• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 96
  • 18
  • 14
  • 10
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 180
  • 180
  • 180
  • 77
  • 73
  • 49
  • 49
  • 38
  • 38
  • 28
  • 24
  • 23
  • 23
  • 22
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Feasibility study for upgrading the current heat distribution network of an existing building complex to a Smart Thermal Grid

Clauss, John January 2015 (has links)
A feasibility study on upgrading an existing heat distribution network to a low-temperature distribution grid has been carried out during this project. The integration of a solar thermal system combined with a borehole thermal energy storage (BTES) for covering the space heating demand of the buildings as well as the application of CO2 heat pumps and water storage tanks for domestic hot water (DHW) production were investigated in order to apply more renewable energy sources. The energy analysis included several measures, such as modeling the energy demand of the buildings, finding a reasonable number of solar collectors to be installed and dimensioning a ground source heat pump (with the use of CoolPack and Engineering Equation Solver EES) and a geothermal storage (Earth Energy Designer Software EED) as well as CO2 heat pumps (CoolPack/EES). An economic analysis of all proposed measures has been carried out based on the Net Present Value (NPV) and Net Present Value Quotient (NPVQ). Initial costs, annual costs, annual savings as well as the payback time of the energy systems have been calculated. It is found that it is not feasible to invest in the proposed energy system for space heating because the payback time (28 years) of the system is longer than the lifetime of the solar thermal system. Furthermore, the solar gain from the solar collectors is not sufficient for recovering the ground temperature of the BTES with solar energy only which is why external sources would be needed for supplying the remaining energy needed to recover the ground temperature. Results show that an integration of CO2 heat pumps and water storage tanks for DHW production is very promising as the payback time for the investigated system is only 4 years which is why this part should be investigated further.
52

ENERGY ANALYSIS OF A SOLAR BLIND CONCEPT INTEGRATED WITH ENERGY STORAGE SYSTEM

Niaparast, Shervin January 2013 (has links)
The use of an attached sunspace is one of the most popular passive solar heating techniques. One of the main drawbacks of the sunspace is getting over heated by the sun energy during the hot season of the year. Even in northern climates overheating could be problematic and there is a considerable cooling demand. Shading is one of the most efficient and cost effective strategies to avoid overheating due to the high irradiation especially in the summer. Another strategy is using ventilation system to remove the excess heat inside the sunspace. However this rejected energy can be captured and stored for future energy demands of the sunspace itself or nearby buildings. Therefore the Solar blind system has been considered here for the shielding purpose in order to reduce the cooling demand. By considering the PV/T panels as the solar blind, the blocked solar energy will be collected and stored for covering part of the heating demand and the domestic hot water supplies of the adjacent building.  From a modeling point of view, the sunspace can be considered as a small-scale closed greenhouse. In the closed greenhouse concept, available excess heat is indeed utilized in order to supply the heating demand of the greenhouse itself as well as neighboring buildings. The energy captured by PV/T collectors and the excess heat from the sunspace then will be stored in a thermal energy storage system to cover the daily and seasonal energy demand of the attached building. In the present study, a residential building with an attached sunspace with height, length and width of 3, 12 and 3.5 meters respectively has been assumed located in two different locations, Stockholm and Rome. Simulations have been run for the Solar blind system integrated with a short-term and a long-term TES systems during a year to investigate the influence of the sunspace equipped with a PV/T Solar blind on the thermal behavior of the adjacent building. The simulated results show that the Solar blind system can be an appropriate and effective solution for avoiding overheating problems in sunspace and simultaneously produce and store significant amount of thermal energy and electricity power which leads to saving considerable amount of money during a year.
53

System Simulation of Thermal Energy Storage involved Energy Transfer model in Utilizing Waste heat in District Heating system Application

Garay Rosas, Ludwin January 2015 (has links)
Nowadays continuous increase of energy consumption increases the importance of replacing fossil fuels with renewable energy sources so the CO2 emissions can be reduced. To use the energy in a more efficient way is also favorable for this purpose. Thermal Energy Storage (TES) is a technology that can make use of waste heat, which means that it can help energy systems to reduce the CO2 emissions and improve the overall efficiency. In this technology an appropriate material is chosen to store the thermal energy so it can be stored for later use. The energy can be stored as sensible heat and latent heat. To achieve a high energy storage density it is convenient to use latent heat based TES. The materials used in this kind of storage system are called Phase Change Materials (PCM) and it is its ability of absorbing and releasing thermal energy during the phase change process that becomes very useful. In this thesis a simulation model for a system of thermal energy transportation has been developed. The background comes from district heating systems ability of using surplus heat from industrials and large scale power plants. The idea is to implement transportation of heat by trucks closer to the demand instead of distributing heat through very long pipes. The heat is then charged into containers that are integrated with PCM and heat exchangers. A mathematical model has been created in Matlab to simulate the system dynamics of the logistics of the thermal energy transport system. The model considers three main parameters: percentage content of PCM in the containers, annual heat demand and transport distance. How the system is affected when these three parameters varies is important to visualize. The simulation model is very useful for investigation of the economic and environmental capability of the proposed thermal energy transportation system. Simulations for different scenarios show some expected results. But there are also some findings that are more interesting, for instance how the variation of content of PCM gives irregular variation of how many truck the system requires, and its impact on the economic aspect. Results also show that cost for transporting the heat per unit of thermal energy can be much high for a small demands compared to larger demands.
54

