• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 7
  • 1
  • Tagged with
  • 16
  • 16
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A commutative noncommutative fractal geometry

Samuel, Anthony January 2010 (has links)
In this thesis examples of spectral triples, which represent fractal sets, are examined and new insights into their noncommutative geometries are obtained. Firstly, starting with Connes' spectral triple for a non-empty compact totally disconnected subset E of {R} with no isolated points, we develop a noncommutative coarse multifractal formalism. Specifically, we show how multifractal properties of a measure supported on E can be expressed in terms of a spectral triple and the Dixmier trace of certain operators. If E satisfies a given porosity condition, then we prove that the coarse multifractal box-counting dimension can be recovered. We show that for a self-similar measure μ, given by an iterated function system S defined on a compact subset of {R} satisfying the strong separation condition, our noncommutative coarse multifractal formalism gives rise to a noncommutative integral which recovers the self-similar multifractal measure ν associated to μ, and we establish a relationship between the noncommutative volume of such a noncommutative integral and the measure theoretical entropy of ν with respect to S. Secondly, motivated by the results of Antonescu-Ivan and Christensen, we construct a family of (1, +)-summable spectral triples for a one-sided topologically exact subshift of finite type (∑{{A}} {{N}}, σ). These spectral triples are constructed using equilibrium measures obtained from the Perron-Frobenius-Ruelle operator, whose potential function is non-arithemetic and Hölder continuous. We show that the Connes' pseudo-metric, given by any one of these spectral triples, is a metric and that the metric topology agrees with the weak*-topology on the state space {S}(C(∑{{A}} {{N}}); {C}). For each equilibrium measure ν[subscript(φ)] we show that the noncommuative volume of the associated spectral triple is equal to the reciprocal of the measure theoretical entropy of ν[subscript(φ)] with respect to the left shift σ (where it is assumed, without loss of generality, that the pressure of the potential function is equal to zero). We also show that the measure ν[subscript(φ)] can be fully recovered from the noncommutative integration theory.
12

Princípio dos grandes desvios para estados de Gibbs-equilíbrio sobre shifts enumeráveis à temperatura zero / Large deviation principle for Gibbs-equilibrium states on contable shifts at zero temperature.

Perez Reyes, Edgardo Enrique 13 March 2015 (has links)
Seja $\\Sigma_(\\mathbb)$ um shift enumerável topologicamente mixing com a propriedade BIP sobre o alfabeto $\\mathbb$, $f: \\Sigma_(\\mathbb) ightarrow \\mathbb$ um potencial com variação somável e pressão topológica finita. Sob hipóteses adequadas provamos a existência de um princípio dos grandes desvios para a familia de estados de Gibbs $(\\mu_{\\beta})_{\\beta > 0}$, onde cada $\\mu_{\\beta}$ é a medida de Gibbs associada ao potencial $\\beta f$. Para fazer isso generalizamos alguns teoremas de Otimização Ergódica para shifts de Markov enumeráveis. Esse resultado generaliza o mesmo princípio no caso de um subshift topologicamente mixing sobre um alfabeto finito, previamente provado por A. Baraviera, A. Lopes e P. Thieullen. / Let $\\Sigma_(\\mathbb)$ be a topologically mixing countable Markov shift with the BIP property over the alphabet $\\mathbb$ and a potential $f: \\Sigma_(\\mathbb) ightarrow \\mathbb$ with summable variation and finite pressure. Under suitable hypotheses, we prove the existence of a large deviation principle for the family of Gibbs states $(\\mu_{\\beta})_{\\beta > 0}$ where each $\\mu_{\\beta}$ is the Gibbs measure associated to the potential $\\beta f$. For do this we generalize some theorems from finite to countable Markov shifts in Ergodic Optimization. This result generalizes the same principle in the case of topologically mixing subshifts over a finite alphabet previously proved by A. Baraviera, A. Lopes and P. Thieullen.
13

