• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 754
  • 158
  • 140
  • 54
  • 49
  • 27
  • 23
  • 22
  • 13
  • 10
  • 9
  • 7
  • 6
  • 6
  • 5
  • Tagged with
  • 1415
  • 1218
  • 380
  • 291
  • 291
  • 265
  • 251
  • 225
  • 212
  • 167
  • 165
  • 144
  • 144
  • 131
  • 126
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Supporting User Interactions with Smart Built Environments

Handosa, Mohamed Hussein Hafez 04 February 2019 (has links)
Before the recent advances in sensing, actuation, computing and communication technologies, the integration between the digital and the physical environment was limited. Humans linked those two worlds by collecting data about the physical environment before feeding it into the digital environment, and by changing the state of the physical environment based on the state of the digital environment. The incorporation of computing, communication, sensing, and actuation technologies into everyday physical objects has empowered the vision of the Internet of Things (IoT). Things can autonomously collect data about the physical environment, exchange information with other things, and take actions on behalf of humans. Application domains that can benefit from IoT include smart buildings, smart cities, smart water, smart agriculture, smart animal farming, smart metering, security and emergencies, retail, logistics, industrial control, and health care. For decades, building automation, intelligent buildings, and more recently smart buildings have received a considerable attention in both academia and industry. We use the term smart built environments (SBE) to describe smart, intelligent, physical, built, architectural spaces ranging from a single room to a whole city. Legacy SBEs were often closed systems operating their own standards and custom protocols. SBEs evolved to Internet-connected systems leveraging the Internet technologies and services (e.g., cloud services) to unleash new capabilities. IoT-enabled SBEs, as one of the various applications of the IoT, can change the way we experience our homes and workplaces significantly and make interacting with technology almost inevitable. This can provide several benefits to modern society and help to make our life easier. Meanwhile, security, privacy, and safety concerns should be addressed appropriately. Unlike traditional computing devices, things usually have no or limited input/output (I/O) capabilities. Leveraging the ubiquity of general-purpose computing devices (e.g., smartphones), thing vendors usually provide interfaces for their products in the form of mobile apps or web-based portals. Interacting with different things using different mobile apps or web-based portals does not scale well. Requiring the user to switch between tens or hundreds of mobile apps and web-based portals to interact with different things in different smart spaces may not be feasible. Moreover, it can be tricky for non-domestic users (e.g., visitors) of a given SBE to figure out, without guidance, what mobile apps or web-based portals they need to use to interact with the surrounding. While there has been a considerable research effort to address a variety of challenges associated with the thing-to-thing interaction, human-to-thing interaction related research is limited. Many of the proposed approaches and industry-adopted techniques rely on more traditional, well understood and widely used Human-Computer Interaction (HCI) methods and techniques to support interaction between humans and things. Such techniques have mostly originated in a world of desktop computers that have a screen, mouse, and keyboard. However, SBEs introduce a radically different interaction context where there are no centralized, easily identifiable input and output devices. A desktop computer of the past is being replaced with the whole SBE. Depending on the task at hand and personal preferences, a user may prefer to use one interaction modality over another. For instance, turning lights on/off using an app may be more cumbersome or time-consuming compared to using a simple physical switch. This research focuses on leveraging the recent advances in IoT and related technologies to support user interactions with SBEs. We explore how to support flexible and adaptive multimodal interfaces and interactions while providing a consistent user experience in an SBE based on the current context and the available user interface and interaction capabilities. / PHD / The recent advances in sensing, actuation, computing, and communication technologies have brought several rewards to modern society. The incorporation of those technologies into everyday physical objects (or things) has empowered the vision of the Internet of Things (IoT). Things can autonomously collect data about the physical environment, exchange information with other things, and take actions on behalf of humans. Several application domains can benefit from the IoT such as smart buildings, smart cities, security and emergencies, retail, logistics, industrial control, and health care. For decades, building automation, intelligent buildings, and more recently smart buildings have received considerable attention in both academia and industry. We use the term smart built environments (SBE) to describe smart, intelligent, physical, built, architectural spaces ranging from a single room to a whole city. SBEs, as one of the various applications of the IoT, can change the way we experience our homes and workplaces significantly and make interacting with technology almost inevitable. While there has been a considerable research effort to address a variety of challenges associated with the thing-to-thing interaction, human-to-thing interaction related research is limited. Many of the proposed approaches and industry-adopted techniques to support human-to-thing interaction rely on traditional methods. However, SBEs introduce a radically different interaction context. Therefore, adapting the current interaction techniques and/or adopting new ones is crucial for the success and wide adoption of SBEs. This research focuses on leveraging the recent advances in the IoT and related technologies to support user interactions with SBEs. We explore how to support a flexible, adaptive, and multimodal interaction experience between users and SBEs using a variety of user interfaces and proposed interaction techniques.
72