Thermal Energy Storage Potential in Supermarkets

Ohannessian, Roupen January 2014 (has links)
The objective of this research is to evaluate the potential of thermal energy storage in supermarkets with CO2 refrigeration systems. Suitable energy storage techniques are investigated and the seasonal storage technology of boreholes is chosen to be the focus of the study. The calculations are done for five supermarket refrigeration systems with different combinations of heating systems and borehole thermal energy storage control strategies. The two heating systems analyzed are the ground source heat pump and the heat recovery from the supermarket’s refrigeration system. The simulation results show that the introduction of thermal energy storage in the scenarios with heat pump can reduce the annual total energy by 6.3%. It is also shown that increasing the number of boreholes can decrease the life cycle cost of the system. Moreover, it is established that a supermarket system with heat recovery consumes 8.1% less energy than the one using heat pump and adding thermal energy storage on the heat recovery system further improves the energy consumption by 3.7% but may become costly.
55

Experimental Investigation of Lithium Nitrate Trihydrate and Calcium Chloride Hexahydrate as Salt Hydrate PCMs for Thermal Energy Storage

Kannan, Sarath 28 October 2019 (has links)
No description available.
56

Comprehensive Study Toward Energy Opportunity for Buildings Considering Potentials for Using Geothermal and Predicting Chiller Demand

Elhashmi, Rodwan 22 June 2020 (has links)
No description available.
57

ENHANCEMENT OF PHASE CHANGE MATERIAL (PCM) THERMAL ENERGY STORAGE IN TRIPLEX-TUBE SYSTEMS

Mahdi, Jasim M. 01 May 2018 (has links) (PDF)
The major challenge associated with renewable-energy systems especially solar, is the supply intermittency. One effective solution is to incorporate thermal energy storage components utilizing phase change materials (PCMs). These materials have the potential to store large amounts of energy in relatively small volumes and within nearly an isothermal storage process. The primary drawback of today’s PCMs is that their low thermal conductivity values critically limit their energy storage applications. Also, this grossly reduces the melting/ solidification rates, thus making the system response time to be too long. So, the application of heat transfer enhancement is very important. To improve the PCM storage performance, an efficient performing containment vessel (triplex-tube) along with applications of various heat transfer enhancement techniques was investigated. The techniques were; (i) dispersion of solid nanoparticles, (ii) incorporation of metal foam with nanoparticle dispersion, and (iii) insertion of longitudinal fins with nanoparticle dispersion. Validated simulation models were developed to examine the effects of implementing these techniques on the PCM phase-change rate during the energy storage and recovery modes. The results are presented with detailed model description, analysis, and conclusions. Results show that the use of nanoparticles with metal foam or fins is more efficient than using nanoparticles alone within the same volume usage. Also, employing metal foam or fins alone results in much better improvement for the same system volume.
58

Solar industrial heating with a hybrid solar collectors’ configuration and thermal storage : Dynamic simulation and techno-economic analysis

Subirats Gonzalez, Gisela January 2023 (has links)
This study investigates the feasibility and performance of a hybrid system integrating photovoltaic (PV) and solar thermal technologies for industrial process heat. By analyzing various parameters including cost, income, energy production, and system specifications, valuable insights are obtained. The study explores the potential of solar heating (SH) systems as a renewable thermal energy source for industrial processes, overcoming challenges of high costs and limited fossil fuel usage in industrial facilities through hybrid configurations. Data analysis includes cost analysis, income generation, energy balance, and system specifications such as temperature ranges, collector sizes, and efficiencies. While acknowledging limitations in simulation simplifications and the use of a single load profile, the study presents conclusions on the system's economic viability, technical capabilities, and potential applications. The findings highlight the importance of hybrid PV and solar thermal systems in enhancing energy efficiency and promoting renewable energy adoption in industrial process heating.
59

Aquifer Thermal Energy Storage : Impact on grondwater chemistry / Akviferlager : En studie i grundvattenkemi

