Spelling suggestions: "subject:"2i2 nanotubes"" "subject:"iii2 nanotubes""
21 |
Síntese e caracterização de eletrodos de TiO2/WO3, nanotubos de TiO2/WO3 e nanotubos de TiO2/titanato para aplicação no tratamento fotoeletrocatalítico dos interferentes endócrinos bisfenol-A e propil / Synthesis and characterization of TiO2/ WO3, TiO2 nanotubes/WO3 and TiO2 nanotubes/titanate electrodes for application in the photoelectrocatalytic treatment of the endocrine desruptors bisphenol-A and propylparabenMartins, Alysson Stefan 26 October 2017 (has links)
Tecnologias efetivas para o tratamento de águas e efluentes representam um dos grandes desafios da nossa sociedade; dentre as opções, a fotoeletrocatálise pode ser considerada como uma técnica alternativa e de interesse. Nesse contexto, o presente trabalho teve como objetivo desenvolver eletrodos de TiO2 modificados visando o tratamento fotoeletrocatalítico de interferentes endócrinos. Realizou-se inicialmente a síntese de nanotubos de TiO2 (TiO2-NT) sobre substrato de Ti metálico via anodização eletroquímica em eletrólito NaH2PO4/HF. Para minimizar as limitações inerentes ao TiO2 realizou-se a eletrodeposição de WO3 sobre os nanotubos de TiO2 (Ti/TiO2-NT/WO3) e diretamente sobre o substrato de Ti metálico. Este último revelou a formação de uma camada fina de TiO2 sobre a superfície, posterior ao tratamento térmico, formando um compósito (Ti/TiO2/WO3). A análise de difração de raios-X confirmou a formação da fase monoclínica de WO3 para ambas as sínteses e a fase anatase para os eletrodos de Ti/TiO2-NT/WO3. Para as duas sínteses, as medidas de energia dispersiva de raios-X revelaram uma quantidade crescente de W na composição dos eletrodos com o aumento do tempo de eletrodeposição. Teores elevados de W (acima de 1,2 %) apresentaram uma diminuição expressiva nos valores de fotocorrente. No entanto, baixos teores de W (entre 0,4 e 1,2 %) indicaram um aumento de 20 % nos valores de fotocorrente para os eletrodos de Ti/TiO2-NT/WO3 (20 mA cm-2) e Ti/TiO2/WO3 (17 mA cm-2) comparados aos não modificados, no potencial de +2,0 V. As análises de reflectância difusa mostraram uma baixa energia de bandgap (≈ 2,90 eV, eletrodos de Ti/TiO2-NT/WO3) e um aumento na absorção da irradiação UV-Vis. Posteriormente, os eletrodos modificados foram aplicados na oxidação fotoeletrocatalítica (FE) dos compostos bisfenol-A (BPA) e propilparabeno (PPB), sob irradiação UV-Vis. O método FE apresentou um excelente desempenho em condições ácidas, aplicando-se potencial de +1,50 V e +0,50 V para os eletrodos Ti/TiO2-NT/WO3 e Ti/TiO2/WO3, respectivamente. A mineralização dos compostos BPA e PPB foi superior a 80 % tanto para o Ti/TiO2-NT/WO3 como para o Ti/TiO2/WO3. Quanto à taxa de remoção, o BPA e PPB foram completamente removidos após 45 e 60 min, respectivamente, para os eletrodos de Ti/TiO2/WO3 e após 30 minutos para os eletrodos de Ti/TiO2-NT/WO3. Adicionalmente, os eletrodos apresentaram um baixo consumo energético e boa estabilidade química. Comparada à técnica de fotocatálise (FC), a FE revelou uma eficiência de mineralização 2 vezes superior para o Ti/TiO2-NT/WO3 e mais de 20 % superior para o Ti/TiO2/WO3. Logo, as modificações dos eletrodos de TiO2 com WO3 constituíram importantes contribuições para o desempenho dos materiais, sendo um passo importante para a aplicação em tratamentos alternativos de descontaminação de águas residuárias. Ainda foi de interesse neste trabalho propor um método para a inserção de nanotubos (TiNT) e nanofolhas (TiNS) de titanatos no interior de nanotubos de TiO2 via eletroforese. O estudo possibilitou o desenvolvimento de um método simples e eficiente para a modificação de nanoestruturas complexas. A movimentação do contra eletrodo sobre a superfície do eletrodo de trabalho, adaptado com uma escova nas laterais, reduziu a espessura da camada de TiNS/TiNT. O potencial aplicado (20 V) e a estimulação mecânica da superfície foram importantes para a incorporação das nanoestruturas dentro dos poros de TiO2-NTs. Como resultado, os eletrodos apresentaram um aumento da hidrofobicidade e uma melhora na capacidade de oxidação direta comparado ao eletrodo não modificado. / Effective technologies for the water and wastewater treatment represent a challenges for our society; among the options, the photoelectrocatalysis can be considered a promising and interesting alternative. In this context, the objective of this study was to develop modified TiO2 electrodes for the photoelectrocatalytic treatment of endocrine disruptors. The synthesis of TiO2 nanotubes (TiO2-NT) on metallic Ti substrate was carried out via electrochemical anodization in NaH2PO4 /HF electrolyte. In order to minimize the limitations inherent of TiO2, the electrodeposition of WO3 was performed on the TiO2 nanotubes (Ti/TiO2-NT/WO3) and also in the metallic Ti substrate. The deposition on the Ti metallic produced a thin layer of TiO2 on the surface, subsequent to the heat treatment, generating a composite (Ti/TiO2/WO3). The X-ray diffraction analysis (XRD) confirmed the monoclinic phase of WO3 for both the syntheses and the anatase phase of TiO2 for the Ti/TiO2-NT/WO3 electrodes. For the two syntheses, the X-ray dispersive energy (EDX) analisys indicated an increasing amount of tungsten (W) in the composition of the electrodes with increasing of electrodeposition time. High W content (above 1.2%) showed a significant decrease in the photocurrent values. However, low content of W (between 0.4 and 1.2 %) indicated an increase of 20 % in the photocurrent values for the electrodes Ti/TiO2-NT/WO3 (20 mA cm-2) and Ti/TiO2/WO3 (17 mA cm-2) compared to the unmodified ones, at the potential of +2.0 V. Difuse reflectance analysis indicated low bandgap energy (≈ 2.90 eV, Ti/TiO2-NT/WO3 electrodes) and an increase in the UV-Vis irradiation absorption. The best electrodes modified with WO3 to the both syntheses were applied in the photoelectrocatalytic oxidation (PEC) of bisphenol-A (BPA) and propylparaben (PPB) compounds, under UV-Vis irradiation. The PEC method presented an excellent performance in acidic conditions, applying a bias potential of +1.50 V and +0.50 V for Ti/TiO2-NT/WO3 and Ti/TiO2/WO3 electrodes, respectively. The mineralization of BPA and PPB compounds was greater than 80% for both Ti/TiO2-NT/WO3 and Ti/TiO2/WO3. In relation to the removal rate, BPA and PPB were completely removed after 45 and 60 min, respectively, for Ti/TiO2/WO3 electrodes and after 30 minutes for Ti/TiO2-NT/WO3 electrodes. Additionally, the electrodes presented a low energy consumption and good chemical stability. Compared to the photocatalysis (PC), the PEC was 2 times higher to the mineralization efficiency for Ti/TiO2-NT/WO3 and almost 20% higher for Ti/TiO2/WO3. Thus, the modifications of the TiO2 electrodes with WO3 represent an important contribution to the performance of materials and, therefore, a positive step for the application in alternative treatments of decontamination of wastewater. It was also of interest in this work to propose a new method for the insertion of nanotubes (TiNT) and nanosheets (TiNS) of titanates inside of TiO2 nanotubes via electrophoretic deposition. In this study was developed a simple and efficient method for the modification of complex nanostructures. The movement of the counter electrode on the surface of the working electrode, adapted with a brush on the edges, reduced the thickness of the TiNS/TiNT layer. The potential applied (20 V) and the mechanical stimulation in the surface were important for the incorporation of TiNS/TiNT into the pores of TiO2-NTs. As a result, the electrodes increased the hydrophobicity and an improvement to the direct oxidation capacity compared to the unmodified electrode.