Voice Control of Fetch Robot Using Amazon Alexa

Liu, Purong 23 March 2020 (has links)
With the rapid development of computers and technology, virtual assistants (VA) are becoming more and more common and intelligent. However, virtual assistants, such as Apple's Siri, Amazon's Alexa, and Google Assistant, do not currently have any physical functions. As an important part of the internet of things (IoT), the field of robotics has become a new trend in the usage of VA. In this project, a mobile robot, Fetch, is connected with the Amazon Echo Dot through the Amazon web service (AWS) and a local robot operation system (ROS) bridge server. We demonstrated that the robot could be controlled by voice commands through an Amazon Alexa. Given certain commands, Fetch was able to move in a desired direction as well as track and follow a target object. The follow model was also learned by Neural Network training, which allows for the target position to be predicted in future maps. / Master of Science / Nowadays, virtual personalized assistants (VPAs) exist everywhere around us. For example, Siri or android VPAs exist on every smartphone. More and more people are getting household Virtual Assistants, such as Amazon Alexa, Google Assistant, and Microsoft's Cortana. If the virtual assistants can connect with objects which have physical functions like an actual robot, they will be able to provide better services and more functions for humans. In this project, a mobile robot, Fetch, is connected with the Echo dot from Amazon. This connection allows us to control the robot by voice command. You can ask the robot to move in a given direction or track and follow a certain object. In order to let the robot learn how to predict the position of the target when the target is lost, a map is built as an influence factor. Since a designed algorithm of target position prediction is difficult to implement, we opted to use a machine learning method instead. Therefore, a machine learning algorithm was tested on the following model.
73

Improving WiFi Sensor Network Security Through Unassociated Device Communication Using Wireless Latency Shift Keying

Johnson, Jacob Edward 16 April 2024 (has links) (PDF)
IEEE 802.11 (WiFi) only has two modes of trust--complete trust or complete untrust. The lack of nuance leaves no room for sensors that a user does not fully trust, but wants to connect to their network, such as a WiFi sensor. Solutions exist, but they require advanced knowledge of network administration. We solve this problem by introducing a new way of modulating data in the latency of the network, called Latency Shift Keying. We use specific characteristics of the WiFi protocol to carefully control the latency of just one device on the network. We build a transmitter, receiver, and modulation scheme that is designed to encode data in the latency of a network. We develop an application, Wicket, that solves the WiFi trust issue using Latency Shift Keying to create a new security association between an untrusted WiFi sensor and a wired device on the trusted network. We evaluate its performance and show that it works in many network conditions and environments.
74

Indoor location identification technologies for real-time IoT-based applications: an inclusive survey

Oguntala, George A., Abd-Alhameed, Raed, Jones, Stephen F., Noras, James M., Patwary, M., Rodriguez, Jonathan 21 September 2018 (has links)
Yes / The advent of the Internet of Things has witnessed tremendous success in the application of wireless sensor networks and ubiquitous computing for diverse smart-based applications. The developed systems operate under different technologies using different methods to achieve their targeted goals. In this treatise, we carried out an inclusive survey on key indoor technologies and techniques, with to view to explore their various benefits, limitations, and areas for improvement. The mathematical formulation for simple localization problems is also presented. In addition, an empirical evaluation of the performance of these indoor technologies is carried out using a common generic metric of scalability, accuracy, complexity, robustness, energy-efficiency, cost and reliability. An empirical evaluation of performance of different RF-based technologies establishes the viability of Wi-Fi, RFID, UWB, Wi-Fi, Bluetooth, ZigBee, and Light over other indoor technologies for reliable IoT-based applications. Furthermore, the survey advocates hybridization of technologies as an effective approach to achieve reliable IoT-based indoor systems. The findings of the survey could be useful in the selection of appropriate indoor technologies for the development of reliable real-time indoor applications. The study could also be used as a reliable source for literature referencing on the subject of indoor location identification. / Supported in part by the Tertiary Education Trust Fund of the Federal Government of Nigeria, and in part by the European Union’s Horizon 2020 Research and Innovation Programme under Grant agreement H2020-MSCA-ITN-2016 SECRET-722424
75

Similarity hash based scoring of portable executable files for efficient malware detection in IoT