Phase transitions and multifractal properties of random field Ising models

Nowotny, Thomas 28 November 2004 (has links) (PDF)
In dieser Arbeit werden Zufallsfeld-Ising-Modelle mit einem eingefrorenen dichotomen symmetrischen Zufallsfeld für den eindimensionalen Fall und das Bethe-Gitter untersucht. Dabei wird die kanonische Zustandssumme zu der eines einzelnen Spins in einem effektiven Feld umformuliert. Im ersten Teil der Arbeit werden das mulktifraktale Spektrum dieses effektiven Feldes untersucht, Übergänge im Spektrum erklärt und Ungleichungen zwischen lokalen und globalen Dimensionsbegriffen bewiesen, die eine weitgehend vollständige Charakterisierung des multifraktalen Spektrums durch eine Reihe von Schranken erlauben. Ein weiterer Teil der Arbeit beschäftigt sich mit einer ähnlichen Charakterisierung des Maßes der lokalen Magnetisierung, das aus dem Maß des effektiven Feldes durch Faltung hervorgeht. In diesem Zusammenhang wird die Faltung von Multifraktalen in einem allgemeineren Rahmen behandelt und Zusammenhänge zwischen den multifraktalen Eigenschaften der Faltung und denen der gefalteten Maße bewiesen. Im dritten Teil der Dissertation wird der Phasenübergang von Ferro- zu Paramagnetismus im Modell auf dem Bethe Gitter untersucht. Neben verbesserten exakten Schranken für die Eindeutigkeit des paramagnetischen Zustands werden im wesentlichen drei Kriterien für die tatsächliche Lage des Übergangs angegeben und numerisch ausgewertet. Die multifraktalen Eigenschaften des effektiven Felds im Modell auf dem Bethe-Gitter schließlich erweisen sich als trivial, da die interessanten Dimensionen nicht existieren. / In this work random field Ising models with quenched dichotomous symmetric random field are considered for the one-dimensional case and on the Bethe lattice. To this end the canonical partition function is reformulated to the partition function of one spin in an effective field. In the first part of the work the multifractal spectrum of this effective field is investigated, transitions in the spectrum are explained and inequalities between local and global generalized fractal dimensions are proven which allow to characterize the multifractal spectrum bei various bounds. A further part of the work is dedicated to the characterization of the measure of the local magnetization which is obtained by convolution of the measure of the effective field with itself. In this context the convolution of multifractals is investigated in a more general setup and relations between the multifractal properties of the convolution and the multifractal properties of the convoluted measures are proven. The phase transition from ferro- to paramagnetismus for the model on the Bethe lattice is investigated in the third part of the thesis. Apart from improved exact bounds for the uniqueness of the paramagnetic state essentially three criteria for the transition are developped and numerically evaluated to determine the transition line. The multifractal properties of the effective field for the model on the Bethe lattice finally turn out to be trivial because the interesting dimensions do not exist.
14

Propriétés génériques des mesures invariantes en courbure négative / Generic properties of invariant measures in negative curvature

Belarif, Kamel 29 August 2017 (has links)
Dans ce mémoire, nous étudions les propriétés génériques satisfaites par des mesures invariantes par l’action du flot géodésique {∅t}t∈R sur des variétés M non compactes de courbure sectionnelle négative pincée. Nous nous intéressons dans un premier temps au cas des variétés hyperboliques. L’existence d’une représentation symbolique du flot géodésique pour les variétés hyperboliques convexes cocompactes ainsi que la propriété de mélange topologique du flot géodésique nous permet de démontrer que l’ensemble des mesures de probabilité ∅t−invariantes, faiblement mélangeantes est résiduel dans l’ensemble M1 des mesures de probabilité invariantes par l’action du flot géodésique. Si nous supposons que la courbure de M est variable, nous ignorons si le flot géodésique est topologiquement mélangeant. Ainsi les méthodes utilisées précédemment ne peuvent plus s’adapter à notre situation. Afin de généraliser le résultat précédent, nous faisons appel à des outils issus du formalisme thermodynamique développés récemment par F.Paulin, M.Pollicott et B.Schapira. Plus précisément, la démonstration de notre résultat repose sur la possibilité de construire, pour toute orbite périodique Op une suite de mesures de Gibbs mélangeantes, finies, convergeant faiblement vers la mesure de Dirac supportée sur Op. Nous montrons que ce fait est possible lorsque M est géométriquement finie. Dans le cas contraire, il n’existe pas d’exemple de variétés géométriquement infinies possédant une mesure de Gibbs finie. Cependant, nous conjecturons que ce fait est possible pour toute variété M. Afin de supporter cette affirmation, nous démontrons dans la dernière partie de ce manuscrit un critère de finitude pour les mesures de Gibbs. / In this work, we study the properties satisfied by the probability measures invariant by the geodesic flow {∅t}t∈R on non compact manifolds M with pinched negative sectional curvature. First, we restrict our study to hyperbolic manifolds. In this case, ∅t is topologically mixing in restriction to its non-wandering set. Moreover, if M is convex cocompact, there exists a symbolic representation of the geodesic flow which allows us to prove that the set of ∅t-invariant, weakly-mixing probability measures is a dense Gδ−set in the set M1 of probability measures invariant by the geodesic flow. The question of the topological mixing of the geodesic flow is still open when the curvature of M is non constant. So the methods used on hyperbolic manifolds do not apply on manifolds with variable curvature. To generalize the previous result, we use thermodynamics tools developed recently by F.Paulin, M.Pollicott et B.Schapira. More precisely, the proof of our result relies on our capacity of constructing, for all periodic orbits Op a sequence of mixing and finite Gibbs measures converging to the Dirac measure supported on Op. We will show that such a construction is possible when M is geometrically finite. If it is not, there are no examples of geometrically infinite manifolds with a finite Gibbs measure. We conjecture that it is always possible to construct a finite Gibbs measure on a pinched negatively curved manifold. To support this conjecture, we prove a finiteness criterion for Gibbs measures.
15

Princípio dos grandes desvios para estados de Gibbs-equilíbrio sobre shifts enumeráveis à temperatura zero / Large deviation principle for Gibbs-equilibrium states on contable shifts at zero temperature.