|
22 |
Synthèse et caractérisations de nanotubes de TiO2 pour applications biomédicales : propriétés électrochimiques et bioactivité / Synthesis and characterizations of TiO2 nanotubes for biomedical applications : electrochemical properties and bioactivityHilario, Fanny 02 October 2017 (has links)
Le Titane (Ti) est un matériau biocompatible largement utilisé dans le domaine biomédical, notamment pour les implants orthopédiques (prothèse de hanche ou du genou par exemple). Il se distingue plus particulièrement par son excellente résistance à la corrosion et sa capacité d’ostéo-intégration. Cependant, une surface plane de Ti n’est pas assez bioactive pour être implantée ; il est nécessaire d’avoir recours à un traitement de surface pour améliorer ses propriétés. La modification de la surface du titane par anodisation permet la synthèse de nanotubes (NTs) de TiO2 ordonnés et verticalement alignés. Cette technique, peu couteuse, rapide et facile à mettre en œuvre permet également de contrôler finement la morphologie des NTs (diamètre, longueur, aspect des parois…). De plus, les NTs étant amorphes après anodisation, la structure cristalline peut être ajustée par un traitement thermique, conduisant à une structure anatase (450°C) ou à une structure mixte d’anatase et de rutile (550°C).Ainsi, des surfaces de différentes morphologies et différentes structures cristallines ont été synthétisées dans ce travail de thèse, afin d’évaluer l’influence des caractéristiques morpho-structurelles sur la résistance à la corrosion en milieu physiologique et sur la bioactivité (formation d’hydroxyapatite et réponse cellulaire).Nous avons démontré dans cette étude que les NTs cristallisés présentent une plus grande résistance à la corrosion et une meilleure bioactivité que les NTs amorphes (ou que les surfaces planes de Ti). Plus précisément, en tenant compte des aspects électrochimiques, thermiques, mécaniques, chimiques et de bioactivité, il semblerait que des NTs mixtes d’environ 720 nm de long et 90 nm de diamètre constituent une surface optimale pour les applications visées.D’autre part, dans le cadre de l’étude des propriétés électrochimiques de l’interface, une attention toute particulière a été accordée dans ce travail de thèse à la modélisation des résultats de mesures par Spectroscopie d’Impédance Electrochimique (SIE). Il s’avère que la réponse en impédance des NTs de TiO2 en milieu physiologique correspond au modèle d’électrode poreuse de De Levie. Toutefois, pour des électrodes poreuses non-idéales, cette théorie peut être généralisée et modélisée par des lignes de transmission. Ainsi, le modèle de ligne de transmission proposé dans cette étude s’ajuste de façon très satisfaisante aux mesures expérimentales. Il permet notamment de mettre en évidence la nature très peu réactive des NTs de TiO2, justifiant ainsi leurs applications dans le domaine biomédical. / Titanium (Ti) is a biocompatible material widely used in the biomedical field, especially for orthopedic implants (for instance hip or knee replacement). It is particularly corrosion resistant and shows remarkable osseointegration properties. However, plane Ti surfaces are not bioactive enough to be implanted; they need to be improved by surface treatments. Surface modification of Ti by anodization enables to synthesize self-organized and vertically aligned TiO2 nanotubes (NTs). This cheap, fast and easily implementable technique also permits a fine tuning of NTs morphology (diameter, length, wall look, etc.). Moreover, since as-anodized NTs are amorphous, crystalline structure may be adjusted by heat treatment, producing anatase structure (450°C) or a mixed structure of anatase and rutile (550°C).Therefore, surfaces of different morphologies and crystalline structures have been synthesized in order to evaluate the influence of these characteristics on corrosion resistance in physiological medium and on bioactivity (hydroxyapatite formation and cell response).We demonstrated that crystallized NTs are more corrosion resistant and more bioactive than amorphous ones or even than flat Ti surfaces. More precisely, considering electrochemical, thermal, mechanical, chemical and bioactive aspects, it seems that mixed NTs of about 720 nm in length and 90 nm in diameter constitute an optimal surface for the present applications.Additionally, in the frame of electrochemical investigations, we focused on modeling experimental results from Electrochemical Impedance Spectroscopy (EIS) measurements. The impedance response of TiO2 NTs in physiological conditions can correspond to porous electrode model as developed by De Levie. However, for non-ideal electrodes, this theory can be generalized and modeled by transmission lines. Thus, the transmission line model developed in this study fits very well with experimental measurements. It suggests that TiO2 NTs are almost non-reactive, justifying their applications in biomedical fields.