Namanya, Anitta P., Awan, Irfan U., Disso, J.P., Younas, M. 09 July 2019 (has links)
Yes / The current rise in malicious attacks shows that existing security systems are bypassed by malicious files. Similarity hashing has been adopted for sample triaging in malware analysis and detection. File similarity is used to cluster malware into families such that their common signature can be designed. This paper explores four hash types currently used in malware analysis for portable executable (PE) files. Although each hashing technique produces interesting results, when applied independently, they have high false detection rates. This paper investigates into a central issue of how different hashing techniques can be combined to provide a quantitative malware score and to achieve better detection rates. We design and develop a novel approach for malware scoring based on the hashes results. The proposed approach is evaluated through a number of experiments. Evaluation clearly demonstrates a significant improvement (> 90%) in true detection rates of malware.
76

Smart Hem, smart för vem? : En kvalitativ studie om varför det Smarta Hemmet inte har fått sitt förväntade genomslag / Smart Home, smart for whom? : A qualitative study about why the Smart Home has not reached expected impact.

Creutz, Julia, Borgkvist, Isabelle January 2015 (has links)
Smart Homes are not smart for everyone, at least not yet. The purpose of this paper is to examine four obstacles that prevents Smart Homes from being adopted as a standard in Sweden. This paper is based on the contributions of the study “Home Automation in the Wild: Challanges and Opportunities” (Brush et al. 2011), and further investigates the obstacles the authors present in that study. Thanks to a broad use of different methods, we state that all the obstacles listed in this particular study (Brush et al. 2011) still remain, but perhaps on different terms. In the discussion part of this paper, we present a few ways to work against these obstacles and, hopefully, eliminate them. / Smarta Hem är inte smarta för alla, åtminstone inte än. Syftet med denna uppsats är undersöka fyra hinder som förhindrar Smarta Hem från att anammas som standard i Sverige. Denna uppsats är baserad på bidragen från studien “Home Automation in the Wild: Challanges and Opportunities” (brush et al. 2011), och undersöker de hinder som presenteras i den studien. Tack vare användandet av ett flertal olika metoder, kan vi konstatera att de hinder som presenteras i den specifika studien (Brush et al. 2011) fortfarande finns kvar idag, men möjligtvis på andra villkor. I uppsatsens diskussionsdel presenterar vi ett antal sätt att arbeta mot dessa hinder och, förhoppningsvis, kunna eliminera dem.
77

Blockchain in an Internet-of-Things Network Based on User Participation

Ljungblad, Robert January 2019 (has links)
The internet-of-things is the relatively new and rapidly growing concept of connecting everyday devices to the internet. Every day more and more devices are added to the internet-of-things and it is not showing any signs of slowing down. In addition, advancements in new technologies such as blockchains, artificial intelligence, virtual reality and machine learning are made practically every day. However, there are still much to learn about these technologies. This thesis explores the possibilities of blockchain technology by applying it to an internet-of-things network based on user participation. More specifically, it is applied to a use case derived from Luleå Kommun’s wishes to easier keep track of how full the city’s trash cans are. The goal of the thesis is to learn more about how blockchains can help an internet-of-things network as well as what issues can arise. The method takes an exploratory approach to the problem by partaking in a workshop with Luleå Kommun and by performing a literature study. It also takes a qualitative approach by creating a proof-of-concept solution to experience the technology firsthand. The final proof-of-concept as well as issues that arose during the project are analysed with the help of information gathered and experience gained throughout the project. It is concluded that blockchain technology can help communication in an internet-of-things network based on user participation. However, there is still a lot more to learn and uncover in future research. / Internet-of-things är ett relativt nytt men snabbt växande koncept som handlar om att koppla upp vardagliga saker till internet. Varje dag kopplas mer och mer enheter upp och det visar inga tecken på att sakta ner. Det görs även framsteg inom andra nya teknologier som blockkedjor, artificiell intelligens, virtuell verklighet och maskininlärning i stort sett varje dag. Dock finns det fortfarande mycket att lära sig om dessa teknologier. Denna rapport utforskar blockkedjeteknologins möjligheter genom att applicera det på ett internet-of-things-nätverk baserat på användarmedverkan. Mer specifikt, det är applicerat på ett användningsfall grundat i Luleå Kommuns önskan att lättare hålla koll på hur fulla deras soptunnor i och runtom staden är. Målet med denna rapport är att lära sig mer om hur blockkedjor kan stödja ett internet-of-things-nätverk och utforska vilka problem som kan uppstå. Metoden tar en explorativ ansats till problemet genom att delta i en workshop tillsammans med Luleå Kommun och genomföra en litteraturstudie. Dessutom tas en kvalitativ ansats genom att skapa en prototyplösning för att få förstahandserfarenhet av teknologin. Den slutliga prototypen och problemen som uppstod under projektets gång är analyserade med hjälp av information och erfarenhet som samlats genom hela projektet. Sammanfattningsvis kan blockkedjeteknologi hjälpa till kommunikationen i ett internet-of-things-nätverk baserat på användarmedverkan. Dock finns det fortfarande mycket att lära sig om denna teknologi i framtida forskning.
78

