• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Adrien-Marie Legendre (1752-1833) e suas obras em Teoria dos N?meros

Ramos, Maria Aparecida Roseane 14 December 2010 (has links)
Made available in DSpace on 2014-12-17T14:36:13Z (GMT). No. of bitstreams: 1 MariaARR_TESE.pdf: 2603692 bytes, checksum: 4a1ff25f034fabe0a128c24b4d583020 (MD5) Previous issue date: 2010-12-14 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / The present thesis is an analysis of Adrien-Marie Legendre s works on Number Theory, with a certain emphasis on his 1830 edition of Theory of Numbers. The role played by these works in their historical context and their influence on the development of Number Theory was investigated. A biographic study of Legendre (1752-1833) was undertaken, in which both his personal relations and his scientific productions were related to certain historical elements of the development of both his homeland, France, and the sciences in general, during the 18th and 19th centuries This study revealed notable characteristics of his personality, as well as his attitudes toward his mathematical contemporaries, especially with regard to his seemingly incessant quarrels with Gauss about the priority of various of their scientific discoveries. This is followed by a systematic study of Lagrange s work on Number Theory, including a comparative reading of certain topics, especially that of his renowned law of quadratic reciprocity, with texts of some of his contemporaries. In this way, the dynamics of the evolution of his thought in relation to his semantics, the organization of his demonstrations and his number theoretical discoveries was delimited. Finally, the impact of Legendre s work on Number Theory on the French mathematical community of the time was investigated. This investigation revealed that he not only made substantial contributions to this branch of Mathematics, but also inspired other mathematicians to advance this science even further. This indeed is a fitting legacy for his Theory of Numbers, the first modern text on Higher Arithmetic, on which he labored half his life, producing various editions. Nevertheless, Legendre also received many posthumous honors, including having his name perpetuated on the Trocad?ro face of the Eiffel Tower, which contains a list of 72 eminent scientists, and having a street and an alley in Paris named after him / Este trabalho teve por objetivo inventariar, sistematizar e avaliar as obras em Teoria dos N?meros do matem?tico franc?s Adrien-Marie Legendre (1752-1833), com certa ?nfase no seu livro Teoria dos N?meros, edi??o francesa de 1830, bem como realizar um estudo hist?rico da vida desse matem?tico. Para tanto, foi investigado o papel desempenhado por essas obras e sua influ?ncia no desenvolvimento da Teoria dos N?meros no contexto de sua ?poca. Uma leitura da vida de Adrien-Marie Legendre foi realizada por meio de suas rela??es pessoais e de suas produ??es cient?ficas e colocou em evid?ncia certos elementos hist?ricos do desenvolvimento de um povo, das ci?ncias e suas poss?veis consequ?ncias que nortearam a pr?pria evolu??o da sociedade francesa dos s?culos XVIII-XIX, e revelou caracter?sticas marcantes da personalidade de Legendre no meio matem?tico contempor?neo, como as infind?veis querelas com Gauss a respeito de prioridades de descobertas cient?ficas. Um estudo sistem?tico da obra Teoria dos N?meros (1830) num contexto hist?rico-social e a an?lise de certos conte?dos da obra comparados a alguns textos de outros autores nos permitiram compreender a evolu??o din?mica dos caminhos percorridos pelo autor, quanto ? sem?ntica, ? organiza??o das demonstra??es, ? estrutura l?gico-dedutiva que permearam suas descobertas matem?ticas em Teoria dos N?meros, a exemplo da sua famosa lei de reciprocidade. O impacto causado por suas obras em Teoria dos N?meros na comunidade matem?tica francesa da ?poca e as contribui??es do autor ? ci?ncia antes e depois da publica??o da obra revelou que Teoria dos N?meros, obra ? qual o autor consagrou mais da metade de sua vida no intuito de aperfei?o?-la, tornou not?ria a honra que lhe ? devida como o primeiro tratado de uma Aritm?tica superior que tanto inspirou a outros matem?ticos para o avan?o dessa ci?ncia no s?culo XX. Legendre recebeu homenagens p?stumas dos matem?ticos Beaumont, e Poisson, que inclusive discursou em seu funeral, e o seu nome se encontra perpetuado na face Trocad?ro da Torre Eiffel que cont?m uma lista de 72 ilustres cientistas e d? nome a uma passagem e a uma rua do 17? bairro da cidade de Paris
2

