• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 8
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 49
  • 49
  • 12
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Mechanisms Regulating Transient Receptor Potential Cation Channel A1 (TRPA1) and Their Roles in Nociception and Nociceptive Sensitization

Shang, Ye 26 June 2020 (has links)
Nociception is the sensory nervous system that detects harmful stimuli including excessive heat, cold, toxic chemicals, and noxious mechanical stimulations. Transient receptor potential (TRP) channels are a group of evolutionarily conserved ion channels consisting of 4 subunits, each with 6 transmembrane spans, and detect a variety of external and internal nociceptive stimuli. Due to their critical roles in nociception, it is essential to understand the mechanisms that regulate TRP channels and subsequent nociception. Here, I investigated two distinct types of regulation of Drosophila transient receptor potential cation channel A1 (TrpA1): regulation via the expression of different TrpA1 isoforms, and via its binding with associated proteins. I found that one of the TrpA1 isoforms, TrpA1(E), inhibits the thermal responses of other TrpA1 isoforms in vitro. I also identified potential TrpA1 binding partners through Co- immunoprecipitation (Co-IP) and mass spectrometry analysis. These binding partners need further validation and characterization through biochemical, cellular, and behavioral assays to illustrate their roles in nociception, and may serve as potential drug targets for chronic pain.
32

Molecular physiological characterization of TRP channels as mediators of cellular redox status / 細胞のレドックス状態の仲介因子としてのTRPチャネルの分子生理学的特性

Heba, Abdallah Elsaid Badr 24 November 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20064号 / 工博第4252号 / 新制||工||1658(附属図書館) / 京都大学大学院工学研究科合成・生物化学専攻 / (主査)教授 森 泰生, 教授 跡見 晴幸, 教授 梅田 眞郷 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
33

Mechanosensitive Ion Channels as Biophysical Sensors of Muscle Satellite Cells / 筋衛星細胞における機械受容イオンチャネルに関する研究

Hirano, Kotaro 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第24637号 / 工博第5143号 / 新制||工||1982(附属図書館) / 京都大学大学院工学研究科合成・生物化学専攻 / (主査)教授 森 泰生, 教授 浜地 格, 教授 跡見 晴幸 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
34

Mechanism of Calcium Spikes during Cytokinesis

Poddar, Abhishek January 2022 (has links)
No description available.
35

Structural Analysis of TRPV2 by Cryo-Electron Microscopy Reveals Regulatory Diversity Among the ThermoTRPV Channels

Huynh, Kevin Weijian 13 September 2016 (has links)
No description available.
36

Heteromeric TRPV4-C1-P2 and TRPV4-P2 channels: assembly and function. / CUHK electronic theses & dissertations collection

January 2011 (has links)
Du, Juan. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 110-134). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
37

Regulation of TRPC3-mediated Ca2+ influx and flow-induced Ca2+ influx. / Regulation of TRPC3-mediated [calcium ion] influx and flow-induced [calcium ion] influx / CUHK electronic theses & dissertations collection

January 2006 (has links)
Kwan Hiu Yee. / "June 2006." / 2+ in the title is superscript. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (p. 131-150). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese.
38

TRPV4-TRPC1 heteromeric channel: its property and function. / CUHK electronic theses & dissertations collection