Internet of Things and its Business Models

Egel, Jill January 2019 (has links)
The Internet of Things (IoT) is the next phase in the evolution of the internet, where everyday objects are connected to the internet, and obtain the capacity to communicate with other devices and sense their environment. Especially the IIoT is one of the most talked about industrial business concepts since the recent years, companies try to focus on business models and operational efficiency. That is why this thesis focuses on researching the industrial Internet of Things (IIoT). There is already a lot of information about the common Internet of Things but still a gap in research in the business perspective, especially surrounding the concept of business models for the IIoT. The goal of this project is to investigate different kinds of business models, how they work and how feasible they are. The need to research possible business models for an IIoT framework, as traditional business models are relevant for this study, such as the Business Model Canvas which has been proposed by Alexander Osterwalder or the Business Model Navigator by Oliver Gassmann. But there is still a lack of literature covering the business models for the IIoT. Therefore, after researching the concept of IIoT from a business perspective, I identified some useful criteria and suitable business models. With a qualitative literature study, I was able to develop an IIoT business model framework, based on the dynamics and complexity of the IIoT concept, which incorporates business strategies and provides companies with a flexible approach. The business model framework can be used in any business which is working in the industrial context. To demonstrate how the business model framework works for the IIoT, I clarified how suitable business models can improve the current business model of the very prominent and successful company Tesla. The results show how the framework of IIoT business models can be used to increase profit and work efficiently as a company. The models can also be formed to only highlight single components of an already existing business model, as it offers great flexibility, which is highly valuable in the fast evolving and innovative IIoT phenomenon.
79

A Study on the Performance and Architectural Characteristics of an Internet of Things Gateway / En studie om prestanda och arkitekturer hos Internet of Things gateways

Log, Natanael January 2018 (has links)
This study focuses on the Internet of Things (IoT) gateway; a common middleware solution that bridges the gap between physical sensors and devices to internet applications. There is a shown interest in understanding the characteristics of different types of gateway architectures both from the research field and the industry, particularly the IT-consulting firm Attentec in Linköping, Sweden. A study has also been made on the open source C library libuv, used in the common web runtime engine NodeJS. The library has been used to study how asynchronous I/O operations can be used to improve the IoT gateway performance. A set of three general architectural approaches are identified. Common internal and external properties are identified based on state-of-the-art gateway implementations found in the industry. All of these properties are taken into account when a general gateway implementation is developed that is proposed to mimic any architectural level implementation of the gateway. A set of performance tests are conducted on the implementation to observe how different configurations of the gateway affect throughput and response time of data transmitted from simulated devices. The results show that the properties of the gateway do affect throughput and response time significantly and that libuv overall helps implement one of the best performing gateway configurations.
80

Internet of props : a performative ontology and design framework for the Internet of Things

Corino, Gianni January 2017 (has links)
Set in the relatively new and fast developing field of investigation known as Internet of Things (IoT), this research starts by looking at the lack of critical and conceptual reflection on the area. With a main research question that challenges the underlying concepts of the IoT, the study develops a performative design framework to critique the field of investigation. The main corpus consists of: 1. speculative inquiry into the ontological dualisms of ‘objects’ and ‘things’ and the emerging social dimension of humans and non-humans; 2. the identification of an ontological-performative model based on the idea of Props; 3. the entanglement of theory and practice to construct a performative design framework, called the Internet of Props, which includes: an enabling platform (Smarter Planet Lab) and a set of design strategies (Transactional Props) to demonstrate and evaluate this model and framework; 4. a combined-evaluation conversational analysis methodology that assesses the performativity of the setting and the Props, through linguistic and socio-behavioural studies. Inspired by the concepts of ontological theatre, the entanglement of humans and non-humans, and the Internet of People; the IoT is imagined and performed in a theory-driven, practice-based investigation of the Internet of Props, which aims to bring new theoretical and practical knowledge for the future of the IoT.

Page generated in 0.09 seconds