|
23 |
Emprego de material nanoestruturado sobre Ti na degradação de fármacos = Use of nanostructured titanium dioxide for treatment of pharmaceuticals / Use of nanostructured titanium dioxide for treatment of pharmaceuticalsSouza, Edivaldo Luis de, 1968- 27 August 2018 (has links)
Orientadores: Peterson Bueno de Moraes, Christiane de Arruda Rodrigues Ragnini / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Tecnologia / Made available in DSpace on 2018-08-27T04:30:52Z (GMT). No. of bitstreams: 1
Souza_EdivaldoLuisde_M.pdf: 3079610 bytes, checksum: a78db6078a721c74f963b944bae72f47 (MD5)
Previous issue date: 2015 / Resumo: A sociedade e seus processos produtivos têm gerado e lançado quantidades elevadas e diversificadas de compostos orgânicos, inorgânicos e biológicos no meio ambiente. Juntamente com as emissões naturais, houve um grande acúmulo destes materiais nos diferentes compartimentos ambientais. A produção e o uso de medicamentos, como hormônios e antibióticos contribuíram muito para a ampliação deste quadro. Por serem persistentes não são totalmente metabolizados nos seres vivos e acabam sendo excretados e lançados em corpos receptores. Os mecanismos naturais de degradação e métodos de tratamento convencionais de efluentes não são suficientemente eficientes na remoção completa destes compostos; em função disso, é necessário o desenvolvimento e aplicação de tecnologias alternativas para a redução destes impactos. Entre estas tecnologias podemos citar os Processos Oxidativos Avançados (POA) que são mais eficientes para o tratamento destes tipos de efluentes. Objetivamos neste trabalho desenvolver, caracterizar e utilizar eletrodos nanoestruturados de TiO2 para a confecção de um reator fotoeletroquímico para a degradação do antibiótico amoxicilina e do citrato de sildenafil, este último, princípio ativo do medicamento Viagra®, submetidos à radiação UV e solar. Foram desenvolvidos eletrodos nanoestruturados com TiO2 sobre substrato de titânio, a partir de processos de anodização eletroquímica, na qual foram variados diferentes parâmetros que influenciaram nas características dos nanotubos de TiO2 desenvolvidos. Os nanotubos formados foram avaliados por Microscopia Eletrônica de Varredura quanto ao comprimento, espessura de parede e homogeneidade de distribuição. Testou-se contra-eletrodos de platina, Anodo Dimensionalmente Estável (ADE), níquel, aço-inoxidável 304 e 316L e obteve-se nanotubos de TiO2 com comprimentos entre 100 e 650 nm. Observou-se na maioria dos eletrodos nanoestruturados uma distribuição homogênea dos nanotubos. Visando a obtenção de nanoestruturas mais fotoativas, realizou-se cristalização por aquecimento em estufa. Na cristalização dos nanotubos, as análises de Difratometria de Raios-X evidenciaram intenso sinal no ângulo 2? próximo a 25º para todas as amostras significando que os nanotubos de TiO2 se cristalizaram na fase anatase, a qual é mais fotoativa. A degradação de amoxicilina apresentou rendimento de aproximadamente 85% em um intervalo de 4 horas de tratamento, enquanto que o rendimento na degradação do citrato de sildenafil foi de aproximadamente 88%, para um volume de amostra de 160,0 mL etanol/água destilada à 20% V/V em Na2SO4 0,1 M, concentração do fármaco de 10,0 mg L-1, lâmpada de vapor de mercúrio, WUV=13 W/m2, disposição horizontal dos eletrodos, distância de 3,0 mm entre lâmpada e ânodo de TiO2, cátodo de platina em tela, tensão de 1,5 volts, anodo de titânio nanoestruturado obtido a partir de contra-eletrodo de ADE 70%TiO2/30%RuO2 com d = 5,0 mm a 700 rpm e t = 120 min, 2 horas de tratamento. As nanoestruturas apresentaram-se com baixa resistência mecânica em relação à aplicação de valores de potencial elétrico superiores a 1,5 V. No entanto, abaixo destes valores, as estruturas de TiO2 mostraram-se altamente estáveis em relação à durabilidade. A eletrólise apresentou eficiência insignificante na degradação do fármaco citrato de sildenafil, sendo então aplicado um potencial aos eletrodos para fotoassistir ao processo fotocatalítico o qual se mostrou fortemente dependente da drenagem eletrônica / Abstract: The modern society and its production processes have generated and released high amounts of synthetic organic compounds which accumulate in different environmental compartments. The production and use of drugs such as hormones and antibiotics have greatly contributed to the expansion of this problem. Due to persistent-profile of these drugs, they are not completely metabolized and the conventional Wastewater Treatment Plants are not fully effective for the removal of these compounds. Thus, the development and application of alternative technologies is needed. In the other hand, the Advanced Oxidation Processes (AOP) has been effective for the treatment of pharmaceutical residues. This work aimed to produce, characterize and use nanostructured TiO2 electrodes and an photoelectrochemical reactor for the degradation of the antibiotic amoxicillin and sildenafil citrate, the latter, the active ingredient of Viagra©. The experiments were carried out using ultraviolet (UV) and solar radiation. Nanostructured TiO2 electrodes were developed from titanium substrate by electrochemical anodization process in which the different parameters were varied in order to verify its influence on the length, thickness and uniformity of distribution of TiO2 nanotubes formed, evaluated by Scanning Electron Microscopy. It was tested different counter-electrodes such as platinum, dimensionally stable anode (DSA), nickel, stainless-steel 304 and stainless-steel 316L and were obtained TiO2 nanotubes with lengths between 100 and 650 nm. It was observed in most nanostructured electrodes a homogeneous distribution of the nanotubes. Also, in order to obtain nanostructures more photoactive, crystallization was performed by heating in an oven. After crystallization process, analysis of X-Ray diffraction showed intense signal at 2? close to 25º for all samples, meaning that the TiO2 nanotubes were crystallized in the anatase phase which is more photoactive. Photocatalytic experiments with the Amoxicillin solution resulted in approximately 85% of degradation in 4 hours of treatment, whereas the degradation of sildenafil citrate was about 88%. The samples consisted of 160.0 mL ethanol / distilled water at 20 % V/V in 0.1 M Na2SO4, drug concentration of 10.0 mg L-1. The experimental setup consisted of a mercury vapor lamp or a solar simulator, horizontal arrangement of the electrodes and a platinum screen cathode. It was applied 1.5 volts, distance of 3,0 mm between the lamp and TiO2 nanostructured anode, obtained from the anodization using a DSA (70%TiO2/30%RuO2) counter-electrode placed at 5.0 mm, under stirring of 700 rpm over 120 minutes. The nanostructures had low strength to the application of higher electrical potential values than 1.5 V. However, below this value the TiO2 structures were more stable and with greater durability. Electrolytic process had a negligible efficiency in the degradation of sildenafil citrate; thus the applied potential was more important to help the photocatalytic process, which is strongly dependent of the electronic drainage / Mestrado / Tecnologia e Inovação / Mestre em Tecnologia
|
24 |
Vliv modifikovaných TiO2 nanotrubiček na interakce na biorozhraní / The influence of modified TiO2 nanotubes on biointerfacial interactionBílek, Ondřej January 2021 (has links)
Nanotrubičky oxidu titaničitého v průběhu posledních let nabyly na významu v poli biomedicíny. Jakožto biokompatibilní nanostrukturovaný povrch nachází potenciál pro své uplatnění především v oblasti implantačních aplikací. Teoretická část této práce je tak věnována různým přístupům pro syntézu TiO2 nanotrubiček, jejich modifikacím a aplikacím v biomedicíně. Experimentální část pak pojednává o nanotrubičkách oxidu titaničitého, které jsou připraveny z titanu metodou jednokrokové anodické oxidace v organickém elektrolytu. Jako výchozí materiály jsou používány křemíkové disky s naprášenou vrstvou titanu a titanové folie. Zprvu amorfní nanotrubičky jsou žíháním převedeny na svou krystalickou podobu, a následně modifikovány selenovými a stříbrnými nanočásticemi. Připravené struktury jsou zkoumány z hlediska povrchových vlastností a biologických interakcí s vybranými tkáňovými kulturami (MG-63, NIH-3T3) a bakteriemi (E. coli, P. aeruginosa, S. aureus). V závěru experimentální práce jsou stručně porovnány výsledky selenových a stříbrných nanočástic. Hlavním cílem této práce je rozšířit znalosti týkající se bio-rozhraní tvořeným adherentními buněčnými liniemi, bakteriálními buňkami a nanostrukturovaným povrchem tvořeným TiO2 nanotrubičkami dekorovanými selenovými a stříbrnými nanočásticemi.
