• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 84
  • 50
  • 46
  • 13
  • 8
  • 8
  • 5
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 253
  • 79
  • 46
  • 46
  • 33
  • 30
  • 30
  • 30
  • 29
  • 28
  • 27
  • 24
  • 23
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Visualisation and profiling of lipids in single biological cells using time-of-flight secondary ion mass spectrometry

Tian, Hua January 2012 (has links)
Imaging Time-of-Flight secondary ion mass spectrometry (ToF-SIMS) has been developed to perform 2D imaging and depth profiling of biological systems with micron or submicron scale lateral resolution, which can be attributed to the advent of polyatomic ion beam particularly C60+ and new concept of ToF-SIMS instrument, the J105 3D Chemical Imager (J105). These recent advances in ToF-SIMS have opened a new dimension for biological analysis. In this study, 2D and 3D imaging have been performed on two biological systems, Xenopus laevis (X. laevis) zygote/embryo and murine embryonic fibroblasts NIH 3T3 BXB-ER cells to explore the capability of ToF-SIMS to handle the biological samples with extreme topography and high resolution depth profiling of microdomains, which still represent major challenges for the ToF-SIMS. The study on X. laevis embryo explored the capability of ToF-SIMS to handle spherical samples (approx. 1-1.2 mm in diameter), identify lipid species in mixtures of lipid extraction from the zygotes and image of an intact embryo in 2D/3D during dynamic biological events, e.g., fertilisation and early embryo development. For the first time the J105 and conventional BioToF-SIMS instrument were employed for the study of developmental biology. The major classes of lipid were identified through multiple lipid assay in a single analytical run using ToF-SIMS. Topography effects of the embryo were assessed through imaging a single intact zygote/embryo that revealed secondary ions loss at the edge of the single cell. However, the topography effects on the mass resolution could be minimised using the J105. Moreover, in situ lipid profiling of the zygote revealed different lipid compositions and intensities on the membrane of the animal and vegetal hemispheres. Furthermore, high resolution imaging and depth profiling that performed on a single intact cell in a time course study visualised the egg-sperm fusion sites on the membrane of the zygote 10 min post-insemination and lipids arrangement on the membrane of the embryo through the early development stages. Subcellular signalling upon the fertilisation was also spatially located on the serial cryosections of a single zygote. With the NIH 3T3 BXB-ER cells, the study firstly adopted a finely focused C60+ beam to track morphological changes and rearrangement of subcellular organelle mitochondria (0.5-2 µm) in response to the activation of Raf/ERK (extracellular signal regulated kinase) pathway using the J105. The SIMS images of the unlabelled cells showed the shifting of membrane distribution and nuclei shrinking following Raf/ERK activation. The mitochondria fluorescence probe within the cells were located 3-dimensionally using confocal microscopy and ToF-SIMS, which revealed the distribution pattern of condensing in the two sides of the nuclei following the Raf/ERK activation. Coupled with scanning electron microscopy (SEM), the three imaging modes showed good agreement in cellular morphological changes and subcellular mitochondrial rearrangement without or following Raf/ERK activation, demonstrating an integrated approaching to study the biological processes at subcellular dimension.
172

Korelativní tomografie / Correlative tomography

Vařeka, Karel January 2021 (has links)
Předložená diplomová práce se zabývá korelativním přístupem multimodální analýzy struktur prokovování s různým rozlišením. Výzkum je součástí mezinárodního projektu týkajícího se charakterizace poruch zmíněných struktur, které jsou implementovány v polovodičových zařízeních. Kombinace korelativní mikroskopie a tomografie technikami NanoXCT, FIB-SEM (EDS), FIB-SIMS a AFM byla navržena k zavedení opakovatelného pracovního postupu. Tomografie fokusovaným iontovým svazkem je metoda přesného odprašování v řezech, která mimo jiné v každém průřezu získává cenné snímky s vysokým rozlišením (FIB-SEM) nebo mapy chemického složení (FIB-SIMS). Následující transformace obrazu umožňuje identifikaci defektů jako funkci hloubky ve struktuře. Práce dále věnuje pozornost metodám sjednocení obrazů za účelem optimální prezentace získaných dat.
173

Nanoscale Electronic Properties in GaN Based Structures for Power Electronics Using Electron Microscopy

