 2010 (has links)
In recent years, as biological information analysis technology rapidly develops in hematology, biochemistry and microbiology areas, demand for portable measurement systems become more and more important. This study makes efforts in developing disposable hydrogen and potassium ion sensor and microsystem for analysis application. The measured ion concentration data by this analysis microsystem provide people a judgement on their health condition, and furthermore an important reference for medical treatment for patients.
There are several advantages in using IC or MEMS technology to manufacture portable measurement system, the advantages are down-scaling, short reaction time, trace chemical analysis, low power dissipation, and low cost. So the thesis uses extended gate field effect transistor, in order to measure multiple ions at the same time, multiple transistors are manufactured on the same chip with an ion selective membrane on top of the gate sensitive layer. This allows the measurement result of the multiple ion be shown at the same time. The main processing steps of the ion sensor developed in this study involve at least four photolithographic and three thin-film deposition processes.
Based on the measurement result, the hydrogen ion sensor¡¦s sensitivity is 30.7 mV/decade for a sensing range pH1 ~ pH13. The sensitivity of the potassium ion sensor is 11.5 mV/decade for a sensing range 10-1M to 10-3M.
|
Page generated in 0.0267 seconds