|
25 |
Élaboration et étude optoélectronique des nanotubes d'oxydes métalliques décorés par des nanoparticules de PbS et/ou CdS pour applications environnementales et photovoltaïquesJemai, Safa 16 January 2023 (has links)
[ES] En la última década, las crecientes necesidades de protección del medio ambiente han estimulado la investigación en el campo de la fotocatálisis. La contaminación del agua por productos químicos orgánicos, tintes textiles y productos farmacéuticos constituye un peligro cada vez más dañino para el medio ambiente, la salud humana y la vida acuática. Para solucionar este problema y luchar contra la contaminación del agua, varios grupos de investigación han demostrado la utilidad del uso de dióxido de titanio TiO2 como un prometedor fotocatalizador no tóxico y de bajo coste para la fotodegradación de contaminantes. Obviamente, como cualquier otro material, el TiO2 tiene limitaciones en varias áreas de aplicación debido a su ancho de banda prohibida, que limita su rango de absorción a los rayos UV. Esto nos incita a asociarlo a semiconductores de banda prohibida baja como PbS. En este trabajo se asociaron nanopartículas de PbS a nanotubos de TiO2 (NTs) para mejorar su actividad fotocatalítica en el visible.
Comenzamos nuestro trabajo optimizando la deposición de micro/nanoestructuras de PbS mediante el método hidrotermal mientras estudiamos la influencia de los parámetros de deposición en las propiedades morfológicas y estructurales de las micro/nanoestructuras de PbS de diferentes formas. Inicialmente, la atención se centró en optimizar los parámetros para sintetizar nanopartículas de PbS a partir de microestructuras mediante un simple cambio del precursor aniónico (fuente de S2-). Posteriormente, se realizó un estudio sobre el efecto de la concentración del precursor en la calidad de las nanopartículas de PbS.
A continuación, se estudió la influencia de la decoración de las NP de PbS en las propiedades físicas, ópticas y estructurales de las NT de TiO2. Demostramos la efectividad de la técnica SILAR para la realización de heteroestructuras {NPs PbS}n - NTs TiO2, que son adecuadas para la integración en dispositivos fotocatalíticos. Hemos demostrado que la calidad de la estructura cristalina, el tamaño de los cristales y las propiedades ópticas de los sistemas fabricados dependen del número de ciclos SILAR "n" y de la distribución y tamaño de las NP de PbS depositadas por SILAR.
Finalmente, se presentó el estudio cinético de la actividad fotocatalítica de NTs de TiO2 puras y decoradas con NPs de PbS para la fotodegradación de antibióticos (tetraciclina) bajo irradiación UV. Primero, encontramos que el sistema PbS NPs/TiO2 NTs es efectivo para la fotodegradación de tetraciclina (TC), con una degradación óptima para un número de ciclo SILAR de deposición de PbS igual a 5. Segundo, estudiamos la actividad fotocatalítica de TiO2 NTs puros en una solución acuosa de TC bajo luz ultravioleta. Después de optimizar las condiciones experimentales, logramos una fotodegradación de aproximadamente el 99% de la tetraciclina después de 5 horas de irradiación. Además, hemos demostrado que el fotocatalizador es estable y podría usarse con éxito durante al menos cinco ciclos sucesivos sin una pérdida significativa de rendimiento.
Estos resultados sugieren que el fotocatalizador PbS NPs/TiO2 NTs es un sistema efectivo y prometedor para la purificación de agua. Además, con base en los resultados de las pruebas de atrapamiento, propusimos un mecanismo de fotodegradación que muestra que la capacidad de las NT de TiO2 para oxidar el antibiótico se debe principalmente a los agujeros fotogenerados, así como a los radicales hidroxilo (OH), que se consideran como agentes oxidantes primarios que actúan no solo en la superficie sino también en solución. / [CA] A la darrera dècada, les creixents necessitats de protecció del medi ambient han estimulat la recerca en el camp de la fotocatàlisi. La contaminació de l'aigua per productes químics orgànics, tints tèxtils i productes farmacèutics constitueix un perill cada cop més nociu per al medi ambient, la salut humana i la vida aquàtica. Per solucionar aquest problema i lluitar contra la contaminació de l'aigua, diversos grups de recerca han demostrat la utilitat de l'ús de diòxid de titani TiO2 com un prometedor fotocatalitzador no tòxic i de baix cost per a la fotodegradació de contaminants. Òbviament, com qualsevol altre material, el TiO2 té limitacions en diverses àrees d'aplicació a causa de la seva amplada de banda prohibida, que limita el seu rang d'absorció als raigs UV. Això ens incita a associar-ho a semiconductors de banda prohibida baixa com a PbS. En aquest treball es van associar nanopartícules de PbS a nanotubs de TiO2 (NTs) per millorar la seva activitat fotocatalítica en l'espectre visible.
Comencem el nostre treball optimitzant la deposició de micro/nanoestructures de PbS mitjançant el mètode hidrotermal mentre estudiem la influència dels paràmetres de deposició en les propietats morfològiques i estructurals de les micro/nanoestructures de PbS de diferents formes. Inicialment, l'atenció es va centrar a optimitzar els paràmetres per sintetitzar nanopartícules de PbS a partir de microestructures mitjançant un simple canvi del precursor aniònic (font de S2-). Posteriorment, es va fer un estudi sobre l'efecte de la concentració del precursor en la qualitat de les nanopartícules de PbS.
A continuació, es va estudiar la influència de la decoració de les NP de PbS a les propietats físiques, òptiques i estructurals de les NT de TiO2. Hem demostrat l'efectivitat de la tècnica SILAR per a la realització d'heteroestructures {NPs PbS}n - NTs TiO2, que són adequades per a la integració en dispositius fotocatalítics. Hem demostrat que la qualitat de l'estructura cristal´lina, la mida dels cristals i les propietats òptiques dels sistemes aconseguits depenen del nombre de cicle SILAR "n" i la distribució de mida de les NP de PbS dipositades per SILAR.