January 2010 (has links)
Attempts were made to determine the pore properties, such as permeability, rectification and voltage-dependent block, of the putative TRPV4-TRPC1 channel. We demonstrated that this putative TRPV4-TRPC1 heterotetrameric channels displays distinct property different (although not drastically different) from TRPV4 homotetrameric channel with regard to I-V relation, kinetics of cation current, cations permeability and rectification properties. Together, the data from FRET and functional studies both suggest that heterologous expression of TRPV4 and TRPC1 can produce functional TRPV4-TRPC1 heterotetrameric channel. / Hemodynamic blood flow is one of most important physiological factors that control vascular tone. Flow shear stress acts on the endothelium to stimulate the release of vasodilators such as nitric oxide (NO), prostacyclin and endothelium-derived hyperpolarizing factors, causing endothelium-dependent vascular relaxation. In many cases, a key early signal in this flow-induced vascular dilation is Ca2+ influx in endothelial cells in response to flow. There is intense interest in searching for the molecular identity of the channels that mediate flow-induced Ca2+ influx. The present study aimed at identifying an interaction of TRPV4 with TRPC1, and investigating functional role of such a complex in flow-induced Ca2+ influx / In functional study, flow elicited a [Ca2+]i rise in TRPV4-expressing HEK cells. Co-expression of TRPC1 with TRPV4 markedly prolonged this [Ca2+]i transient, and it also enabled this [Ca2+]i transient to be negatively modulated by protein kinase G (PKG). Furthermore, this [Ca2+]i rise was inhibited by an anti-TRPC1 blocking antibody T1E3 and a dominant negative construct TRPC1Delta567-793. Physical interaction of TRPV4 with TRPC1 and functional role of such a complex were also found in the primary cultured rat mesenteric artery endothelial cells (MAECs) and human umbilical vein endothelial cells (HUVECs). A TRPC 1-specific siRNA was used to knock-down TRPC1 protein levels in HUVECs. Interestingly, this siRNA not only reduced the magnitude of flow-induced [Ca2+]i rise, but also accelerated the decay of flow-induced [Ca2+]i transient. Pressure myograph was used to investigate the functional role of such a complex in flow-induced vascular dilation. T1E3 also decreased flow-induced vascular dilation. Thogether, the data from endothelial cells are consistent with those in overexpressed HEK cells, supporting the notion that TRPC 1 interacts with TRPV4 to prolong the flow-induced[Ca2+]i transient, and that TRPV4-TRPC1 complex plays an important role in flow-induced vascular dilation. / In summary, my study demonstrated that TRPV4 is capable of assembling with TRPC1 to form a functional TRPV4-TRPC1 heteromeric channel. TRPV4-TRPC1 heteromeric channel can rapidly translocate to the plasma membrane after Ca 2+ depletion in intracellular stores. This TRPV4-TRPC1 heteromeric channel plays an important role in flow-induced endothelial Ca2+ influx and its associated vascular relaxation. / Ion channels are delivered to the plasma membrane via vesicle trafficking. Thus the vesicle trafficking is a key mechanism to control the amount of TRP channel proteins in the plasma membrane, where they perform their function. TRP channels in vivo are often composed of heteromeric subunits. However, up to the present, there is lack of knowledge on trafficking of heteromeric TRP channels via vesicular translocation. In the present study, we examined the effect of Ca2+ store depletion on the translocation of TRPV4-TRPC1 heteromeric channels to the plasma membrane. Experiments using total internal fluorescence reflection microscopy (TIRFM) and biotin surface labeling showed that depletion of intracellular Ca2+ stores triggered a rapid translocation of TRPV4-TRPC1 channel proteins into the plasma membrane. Fluorescent Ca2+ measurement and patch clamp studies demonstrated that store Ca2+ depletion augmented several TRPV4-TRPC1 complex-related functions, which include store-operated Ca2+ influx and cation current as well as 4alpha-PDD-stimulated Ca2+ influx and cation current. The translocation required stromal interacting molecule 1 (STIM1). Furthermore, TRPV4-TRPC1 complex is more favorably translocated to the plasma membrane than TRPC1 or TRPV4 homomers. Similar mechanisms were identified in native endothelial cells, where the TRPV4-TRPC I complex is a key component mediating flow-induced Ca2+ influx and subsequent vascular relaxation. / With the use of fluorescence resonance energy transfer (FRET), co-immunoprecipitation and subcellular colocalization methods, it was found that TRPC1 interacts physically with TRPV4 to form a heteromeric channel complex. In addition, our experimental results indicate that C-terminal and N-terminal domains of both channels are required for their interaction. / Ma, Xin. / Adviser: Yao Xiaodiang. / Source: Dissertation Abstracts International, Volume: 72-04, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 109-121). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
39

Caracterización fucional y molecular del canal TRPV4 en el epitelio respiratorio y su relación con la fisiopatología de la fibrosis quística