De solutione problematum diophanteorum per n?meros integros : o primeiro trabalho de Euler sobre equa??es diofantinas

Dantas, Joice de Andrade 07 November 2011 (has links)
Made available in DSpace on 2014-12-17T14:36:38Z (GMT). No. of bitstreams: 1 JoiceAD_DISSERT.pdf: 4224825 bytes, checksum: d7ade3189d2bc3a42ecfc46d7a810c45 (MD5) Previous issue date: 2011-11-07 / The present dissertation analyses Leonhard Euler?s early mathematical work as Diophantine Equations, De solutione problematum diophanteorum per n?meros ?ntegros (On the solution of Diophantine problems in integers). It was published in 1738, although it had been presented to the St Petersburg Academy of Science five years earlier. Euler solves the problem of making the general second degree expression a perfect square, i.e., he seeks the whole number solutions to the equation ax2+bx+c = y2. For this purpose, he shows how to generate new solutions from those already obtained. Accordingly, he makes a succession of substitutions equating terms and eliminating variables until the problem reduces to finding the solution of the Pell Equation. Euler erroneously assigns this type of equation to Pell. He also makes a number of restrictions to the equation ax2+bx+c = y and works on several subthemes, from incomplete equations to polygonal numbers / Nesta pesquisa analisamos historicamente e matematicamente o primeiro trabalho de Leonhard Euler sobre Equa??es Diofantinas o De solutione problematum diophanteorum per n?meros integros ( Sobre a solu??o de problemas diofantinos por n?meros inteiros ). Foi publicado em 1738, embora apresentado ? Academia de S?o Petersburgo cinco anos antes. No texto, Euler trata do problema de fazer com que a express?o generalizada do segundo grau seja igual a um quadrado perfeito, isto ?, procura solu??es no conjunto dos n?meros inteiros para equa??o ax2+bx+c = y2. Para tanto, Euler mostra como descobrir mais solu??es depois que uma primeira ? encontrada, fazendo uma s?rie de substitui??es combinando termos e eliminando vari?veis, at? que o trabalho se resume a encontrar a solu??o para ,q=ⱱap?+1 uma equa??o de Pell. Este trabalho ? o primeiro tamb?m em que Euler atribui erroneamente esse tipo de equa??o a Pell. Euler faz tamb?m, uma s?rie de restri??es para a equa??o ax2+bx+c = y2 e trabalha com diversos subcasos, que v?o desde equa??es incompletas at? o trabalho com n?meros poligonais
3

A dif?cil aceita??o dos n?meros negativos: um estudo da teoria dos n?meros de Peter Barlow (1776-1862)

Santos, Marta Figueiredo dos 26 June 2008 (has links)
Made available in DSpace on 2014-12-17T15:04:50Z (GMT). No. of bitstreams: 1 MartaFA.pdf: 422236 bytes, checksum: c082c32935e784fcbc231f73fd326d64 (MD5) Previous issue date: 2008-06-26 / The present study seeks to present a historico-epistemological analysis of the development of the mathematical concept of negative number. In order to do so, we analyzed the different forms and conditions of the construction of mathematical knowledge in different mathematical communities and, thus, identified the characteristics in the establishment of this concept. By understanding the historically constructed barriers, especially, the ones having ontologicas significant, that made the concept of negative number incompatible with that of natural number, thereby hindering the development of the concept of negative, we were able to sketch the reasons for the rejection of negative numbers by the English author Peter Barlow (1776 -1862) in his An Elementary Investigation of the Theory of Numbers, published in 1811. We also show the continuity of his difficulties with the treatment of negative numbers in the middle of the nineteenth century / O presente estudo visa apresentar um incurso hist?rico-epistemol?gico no desenvolvimento do conceito matem?tico de n?mero negativo. Para tanto, inter-relacionamos as diferentes formas e condi??es de constru??o do conhecimento matem?tico e, assim, identificando as conseq?entes caracter?sticas no estabelecimento do referido conceito, em diferentes comunidades matem?ticas e momentos hist?ricos. Com isso, diante de um entendimento das barreiras constru?das historicamente perante o conceito de n?mero negativo, especialmente, as de origem ontol?gicas, que incompatibilizava o conceito de n?mero negativo com o conceito de n?mero natural, impedindo o desenvolvimento do conceito de n?mero negativo. Assim, esbo?amos as raz?es de rejei??o aos n?meros negativos, como ra?zes de equa??es, pelo ingl?s Peter Barlow (1776 1862) em An Elementary Investigation of the Theory of Numbers, publicada em 1811. N?s tamb?m diagnosticamos a continuidade das dificuldades com o tratamento com os n?meros negativos, j? em pleno transcurso do s?culo XIX
4