Finalment, es presenta un estudi cinètic de l'activitat fotocatalítica de NTs de TiO2 pures i decorades amb NPs de PbS per a la fotodegradació d'antibiòtics (tetraciclina) sota irradiació UV. Primer, trobem que el sistema PbS NPs/TiO2 NTs és efectiu per a la fotodegradació de tetraciclina (TC), amb una degradació òptima per a un nombre de cicle SILAR de deposició de PbS igual a 5. Segon, estudiem l'activitat fotocatalítica de TiO2 NTs purs en una solució aquosa de TC sota llum ultraviolada. Després d'optimitzar les condicions experimentals, aconseguim una fotodegradació d'aproximadament el 99% de la tetraciclina després de 5 hores d'irradiació. A més, hem demostrat que el fotocatalitzador és estable i es podria fer servir amb èxit durant almenys cinc cicles successius sense una pèrdua significativa de rendiment.
Aquests resultats suggereixen que el fotocatalitzador PbS NPs/TiO2 NT és un sistema efectiu i prometedor per a la purificació d'aigua. A més, amb base en els resultats de les proves de captura, vam proposar un mecanisme de fotodegradació que mostra que la capacitat de les NT de TiO2 per oxidar l'antibiòtic es deu principalment als forats fotogenerats, així com als radicals hidroxil (OH), que es consideren .com a agents oxidants primaris que actuen no només a la superfície sinó també en solució. / [EN] The increasing needs for environmental protection have strongly stimulated research in the field of photocatalysis in recent years. Contamination of water by organic chemicals, textile dyes and pharmaceuticals constitute an increasingly harmful hazard to the environment, human health, and aquatic life. To solve this problem and fight water pollution, several research groups have demonstrated the usefulness of using titanium dioxide TiO2 as a promising low-cost non-toxic photocatalyst for the photodegradation of contaminants. Obviously, like any other material, TiO2 has limitations in several areas of application because of its wide band gap, which limits its absorption range to UV. This incites us to associate it to low band gap semicondors such as PbS. In this work, PbS nanoparticles were associated to TiO2 nanotubes (NTs) to improve their photocatalytic activity in the visible.
We started our work by optimizing the deposition of PbS micro-nanostructures by the hydrothermal method while studying the influence of deposition parameters on the morphological and structural properties of the different shaped PbS micro-nanostructures. Initially, the focus was on optimizing parameters to synthesize PbS nanoparticles from microstructures by a simple change of the anionic precursor (source of S2-). Subsequently, a study was conducted on the effect of the precursor concentration on the quality of PbS nanoparticles.
Next, we also studied the influence of PbS NPs decoration on the physical, optical and structural properties of TiO2 NTs. We demonstrated the effectiveness of the SILAR technique for the realization of {NPs PbS}n - NTs TiO2 heterostructures, which are suitable for integration into photocatalytic devices. We have shown that the quality, crystal structure, crystallite size and optical properties of the achieved systems depend on the SILAR cycle number ''n'' and the size distribution of the SILAR-deposited PbS NPs.
Finally, the kinetic study of the photocatalytic activity of pure TiO2 NTs and decorated with PbS NPs for the photodegradation of antibiotics (tetracycline) under UV irradiation was presented. First, we found that the PbS NPs/TiO2 NTs system is effective for the photodegradation of tetracycline (TC), with an optimum degradation for a SILAR cycle number of PbS deposition equal to 5. Second, we studied the photocatalytic activity of pure TiO2 NTs in an aqueous TC solution under UV light. After optimizing the experimental conditions, we achieved a photodegradation of approximately 99% of tetracycline after 5 hours of irradiation. In addition, we have shown that the photocatalyst is stable and could be used successfully for at least five successive cycles without any significant loss of performance. These results suggest that the PbS NPs/TiO2 NTs photocatalyst is an effective and promising system for water purification. In addition, based on the results of the trapping tests, we proposed a photodegradation mechanism that shows that the ability of the TiO2 NTs to oxidize the antibiotic is mainly due to the photogenerated holes as well as the hydroxyl (OH) radicals, which are considered as primary oxidizing agents acting not only on the surface but also in solution. / Jemai, S. (2022). Élaboration et étude optoélectronique des nanotubes d'oxydes métalliques décorés par des nanoparticules de PbS et/ou CdS pour applications environnementales et photovoltaïques [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/191332
|
26 |
Modification de nanotubes de TiO2 pour la production d’hydrogène par photodissociation de l’eau sous lumière solaire / Modification of TiO2 nanotubes for hydrogen production by water-splitting under solar lightGross, Pierre-Alexandre 21 November 2014 (has links)
Ce travail de thèse traite de la production d’hydrogène par le procédé de photoélectrocatalyse en utilisant une photoanode à base de nanotubes de TiO2 verticalement alignés. L’utilisation du TiO2 étant limité pour des applications solaires en raison de son large gap, il est nécessaire de le modifier. Deux approches sont proposées pour modifier les nanotubes de TiO2 et leur permettre d’absorber la lumière visible. La première est une modification chimique du TiO2 par co-dopage cationique-anionique (Ta-N) ou (Nb-N). Les cations sont insérés durant la croissance des nanotubes grâce à une approche inédite, et l’azote est inséré durant le traitement thermique. Ceci a pour effet la formation d’orbitales hybrides qui entraîne une réduction du gap et une activité sous lumière visible, tout en permettant une stabilité de la structure. La seconde approche consiste à déposer des nanoparticules d’Ag sur la surface des nanotubes de TiO2. Grâce au contrôle de la morphologie des nanoparticules d’Ag, leur résonnance plasmonique permet de stimuler l’absorption du TiO2 et ainsi d’augmenter son rendement à la fois sous lumière UV et sous lumière visible. / This work is about the production of hydrogen by photoelectrocatalysis using a vertically aligned TiO2 nanotubes based photoanode. Utilization of TiO2 for solar applications is limited due to its large band gap, it has to be modified. Two approaches are proposed for the modification of the TiO2 nanotubes to make them absorb visible light. The first one is the chemical modification of the TiO2 by (Ta-N) or (Nb-N) cationic-anionic co-doping. Cations are inserted during the growth of the nanotubes by a novel approach, and nitrogen is inserted during heat treatment. This leads to the formation of hybrid orbitals resulting in a band gap reduction and of activity under visible light. The second approach consists of the deposition of Ag nanoparticles on the surface of the TiO2 nanotubes. Thanks to the control of the morphology of the Ag nanoparticles, their plasmonic resonance can enhance the absorption of TiO2 and thus increase its activity both under UV and visible light.
|
27 |
Titania Nanotubes For Biotechnological ApplicationsMurria, Priya 07 1900 (has links) (PDF)
Over the past few decades, inorganic nanostructured materials have elicited a lot of interest due to their high surface-to-volume ratio and many size dependent properties which stem from their nanoscale dimensions. Owing to these distinct properties, they have found applications in widespread fields like catalysis, energy storage, electronics, and biotechnology.
In the field of biotechnology, nanotubes and mesoporous materials are attractive vehicles for drug delivery because of their hollow and porous structures and facile surface functionalization. Their inner void can take up large amounts of drug as well as act as gates for the controlled release of drug. These hollow structures can also be used for confining biomolecules like proteins and peptides. The study on protein conformation in biocompatible materials is very important in materials sciences for the development of new and efficient biomaterials(sensors, drug delivery systems or planted devices).