Arniges Gómez, Maite 30 June 2006 (has links)
En este trabajo de tesis doctoral se caracteriza funcional y molecularmente el canal TRPV4 en varios modelos de células epiteliales respiratorias mostrando por primera vez la participación de este canal en la función osmoreguladora a nivel celular así como la identificación de nuevas variantes del canal. Se demuestra que la entrada de Ca2+ en respuesta a un hinchamiento hipotónico se produce a través del canal TRPV4 y es necesaria para una eficiente recuperación del volumen o RVD. Por su parte, las células epiteliales respiratorias con fenotipo de fibrosis quística no son capaces de reducir su volumen en un medio hipotónico a causa de una regulación defectuosa del canal, indicando, al mismo tiempo, que la regulación del TRPV4 por el estímulo hipotónico es dependiente de la CFTR.La caracterización de las variantes del canal TRPV4 demuestra que los dominios de ANK son determinantes moleculares claves en el proceso de oligomerización del canal. Al mismo tiempo este trabajo describe nuevos aspectos relacionados con la biogénesis del TRPV4 hasta ahora desconocidos: la oligomerización del canal tiene lugar en el RE, orgánulo donde es N-glicosilado de forma simple antes de ser transportado hacia el Golgi donde sus N-glicanos son madurados. / This thesis characterizes molecularly and funcionally the TRPV4 channel in various models of airway epithelial cells showing, for the first time, the involvement of this channel in an osmoregulatory cellular function as well as the isolation of new splice variants of this channel. It is demonstrated that the TRPV4 channel is the molecular Ca2+ pathway activated by hypotonic estimulus needed to trigger the RVD response. Furthermore, the cystic fibrosis airway epithelial cells showed an impaired RVD due to the misregulation of the TRPV4 channel, indicating that the regulation by the hypotonic stimulus is CFTR-dependent.The characterization of the new variants demonstrated that the ANK domains are key structural determinants in the oligomerization process of the TRPV4. This work also describes new aspects related to the biogenesis of this channel: oligomerization is achieved in the ER, where the TRPV4 is N-glycosilated and then transported to the Golgi where the glycans are matured.
40

Efeitos cardiovasculares induzidos pelo óleo essencial de mentha x-villosa hudson (oemv), rotundifolona e mentol em ratos espontaneamente hipertensos – o papel dos canais potencial receptor transiente (trp)