Edgardo Enrique Perez Reyes 13 March 2015 (has links)
Seja $\\Sigma_(\\mathbb)$ um shift enumerável topologicamente mixing com a propriedade BIP sobre o alfabeto $\\mathbb$, $f: \\Sigma_(\\mathbb) ightarrow \\mathbb$ um potencial com variação somável e pressão topológica finita. Sob hipóteses adequadas provamos a existência de um princípio dos grandes desvios para a familia de estados de Gibbs $(\\mu_{\\beta})_{\\beta > 0}$, onde cada $\\mu_{\\beta}$ é a medida de Gibbs associada ao potencial $\\beta f$. Para fazer isso generalizamos alguns teoremas de Otimização Ergódica para shifts de Markov enumeráveis. Esse resultado generaliza o mesmo princípio no caso de um subshift topologicamente mixing sobre um alfabeto finito, previamente provado por A. Baraviera, A. Lopes e P. Thieullen. / Let $\\Sigma_(\\mathbb)$ be a topologically mixing countable Markov shift with the BIP property over the alphabet $\\mathbb$ and a potential $f: \\Sigma_(\\mathbb) ightarrow \\mathbb$ with summable variation and finite pressure. Under suitable hypotheses, we prove the existence of a large deviation principle for the family of Gibbs states $(\\mu_{\\beta})_{\\beta > 0}$ where each $\\mu_{\\beta}$ is the Gibbs measure associated to the potential $\\beta f$. For do this we generalize some theorems from finite to countable Markov shifts in Ergodic Optimization. This result generalizes the same principle in the case of topologically mixing subshifts over a finite alphabet previously proved by A. Baraviera, A. Lopes and P. Thieullen.
16

Phase transitions and multifractal properties of random field Ising models

Nowotny, Thomas 29 November 2001 (has links)
In dieser Arbeit werden Zufallsfeld-Ising-Modelle mit einem eingefrorenen dichotomen symmetrischen Zufallsfeld für den eindimensionalen Fall und das Bethe-Gitter untersucht. Dabei wird die kanonische Zustandssumme zu der eines einzelnen Spins in einem effektiven Feld umformuliert. Im ersten Teil der Arbeit werden das mulktifraktale Spektrum dieses effektiven Feldes untersucht, Übergänge im Spektrum erklärt und Ungleichungen zwischen lokalen und globalen Dimensionsbegriffen bewiesen, die eine weitgehend vollständige Charakterisierung des multifraktalen Spektrums durch eine Reihe von Schranken erlauben. Ein weiterer Teil der Arbeit beschäftigt sich mit einer ähnlichen Charakterisierung des Maßes der lokalen Magnetisierung, das aus dem Maß des effektiven Feldes durch Faltung hervorgeht. In diesem Zusammenhang wird die Faltung von Multifraktalen in einem allgemeineren Rahmen behandelt und Zusammenhänge zwischen den multifraktalen Eigenschaften der Faltung und denen der gefalteten Maße bewiesen. Im dritten Teil der Dissertation wird der Phasenübergang von Ferro- zu Paramagnetismus im Modell auf dem Bethe Gitter untersucht. Neben verbesserten exakten Schranken für die Eindeutigkeit des paramagnetischen Zustands werden im wesentlichen drei Kriterien für die tatsächliche Lage des Übergangs angegeben und numerisch ausgewertet. Die multifraktalen Eigenschaften des effektiven Felds im Modell auf dem Bethe-Gitter schließlich erweisen sich als trivial, da die interessanten Dimensionen nicht existieren. / In this work random field Ising models with quenched dichotomous symmetric random field are considered for the one-dimensional case and on the Bethe lattice. To this end the canonical partition function is reformulated to the partition function of one spin in an effective field. In the first part of the work the multifractal spectrum of this effective field is investigated, transitions in the spectrum are explained and inequalities between local and global generalized fractal dimensions are proven which allow to characterize the multifractal spectrum bei various bounds. A further part of the work is dedicated to the characterization of the measure of the local magnetization which is obtained by convolution of the measure of the effective field with itself. In this context the convolution of multifractals is investigated in a more general setup and relations between the multifractal properties of the convolution and the multifractal properties of the convoluted measures are proven. The phase transition from ferro- to paramagnetismus for the model on the Bethe lattice is investigated in the third part of the thesis. Apart from improved exact bounds for the uniqueness of the paramagnetic state essentially three criteria for the transition are developped and numerically evaluated to determine the transition line. The multifractal properties of the effective field for the model on the Bethe lattice finally turn out to be trivial because the interesting dimensions do not exist.

Page generated in 0.0642 seconds