Titania(TiO2)has been widely explored for applications in photovoltaic cells, batteries, desalination, sensing, and photocatalysis, to name only a few. The work presented in this thesis focuses on titania based nanostructures for drug delivery and protein confinement.
First part of the work focusses on synthesis and characterization of Fe-doped TiO2 nanotubes. Fe-doped TiO2 nanotubes were demonstrated as controlled drug delivery agents. In vitro cytotoxic effects of Fe-doped titania nanotubes were assessed by MTT assay by exposing Hela cell line to the nanotubes.
Second part of the work focusses on synthesis and characterization of TiO2 nanotubes by two synthesis procedures, namely hydrothermal and sol-gel template synthesis. Myoglobin, a model globin protein was encapsulated in hydrothermally synthesized TiO 2 nanotubes(diameter 5 nm) and sol-gel template synthesized TiO2 nanotubes(diameter 200 nm). Effect of encapsulating myoglobin these nanotubes was studied. The electrochemical activity and structure of myoglobin were studied by cyclic voltammetry and circular dichroism respectively. Direct electron transfer was found to be enhanced upon confinement in 200 nm diameter nanotubes. No such enhancement was observed upon encapsulation in hydrothermally synthesized nanotubes. In addition to this, the thermal stability of myoglobin was found to be enhanced upon confinement inside 200 nm diameter TiO 2 nanotubes.
|
28 |
Nanocrystalline Titania Based Dye Sensitized Solar Cells - Effect Of Electrodes And Electrolyte On The PerformanceMathew, Ambily 07 1900 (has links) (PDF)
Dye-sensitized solar cells (DSC) have attracted considerable scientific and industrial interest during the past decade as an economically feasible alternative to conventional photovoltaic devices. DSCs have the potential to be as efficient as silicon solar cells, but at a fraction of the cost of silicon solar cells. The unique advantage of DSC compared to conventional solar cells is that the light absorption, electron transport and hole transport are handled by different components which reduces the chance of recombination. In the present work, to facilitate DSC with good energy conversion efficiency, its performance have been evaluated as a function of titania layer morphology, redox couple concentration and the catalytic layer on the counter electrode. The results that are obtained in the present investigations have been organized as follows
Chapter 1 gives a brief exposure to DSC technology. Special emphasize has been on the structure and individual components of the DSC.
Chapter 2 describes various experimental techniques that are employed to fabricate and characterize DSCs under study.
Chapter 3 presents a systematic study of the characteristics of DSC made of three different types of electrodes namely: TiO2 nanotubes (TNT) which have excellent electron transport properties, TiO2 microspheres (TMS) which possess high surface area and light scattering ability and TiO2 nano particles (TNP) possessing high surface area. The electronic, morphological, optical and surface properties of individual electrodes are studied. The highest efficiency of 8.03% is obtained for DSCs prepared with TMS electrodes. A higher value of effective diffusion coefficient (Deff) and diffusion length (Ln) of electrons as obtained by electrochemical impedance spectroscopy (EIS) analysis confirms a high charge collection efficiency in microsphere based cell.
Chapter 4 gives a detailed study of DSCs fabricated with a tri-layer photo anode with TNTs as light scattering layer. The tri-layer structure has given an enhanced efficiency of 7.15% which is 16% higher than TNP based cell and 40% higher than TNT based cells.
Chapter 5 deals with the investigations on the effect of concentration of redox couple on the photovoltaic properties of DSC for different ratios of [I2] to [LiI] (1:2, 1:5 and 1:10) with five viii concentrations of I2 namely 0.01 M, 0.03 M, 0.05 M, 0.08 M and 0.1M in acetonitrile. It is found that the open circuit potential (Voc) decreases with increase in the ratio of redox couple whereas short circuit current density (Jsc) and fill factor (FF) increase. The reason for the decline in Voc is the higher recombination between electrons in the conduction band of TiO2 and the I3- ions present in the electrolyte, induced by the absorptive Li+ ions. In addition using EIS it is found that the τ improves with the increase in [LiI] at a particular [I2], whereas at a fixed [I2]/ [LiI] ratio the increase in [I2] is found to reduce the τ and Deff due to the enhanced recombination.
Chapter 6 describes the application of carbon based counter electrode (CE) materials for DSCs. Two counter electrode materials have been investigated namely (1) Multiwalled carbon nanotubes (MWCNT) synthesized by pyrolysis method and (2) Platinum decorated multiwalled carbon nanotubes (Pt/MWCNT) prepared by chemical reduction of platinum precursors. Using Pt/MWCNT composite electrode the DSC achieved an energy conversion efficiency of 6.5 %. From the analysis on symmetric cells, it is found that electro catalytic activity of Pt/MWCNT CE is similar to that of platinum CE, though the platinum loading is very less for the former. This is attributed to the effective utilization of catalyst owing to high surface area arising from the increased surface roughness.
Chapter 7 discusses the application of titanium foil in place of glass substrate for the photo anode. The titanium foil offers fabrication of flexible DSC. The performance of DSC with TMS layers and aligned titania nanotube arrays (TNA) prepared by anodization method is studied. Compared to TMS based cell, TNA has given a better efficiency at a lower thickness.
Chapter 8 presents the scheme used to seal DSCs and its stability analysis. We have employed the usual hot melt sealing for edge whereas hole sealing is carried out with tooth pick and a UV curable adhesive. The degradation in efficiency is found to be 20% for low efficiency cells whereas, for high efficiency cells it is found to be 45% after 45 days. The leakage of highly volatile acetonitrile through the edge and hole is found to be responsible for the reduction in the performance of the device. Hence a high temperature sealing method is proposed to fabricate stable cells.
Chapter 9 gives summary and conclusions of the present work
|
29 |
Πειραματική μελέτη και μικρομηχανική μοντελοποίηση πολυμερικών μίκρο- και νάνο- συνθέτων υλικώνΠαπαευθυμίου, Κωνσταντίνος 29 March 2013 (has links)
Σκοπός της παρούσας εργασίας ήταν η κατασκευή, η πειραματική και θεωρητική μελέτη πολυμερικών μίκρο- και νάνο- συνθέτων υλικών. Μελετήθηκε η επίδραση στη μηχανική συμπεριφορά τους φθοροποιών παραγόντων όπως η απορρόφηση υγρασίας και κατασκευαστικών παραμέτρων όπως η γεωμετρία και η μέθοδος διασποράς της ενίσχυσης. Επίσης, έγινε σύγκριση των πειραματικών αποτελεσμάτων με την πρόβλεψη των αναλυτικών μοντέλων MPM όσον αφορά το μέτρο Ελαστικότητας συναρτήσει της περιεκτικότητας σε ενίσχυση και RPM όσον αφορά την εναπομένουσα θραυστομηχανικής συμπεριφοράς μετά από υγροθερμική γήρανση. Τέλος, έγινε μικρομηχανική μοντελοποίηση της ελαστικής και βισκοελαστικής διεπιφανειακής συμπεριφοράς με το μοντέλο της υβριδικής ενδιάμεσης φάσης νανοσυνθέτων σε συστήματα νανοσωλήνων άνθρακα-εποξειδικής ρητίνης και νανοσωλήνων TiO2-οστεοκυττάρων.