Os artigos de Euler sobre os n?meros amig?veis

Leoncio, Sarah Mara Silva 22 January 2013 (has links)
Made available in DSpace on 2014-12-17T15:05:00Z (GMT). No. of bitstreams: 1 SaraMSL_DISSERT.pdf: 4622900 bytes, checksum: 9c1229ad25c3c58fdb8c23fa644070ee (MD5) Previous issue date: 2013-01-22 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / Among the many methodological resources that the mathematics teacher can use in the classroom, we can cite the History of Mathematics which has contributed to the development of activities that promotes students curiosity about mathematics and its history. In this regard, the present dissertation aims to translate and analyze, mathematically and historically, the three works of Euler about amicable numbers that were writed during the Eighteenth century with the same title: De numeris amicabilibus. These works, despite being written in 1747 when Euler lived in Berlin, were published in different times and places. The first, published in 1747 in Nova Acta Eruditorum and which received the number E100 in the Enestr?m index, summarizes the historical context of amicable numbers, mentions the formula 2nxy & 2nz used by his precursors and presents a table containing thirty pairs of amicable numbers. The second work, E152, was published in 1750 in Opuscula varii argument. It is the result of a comprehensive review of Euler s research on amicable numbers which resulted in a catalog containing 61 pairs, a quantity which had never been achieved by any mathematician before Euler. Finally, the third work, E798, which was published in 1849 at the Opera postuma, was probably the first among the three works, to be written by Euler / Entre os diversos recursos metodol?gicos que podem ser trabalhados na sala de aula pelo professor de matem?tica, podemos citar a Hist?ria da Matem?tica que contribui para a elabora??o de atividades que promovam curiosidade hist?rica e matem?tica nos discentes. Assim, a presente disserta??o objetiva traduzir e analisar, matematicamente e historicamente, os tr?s trabalhos de Euler sobre os n?meros amig?veis que foram escritos durante o s?culo XVIII com o mesmo t?tulo: De numeris amicabilibus. Estes trabalhos, apesar de terem sido escritos em 1747 quando Euler vivia em Berlim, eles foram publicados em datas e lugares diferentes. O primeiro, publicado em 1747 na Nova Acta Eruditorum e que recebeu a numera??o E100 do ?ndex Enestr?m, apresenta resumidamente o contexto hist?rico dos n?meros amig?veis, menciona a f?rmula 2nxy & 2nz que foi usada por seus precursores e ainda apresenta uma tabela contendo como resultado trinta pares de n?meros amig?veis. Por sua vez, o segundo trabalho, E152, foi publicado em 1750 na Opuscula varii argumenti, ele ? o resultado de uma an?lise completa da pesquisa de Euler sobre os n?meros amig?veis que resultou em um cat?logo contendo 61 pares, quantidade n?o alcan?ada por nenhum matem?tico antes de Euler. Por fim, o terceiro trabalho, E798, que foi publicado em 1849 na Opera postuma, provavelmente tenha sido o primeiro, entre os tr?s trabalhos, a ser escrito por Euler

Page generated in 0.0815 seconds