January 2019 (has links)
abstract: The availability of bulk gallium nitride (GaN) substrates has generated great interest in the development of vertical GaN-on-GaN power devices. The vertical devices made of GaN have not been able to reach their true potential due to material growth related issues. Power devices typically have patterned p-n, and p-i junctions in lateral, and vertical direction relative to the substrate. Identifying the variations from the intended layer design is crucial for failure analysis of the devices. A most commonly used dopant profiling technique, secondary ion mass spectroscopy (SIMS), does not have the spatial resolution to identify the dopant distribution in patterned devices. The possibility of quantitative dopant profiling at a sub-micron scale for GaN in a scanning electron microscope (SEM) is discussed. The total electron yield in an SEM is shown to be a function of dopant concentration which can potentially be used for quantitative dopant profiling. Etch-and-regrowth is a commonly employed strategy to generate the desired patterned p-n and p-i junctions. The devices involving etch-and-regrowth have poor performance characteristics like high leakage currents, and lower breakdown voltages. This is due to damage induced by the dry etching process, and the nature of the regrowth interface, which is important to understand in order to address the key issue of leakage currents in etched and regrown devices. Electron holography is used for electrostatic potential profiling across the regrowth interfaces to identify the charges introduced by the etching process. SIMS is used to identify the impurities introduced at the interfaces due to etch-and-regrowth process. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2019
174

Studies of transport in some oxides by gas phase analysis

Dong, Qian January 2004 (has links)
No description available.
175

SIMSおよびレーザSNMSによる半導体表面分析の高精度定量化に関する研究

東, 康弘 23 September 2016 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(工学) / 乙第13053号 / 論工博第4146号 / 新制||工||1657(附属図書館) / 33143 / (主査)教授 河合 潤, 教授 酒井 明, 准教授 松尾 二郎 / 学位規則第4条第2項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
176

Fabrication, Characterization, Optimization and Application Development of Novel Thin-layer Chromatography Plates

Kanyal, Supriya Singh 01 December 2014 (has links) (PDF)
This dissertation describes advances in the microfabrication of thin layer chromatography (TLC) plates. These plates are prepared by the patterning of carbon nanotube (CNT) forests on substrates, followed by their infiltration with an inorganic material. This document is divided into ten sections or chapters. Chapter 1 reviews the basics of conventional TLC technology. This technology has not changed substantially in decades. This chapter also mentions some of the downsides of the conventional approach, which include unwanted interactions of the binder in the plates with the analytes, relatively slow development times, and only moderately high efficiencies. Chapter 2 focuses primarily on the tuning of the iron catalyst used to grow the CNTs, which directly influences the diameters of the CNTs grown that are produced. Chapter 3 focuses on the atomic layer deposition (ALD) of SiO2 from a silicon precursor and ozone onto carbon-nanotubes to obtain an aluminum free stationary phase. This approach allowed us to overcome the tailing issues associated with the earlier plates prepared in our laboratory. Chapter 4 is a study of the hydroxylation state of the silica in our TLC plates. A linear correlation was obtained between the SiOH+/Si+ time-of-flight secondary ion mass spectrometry (ToF-SIMS) peak ratio and the isolated silanol peak position at ca. 3740 cm-1 in the diffuse reflectance infrared spectroscopy (DRIFT) spectra. We also compared the hydroxylation efficiencies on our plates of ammonium hydroxide and HF. Chapter 5 reports a series of improvements in TLC plate preparation. The first is the low-pressure chemical vapor deposition (LPCVD) of silicon nitride onto CNTs, which can be used to make very robust TLC plates that have the necessary SiO2 surfaces. These TLC plates are the best we have prepared to date. We also describe here the ALD deposition of ZnO into these devices, which can make them fluorescent. Chapters 6 – 10 consist of contributions to Surface Science Spectra (SSS) of ToF-SIMS spectra of the materials used in our microfabrication process. SSS is a peer-reviewed database that has been useful to many in the surface community. The ToF-SIMS spectra archived include those of (i) Si/SiO2, (ii) Si/SiO2/Al2O3, (iii) Si/SiO2/Al2O3/Fe, (iv) Si/SiO2/Fe (annealed at 750 °C in H2), and (v) Si/SiO2/Al2O3/Fe(annealed)/CNTs. Both positive and negative ion spectra have been submitted. In summary, the present work is a description of advances in the development, thorough characterization, optimization, and application development of microfabricated thin layer chromatography plates that are superior to their commercial counterparts.
177

Characterization, Functionalization and Applications of Alkyl Monolayers on Silicon Surfaces