Στο πρώτο μέρος έγινε πειραματική μελέτη πολυμερικών μίκρο-συνθέτων υλικών. Για τη μελέτη της επίδρασης της γεωμετρίας της ενίσχυσης στη μηχανική και θραυστομηχανική συμπεριφορά κατασκευάστηκαν σύνθετα εποξικής μήτρας ενισχυμένα με μίκρο-σωματίδια γυαλιού ινώδους, σφαιρικής και γεωμετρίας φυσαλίδας και πραγματοποιήθηκαν πειράματα κάμψης τριών σημείων και compact tension αντίστοιχα. Για τους τρεις παραπάνω τύπους ενίσχυσης προκύπτει ότι τα σύνθετα ενισχυμένα με μικροσφαιρίδια γυαλιού υπερτερούν από πλευράς καμπτικής δυσκαμψίας και μηχανικής αντοχής. Ο λόγος είναι η δυνατότητα να παραλαμβάνουν τόσο εφελκυστικά όσο και θλιπτικά φορτία σε αντίθεση με τις ίνες και τις φυσαλίδες. Από άποψη στερρότητας, ΚIC υπερτερούν τα σύνθετα με μικροϊνίδια λόγω της αντίστασης στη διάδοση ρωγμών μέσω της εξόλκυσης τους και της γεφύρωσης ρωγμών, ενώ τα σύνθετα με φυσαλίδες γυαλιού παρουσιάζουν αυξημένη ενέργεια θραύσης λόγω της αυξημένης ένδοσης και άρα της δυνατότητας αποθήκευσης ενέργειας. Επίσης, για μικρές περιεκτικότητες σε ενίσχυση η συμπεριφορά των υλικών είναι όλκιμη. Η έναρξη της ρωγμής ακολουθείται από ευσταθή διάδοσή της πριν την καταστροφική αστοχία υπό την επίδραση μηχανισμών διάχυσης ενέργειας και ανάσχεσης της ρωγμής. Αντίθετα, μετά από μία κρίσιμη περιεκτικότητα η θραύση του υλικού γίνεται ψαθυρή λόγω του βαθμού συσσωμάτωσης των εγκλεισμάτων. Η ασταθής διάδοση της αρχικής ρωγμής συμβαίνει αμέσως μετά την εκκίνηση αυτής. Τα πειραματικά αποτελέσματα επιβεβαιώθηκαν από μικροφωτογραφίες SEM και οπτικού στερεομικροσκοπίου.
Σε επόμενο στάδιο μελετήθηκε πειραματικά η επίδραση περιβαλλοντικών παραγόντων στη θραυστομηχανική συμπεριφορά των συνθέτων ενισχυμένων με σφαιρίδια γυαλιού. Πιο συγκεκριμένα, διεξήχθηκαν πειράματα compact tension σε δοκίμια μετά από υγροθερμική γήρανση για χρονικά διαστήματα που υπερβαίνουν το χρόνο κορεσμού απορρόφησης υγρασίας. Προέκυψε ότι για μικρές περιεκτικότητες σε ενίσχυση η δυσθραυστότητα των υλικών ακολουθεί μάλλον εκθετική μείωση. Αντίθετα για υλικά με μεγάλη περιεκτικότητα σε ενίσχυση τα οποία παρουσιάζουν ψαθυρή θραύση, αρχικά παρατηρείται αύξηση ή έναρξη της υποβάθμισης του της θραυστομηχανικής συμπεριφοράς από κάποιο κρίσιμο χρόνο εμβάπτισης. Τέλος, από την εφαρμογή σε αυτά των θεωρητικών του μοντέλων MPM και RPM προέκυψε πολύ ικανοποιητική σύγκλιση με τα πειραματικά αποτελέσματα.
Στο δεύτερο μέρος έγινε πειραματική μελέτη της επίδρασης του τρόπου διασποράς των νανοσωλήνων στη μηχανική και θερμομηχανική συμπεριφορά καθώς και στη δομή νανοσυνθέτων. Για την ανάμειξη των νανοσωλήνων χρησιμοποιήθηκαν οι μέθοδοι της υπερήχησης και της μηχανικής ανάμειξης σε αναμείκτη υψηλών στροφών. Έγινε μηχανικός χαρακτηρισμός της στατικής και της δυναμικής θερμομηχανικής συμπεριφοράς τους, από όπου επιβεβαιώθηκε ο κρίσιμος ρόλος που διαδραματίζει η ποιότητα της διασποράς των νανοεγκλεισμάτων στις μακροσκοπικές ιδιότητες του νανοσυνθέτου. Παρατηρήθηκε ότι τα νανοσύνθετα υλικά που κατασκευάστηκαν με τη μέθοδο της υπερήχησης πλεονεκτούν από πλευράς στατικής και δυναμικής μηχανικής συμπεριφοράς έναντι αυτών που κατασκευάστηκαν με τη μέθοδο της μηχανικής ανάμειξης με μόνη εξαίρεση τη μείωση της Tg. Παρ’ όλα εγείρεται το ζήτημα της καταστροφής της δομής της μήτρας λόγω της μεγάλης ισχύος των υπερήχων που εστιάζεται σε μικρή περιοχή, καθώς και της μειωμένη ικανότητα αποδοτικής διασποράς νανοσωλήνων σε μεγαλύτερη ποσότητα ρητίνης. Επιπλέον, ελήφθησαν φάσματα υπερύθρου της καθαρής ρητίνης και των νανοσυνθέτων που κατασκευάστηκαν με τη μέθοδο της υπερήχησης από όπου παρατηρήθηκε αύξηση της πυκνότητας των σταυροδεσμών στην περίπτωση των νανοσυνθέτων, γεγονός που αποδίδεται στη θερμική συμπεριφορά των νανοσωλήνων άνθρακα. Τα πειραματικά αποτελέσματα βρέθηκαν σε πλήρη συμφωνία με τα συμπεράσματα από τις μικροφωτογραφίες SEM των επιφανειών θραύσης των νανοσυνθέτων. Ήταν δυνατό να φανεί ξεκάθαρα η ποιότητα της διασποράς των νανοσωλήνων καθώς και οι μηχανισμοί αστοχίας και ενίσχυσης του υλικού σε νάνο-κλίμακα. Στην περίπτωση της μηχανικής ανάμειξης σε αναμείκτη υψηλής ταχύτητας υπήρχε συσσωμάτωση των νανοσωλήνων, ενώ στην περίπτωση της ανάμειξης με υπερήχηση επιτεύχθηκε καλή ποιότητα διασποράς των νανοεγκλεισμάτων στη μήτρα χωρίς την ύπαρξη συσσωματωμάτων μεγέθους άνω των 5-10 νανοσωλήνων.