Almeida, Mônica Moura de 24 February 2015 (has links)
Submitted by Maike Costa (maiksebas@gmail.com) on 2017-09-12T11:16:41Z No. of bitstreams: 1 arquivototal.pdf: 71034772 bytes, checksum: 9c21531ff7d7e2de79d846d056ac6485 (MD5) / Made available in DSpace on 2017-09-12T11:16:41Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 71034772 bytes, checksum: 9c21531ff7d7e2de79d846d056ac6485 (MD5) Previous issue date: 2015-02-24 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The monoterpenes found in essential oils from plants act on transient receptor potential channels (TRP). Some TRP channels with altered expression in hypertensive rats may be new therapeutic targets for the control of hypertension. Aim: Compare the responses induced by Essential Oil of Mentha x villosa Hudson (OEMV), rotundifolone and menthol in Spontaneously Hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY), evaluating the role of TRP channels. Methods and Results: In vivo (blood pressure measurement and heart rate), in vitro (measure of the frequency and force of contraction in the atria and the isometric tension in superior mesenteric arteries) and biochemical (PCR and Western blot) studies were used. The OEMV (3, 5, 10 and 20 mg/kg), the rotundifolone (10, 20 and 30 mg/kg) and the menthol (3, 5, 10 and 20 mg/kg) induced significant hypotensive and bradycardic response in non-anesthetized SHR and WKY rats. The reduction in the diastolic blood pressure was significantly greater than the decrease in the systolic blood pressure, suggesting a greater action on the vascular component of blood pressure. However, the significant bradycardic effect and reduction in the systolic blood pressure also suggest an action on the cardiac component. Furthermore, the decrease in the blood pressure and heart rate induced by rotundifolone and by menthol were significantly more potent in SHR. The action of OEMV, the rotundifolone and menthol in the right atrium (with spontaneous activity) and left (electrically stimulated) showed negative inotropic and chronotropic effects and culminating in complete inhibition of cardiac activity. Moreover, the negative inotropic effect was more potent in SHR and protein TRPM8 channel showed increased expression in the ventricles (left > right) and atria (left > right) of SHR rats. Also, OEMV, rotundifolone and menthol induced vasorelaxant response in superior mesenteric arteries of SHR and WKY rats, precontracted with PHE. The major mechanism involves the endothelium-independent route, which was more potent in SHR. The mechanism of the endothelium-independent vasorelaxant response induced by rotundifolone and menthol probably involves TRPM8 channels, which showed increased expression in SHR, and TRPC1, TRPC3 and TRPC6 channels. However, the response induced by menthol in WKY rats involves other TRP channels (probably TRPM6 and TRPM7). In addition, the flow cytometry showed an increase in [Ca2+]i induced by rotundifolone in SHR vascular myocytes, probably by activating of the TRPM8 channel. Conclusions: The hypotensive, bradycardia, negative inotropic and vasorelaxant responses induced by OEMV, rotundifolone and menthol were significantly more potent in SHR than in WKY rats. The mechanism of the endothelium-independent vasorelaxant response induced by rotundifolone and menthol involves TRPM8, TRPC (probably TRC1, TRPC3 and TRPC6), BKCa and CaV channels, but menthol may be acting in other TRP channels (probably TRPM6 and TRPM7) in WKY rats. The TRPM8 channel showed increased expression in SHR rats. Thus, the action of OEMV, rotundifolone and menthol on these channels can be related with the higher potency observed in SHR rats. / Os monoterpenos presentes em óleos essenciais de plantas atuam sobre canais Potencial Receptor Transiente (TRP). Alguns canais TRP com expressão alterada em ratos hipertensos podem ser novos alvos terapêuticos para o controle da hipertensão arterial. Objetivo: Comparar as respostas induzidas pelo Óleo Essencial de Mentha x-villosa Hudson (OEMV), pela rotundifolona e pelo mentol em Ratos Espontaneamente Hipertensos (SHR) e normotensos Wistar Kyoto (WKY), avaliando o papel de canais TRP. Métodos e Resultados: Estudos in vivo (medida de pressão arterial e freqüência cardíaca), in vitro (medida da freqüência e força de contração em átrios e da tensão isométrica em artérias mesentéricas superiores) e bioquímicos (PCR e Western blot) foram usados. O OEMV (3, 5, 10, 20 mg/kg), a rotundifolona (10, 20 e 30 mg/kg), e o mentol (3, 5, 10 e 20 mg/kg) induziram significativa resposta hipotensora e bradicárdica em ratos SHR e WKY não-anestesiados. A redução na pressão arterial diastólica foi significativamente maior do que a redução na pressão arterial sistólica, sugerindo uma maior ação sobre o componente vascular da pressão arterial. Entretanto, o significativo efeito bradicárdico e a redução na pressão arterial sistólica sugerem também uma ação sobre o componente cardíaco. Além disso, a diminuição na pressão arterial e freqüência cardíaca induzida por rotundifolona e por mentol foram significativamente mais potentes em ratos SHR. A ação do OEMV, da rotundifolona e do mentol em átrios direito (com atividade espontânea) e esquerdo (estimulado eletricamente) mostrou efeitos cronotrópico e inotrópico negativos e culminando na completa inibição da atividade cardíaca. Além disso, o efeito inotrópico negativo foi mais potente em ratos SHR e a proteína do canal TRPM8 mostrou expressão aumentada nos ventrículos (esquerdo > direito) e nos átrios (esquerdo > direito) de ratos SHR. O OEMV, a rotundifolona e o mentol também induziram resposta vasorrelaxante em artérias mesentéricas superiores de ratos SHR e WKY, pré-contraídos com FEN. O mecanismo majoritário envolve a via independente do endotélio, que foi mais potente em ratos SHR. O mecanismo da resposta vasorrelaxante independente do endotélio induzida por rotundifolona e mentol envolve provavelmente canais TRPM8, que apresentaram expressão aumentada em ratos SHR, e canais TRPC1, TRPC3 e TRPC6. Entretanto, a resposta induzida por mentol em ratos WKY envolve outros canais TRP (provavelmente TRPM6 e TRPM7). Além disso, a citometria de fluxo mostrou um aumento na [Ca2+]i induzido por rotundifolona em miócitos vasculares de ratos SHR, provavelmente por ativação de canais TRPM8. Conclusões: As respostas hipotensora, bradicárdica, inotrópica negativa e vasorrelaxante induzidas por OEMV, rotundifolona e mentol foram significativamente mais potentes em ratos SHR do que em ratos WKY. O mecanismo da resposta vasorrelaxante independente de endotélio induzida por rotundifolona e mentol envolve canais TRPM8, TRPC (provavelmente TRPC1, TRPC3 e TRPC6), BKCa e CaV, porém o mentol pode estar atuando em outros canais TRP (provavelmente TRPM6 e TRPM7) em ratos WKY. Os canais TRPM8 mostraram expressão aumentada em ratos SHR. Dessa forma, a ação do OEMV, da rotundifolona e do mentol sobre esses canais pode estar relacionada com a maior potência observada em ratos SHR.

Page generated in 0.0716 seconds