Jiang, Guilin 02 February 2006 (has links) (PDF)
Investigations were performed on the stability, mechanism of formation and an application of alkyl monolayers chemomechanically prepared on silicon surfaces. A new method of surface modification, laser-activation modification of surfaces (LAMS), and multivariate analyses of time-of-flight secondary ion mass spectrometry (ToF-SIMS) images of LAMS spots were also reported. X-ray photoelectron spectroscopy (XPS) and other data show that alkyl monolayers prepared by scribing silicon under 1-iodoalkanes and 1-alkenes were stable over extended periods of time to air, water, a boiling acid and Al Ka X-rays. The stability is attributed to direct Si-C bonding in the monolayers. The observation that the oxygen signals gradually increased and the iodine signals gradually decreased, with both finally reaching plateaus is attributed to the oxidation of exposed silicon by scribing, and the hydrolysis of Si-I bonds, respectively. In alkyl monolayers prepared with 1-alcohols, the carbon signals decreased about 50% after two 1-h immersions in a boiling acid, suggesting unstable Si-O bonding. In the analogous experiment of grinding silicon with alkyl halides, the expected free-radical combination and disproportionation byproducts were observed. This observation provides evidence for the mechanism previously proposed for alkyl monolayer formation on silicon by chemomechanically scribing. Miniaturized sample supports for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) were made on hydrophobic silicon or glass surfaces by scribing. With these sample supports, improved MALDI-MS signal intensities and reproducibilities were achieved for a test peptide, as expected. A new and promising method for surface modification, LAMS, was developed. XPS and ToF-SIMS analyses show that both silicon and germanium were effectively modified by LAMS with even quite inert compounds. This technique was also used to make miniaturized MALDI-MS sample supports. Compared to scribing, LAMS is faster and can be more precisely controlled. Multivariate analyses, automated expert spectral image analysis (AXSIA) and principal component analysis (PCA), were used in interpreting ToF-SIMS images of silicon surfaces modified with 1-alkenes by LAMS. Both analyses show that modified and unmodified areas are chemically different.
178

Development Of Nitrogen Concentration During Cryomilling Of Aluminum Composites

Hofmeister, Clara 01 January 2013 (has links)
The ideal properties of a structural material are light weight with extensive strength and ductility. A composite with high strength and tailorable ductility was developed consisting of nanocrystalline AA5083, boron carbide and coarser grained AA5083. The microstructure was determined through optical microscopy and transmission electron microscopy. A technique was developed to determine the nitrogen concentration of an AA5083 composite from secondary ion mass spectrometry utilizing a nitrogen ionimplanted standard. Aluminum nitride and amorphous nitrogen-rich dispersoids were found in the nanocrystalline aluminum grain boundaries. Nitrogen concentration increased as a function of cryomilling time up to 72hours. A greater nitrogen concentration resulted in an enhanced thermal stability of the nanocrystalline aluminum phase and a resultant increase in hardness. The distribution of the nitrogen-rich dispersoids may be estimated considering their size and the concentration of nitrogen in the composite. Contributions to strength and ductility from the Orowan relation can be more accurately modeled with the quantified nitrogen concentration.
179

Multi-Instrument Surface Characterization of Display Glass

Cushman, Cody Vic 01 April 2019 (has links)
Flat panel displays (FPDs) are microfabricated devices that are often fabricated on specialized glass substrates known as display glass. The surface chemistry of the outer few nanometers of display glass can have an important influence on FPD performance and yield. Dsiplay glass surface characterization is difficult because (i) display glass surface composition varies significantly from its bulk composition; (ii) high-surface area forms of glass, such as fibers and powders, may not have the same surface composition as melt-formed planar surfaces, and (iii) the surface composition of display glass may be altered through exposure to chemical treatments commonly used during flat panel display production, including acids, bases, etchants, detergents, and plasmas. We have performed a detailed surface composition of Eagle XG®, a widely used commercial display glass substrate, using a range of surface analytical techniques including time-of-flight secondary ion mass spectrometry (ToF-SIMS), angle-resolved X-ray photoelectron spectroscopy (AR-XPS) and low energy ion scattering (LEIS). The information from these techniques has given us a detailed understanding of the elemental surface composition and surface hydroxylation of Eagle XG® at length scales ranging from ca. 10 nm from the surface to the outermost atomic layer. These analyses reveal that the surface composition of Eagle XG® varies significantly from its bulk composition, having generally lower concentrations of Al, B, Mg, Ca, and Sr, and higher concentrations of Si. Treatment with an industrial alkaline detergent results in significant recovery of aluminum concentration at the Eagle XG® surface, while treatment with hydrochloric and hydrofluoric acid result in further depletion of Al, B, Mg, Ca, and Sr at the sample surface.We used ToF-SIMS to quantify surface hydroxyls at the sample surface of this material. The SiOH+/Si+ peak area ratio was a useful metric of surface hydroxylation. We studied the effects of adventitious surface contamination on the measurements by analyzing samples dosed with perdeuterated triacontane, a model alkane, prior to analysis. Thick triacontane overlayers suppressed the SiOH+ signal, indicating that this approach gives inaccurately low estimates of surface hydroxylation for samples with high degrees of surface contamination, and accurate measurements are only possible for very-clean surfaces. The number of of hydroxyls on Eagle XG® surfaces varied as the surfaces were exposed to different chemical treatments. HF- and HCl- treated surfaces had the highest degree of hydroxylation, while detergent-treated surfaces had the lowest.
180

A Study of Alkali-Resistant Materials for Use in Atomic Physics Based Systems

Fletcher, Aaron Thomas 18 December 2017 (has links)
No description available.

Page generated in 0.0504 seconds