Kolesnik Lindgren, Julian January 2018 (has links)
Groundwater is potentially a useful source for storing and providing thermal energy to the built environment. In a nordic context, aquifer thermal energy storage, (ATES) has not been subject to a wider extent of research concerning environmental impact. This thesis intends to study the impact on groundwater chemistry from an ATES that has been operational since 2016 and is located in the northern part of Stockholm, on a glaciofluvial deposit called the Stockholm esker. Analysis of groundwater sampling included a period of 9 months prior to ATES operation as well as a 7 month period after operation and sampling was conducted in a group of wells in vicinity of the installation and within the system as ATES operation began. Means of evaluation constituted a statistical approach which included Kruskal-Wallis test by ranks, to compare the ATES wells with the wells in the surroundings and principal component analysis, (PCA), to study the chemical parameters that could be related to ATES. In addition, a geophysical survey comprising 2D-resistivity and induced polarization, (IP) was done to elucidate whether the origin of high salinity could be traced to nearby possible sources. The analysis was based on foremost the cycle of cold energy storage. The results showed large variations in redox potential, particularly at the cold wells which likely was due to the mixing of groundwater considering the different depths of groundwater being abstracted/injected from different redox zones. Arsenic, which has shown to be sensitive to high temperatures in other research showed a decrease in concentration compared to surrounding wells. There were found to be a lower specific conductivity and total hardness at the ATES well compared to their vicinity. That indicates that they are less subject to salinization and that no accumulation has occurred to date.  It is evident that the environmental impact from ATES is governed by the pre-conditions in  soil- and groundwater. / Grundvatten har förutsättningen att utgöra en värdefull resurs för att lagra och förse byggnader med termisk energi. I en nordisk kontext har termisk energilagring i akviferer, (ATES)  inte varit föremål för någon bredare forskning angående miljöpåverkan. Denna uppsats syftar till att studera kemisk grundvattenpåverkan från ett ATES som togs i drift 2016 i norra Stockholm, i en isälvsavlagring vid namn Stockholmsåsen. Analysen omfattar grundvattenprovtagning 9 månader före ATES driften samt 7 månader efter driftstart och provtagningen genomfördes i ett antal brunnar i närheten av installationen samt i ATES systemet då driften startade. Utvärderingsmetoden bestod av ett statistiskt tillvägagångssätt och omfattade Kruskal-Wallis test by ranks, för att jämföra ATES brunnarna med omgivande brunnar och principal component analysis, (PCA), för att studera kemiska parametrar som kan kopplas till ATES. I tillägg genomfördes en geofysisk undersökning som omfattar 2D-resistivitet samt inducerad polarisation, (IP) för att klarlägga huruvida källan till den höga saliniteten kunde spåras. Analysen baseras på främst på cykeln då kyld energi lagras. Resultaten visar stor variation i redoxpotential, i synnerhet vid de kalla brunnarna vilket sannolikt beror på omblandning av grundvatten med tanke på en differens i djup som grundvattnet infiltrerar/pumpas från med tillhörande skillnad i redox zon. Arsenik vilket har visat sig känsligt för höga temperaturer i annan forskning visade minskade koncentrationer jämfört med omgivande brunnar. ATES brunnarna uppvisade även lägre specifik konduktivitet och totalhårdhet i jämförelse. Det pekar mot att brunnarna är mindre utsatta för salinitet och att ingen ackumulering har skett till dags dato. Det framgår tydligt att miljömässig påverkan från ATES styrs av grundförutsättningarna i mark och grundvatten.
60

Aquifer Thermal Energy Storage : Impact on groundwater chemistry

Kolesnik Lindgren, Julian January 2018 (has links)
Groundwater is potentially a useful source for storing and providing thermal energy to the built environment. In a nordic context, aquifer thermal energy storage, (ATES) has not been subject to a wider extent of research concerning environmental impact. This thesis intends to study the impact on groundwater chemistry from an ATES that has been operational since 2016 and is located in the northern part of Stockholm, on a glaciofluvial deposit called the Stockholm esker. Analysis of groundwater sampling included a period of 9 months prior to ATES operation as well as a 7 month period after operation and sampling was conducted in a group of wells in vicinity of the installation and within the system as ATES operation began. Means of evaluation constituted a statistical approach which included Kruskal-Wallis test by ranks, to compare the ATES wells with the wells in the surroundings and principal component analysis, (PCA), to study the chemical parameters that could be related to ATES. In addition, a geophysical survey comprising 2D-resistivity and induced polarization, (IP) was done to elucidate whether the origin of high salinity could be traced to nearby possible sources. The analysis was based on foremost the cycle of cold energy storage. The results showed large variations in redox potential, particularly at the cold wells which likely was due to the mixing of groundwater considering the different depths of groundwater being abstracted/injected from different redox zones. Arsenic, which has shown to be sensitive to high temperatures in other research showed a decrease in concentration compared to surrounding wells. There were found to be a lower specific conductivity and total hardness at the ATES well compared to their vicinity. That indicates that they are less subject to salinization and that no accumulation has occurred to date. It is evident that the environmental impact from ATES is governed by the pre-conditions in soil- and groundwater.

Page generated in 0.086 seconds