Από πειράματα compact tension που πραγματοποιήθηκαν παρατηρήθηκε σημαντική αύξηση κατά 58,51% στον KIC και 55,25% στον GIC σε σχέση με την καθαρή ρητίνη για περιεκτικότητα μόλις 0,1wt% σε νανοσωλήνες άνθρακα. Η βελτιωμένη θραυστομηχανική συμπεριφορά σχετίζεται με τη μικρή απόσταση ανάμεσα στα νανοσωματίδια και το εξαιρετικά μεγάλο αριθμό νανοσωλήνων σε δεδομένο όγκο συνθέτου. Παρ, όλα αυτά από πειράματα που πραγματοποιήθηκαν μετά από υγροθερμική γήρανση έδειξαν ότι η απορρόφηση υγρασίας επιφέρει απώλεια της ενισχυτικής ικανότητας των νανοσωλήνων για χρόνους εμβάπτισης μεγαλύτερους των 24 ωρών.
Δεδομένου ότι η περιοχή της ενδιάμεσης φάσης επηρεάζει σημαντικά τη μακροσκοπική συμπεριφορά ενός συνθέτου υλικού έγινε εφαρμογή των αναλυτικών μοντέλων της υβριδικής ενδιάμεσης φάσης και της βισκοελαστικής υβριδικής ενδιάμεσης φάσης σε συστήματα εποξειδικής ρητίνης – νανοσωλήνων άνθρακα και οστεοκυττάρων - νανοσωλήνων TiO2. Για τα νανοσύνθετα που κατασκευάστηκαν με τη μέθοδο της υπερήχησης υπολογίστηκε η τιμή του συντελεστή πρόσφυσης k=0,90 , ενώ για αυτά που κατασκευάστηκαν με μηχανική ανάμειξη σε αναμείκτη υψηλών στροφών η τιμή του συντελεστή πρόσφυσης υπολογίστηκε k=0,20. Η κακή ποιότητα πρόσφυσης έχει ως συνέπεια τη μη αποτελεσματική μεταφορά των φορτίων από τη μήτρα στα εγκλείσματα. Επίσης, έγινε πρόβλεψη της μεταβολής του πάχους της βισκοελαστικής ενδιάμεσης φάσης συναρτήσει του χρόνου υπό την επίδραση σταθερής φόρτισης.
Από τη μοντελοποίηση του συστήματος νανοσωλήνων TiO2-οστεοβλαστών με το μοντέλο της υβριδικής ενδιάμεσης φάσης προκύπτει ότι υπάρχει αλληλοκάλυψη των ενδιάμεσων φάσεων που αναπτύσσονται μεταξύ γειτονικών νανοσωλήνων, ακόμα και για καλή ποιότητα πρόσφυσης. Το γεγονός εξηγεί την ελλιπή ανάπτυξη των κυττάρων, καθώς λόγω της αγκύρωσης στην επιφάνεια των νανοσωλήνων και του μικρού διακένου, η ένδοση στην περιοχή μεταξύ των νανοσωλήνων είναι στην πραγματικότητα σημαντικά μικρότερη από αυτή που έχει αρχικά υποτεθεί. / The current master thesis was realized during the years 2010-2012 under the supervision of Prof G.Papanicolaou at the Composite Materials Group, in the Department of Mechanical and Aeronautical Engineering at University of Patras, Greece. The aim of the thesis was the experimental and analytical study of polymer micro- and nano- composites. There was investigated the effect of damage through hygrothermal ageing as well as the effect of manufacturing parameters such as the fillers’ dispersion method and geometry upon the composites’ mechanical and fracture behavior. Experimental findings were compared with the predictions of the RPM and MPM models, concerning the materials response after hygrothermal ageing and the composites’ elastic modulus as a function of filler’s weight fraction, respectively. Also, the interphasial elastic and viscous behavior was investigated by application of the elastic and viscoelastic hybrid interphase models which were both developed by Prof. G.Papanicolaou et al. The two different composite systems considered were Carbon nanotubes- Epoxy and TiO2 nanotubes osteoblast cells.
The first part of the study involved the manufacturing, the experimental characterization and analytical modeling of polymer microcomposites. The effect of fillers geometry upon the mechanical and fracture behavior of composites reinforced with spherical, fibrous and hollow bubble E-glass microinclusions was investigated by the means of three point bending and compact tension tests. It was observed that the composites reinforced with spherical inclusions demonstrated superior stiffness and flexural strength, which was attributed to the ability to take up both tensile and compressive loadings, unlike the other two types of fillers. However, glass fibril reinforced composites showed increased fracture toughness in effect of the mechanisms of fiber pull out and crack closure were considered to be fracture toughness. Finally there was observed increased fracture energy in the case of and glass bubble filled composites due to the inclusions increased compliance and thus ability to store more elastic energy prior to crack propagation. SEM microphotographs obtained confirmed experimental findings of ductile fracture and energy dissipation mechanisms for low vf and brittle fracture after a critical volume fraction. Next, the effect of environmental parameters upon the materials fracture behavior was investigated. For low volume fractions in glass microspheres the materials residual fracture toughness was found to decrease exponentially as a function of immersion time in water. On the contrary, for higher volume fractions the there can be observed an increase in toughness or initiation of damage after a critical immersion time. In any case, experimental findings were in close convergence with the predictions analytical models applied: MPM concerning the elastic modulus as a function of vf, and RPM concerning the residual KIC and GIC as a function of ageing time.
The thesis’ second part involved the experimental and analytical investigation of the effect of the fillers dispersion method in epoxy nanocomposites. There were applied two dispersion methods of carbon nanotubes in the resin, namely ultrasonication and high speed shearing. From the three point bending characterization and DMTA tests it was concluded that except for the Tg, all static and dynamic properties of nanocomposites manufactured by the ultrasonication method, are superior to the ones of nanocomposites manufactured by the shearing method. This was confirmed by SEM micrographs observations from which there was a clear indication that nanocomposites produced by the shearing method, were characterized by a limited aggregation while those manufactured by the ultrasonication method showed that individual nanotubes are scattered in the matrix and no aggregation was observed. Moreover, results of FTIR analysis indicated increased crosslink density in the nanocomposites compared to the neat resin, however, the decrease in Tg and increase in damping are an indication of damage of the epoxy and nanotubes structure during the ultrasonication procedure. Compact tension tests indicated an increase by 58.51% in the fracture toughness and by 55.25% in the fracture energy of the nanocomposites reinforced with 0.1wt% in MWCNT’s with respect to the neat resin. However, experimental findings indicated that the toughening of nanotubes is lost after hygrothermal ageing of the nanocomposites. The RPM prediction concerning the nanocomposites residual fracture behavior was in close agreement with experimental results.
Given that the interphasial phenomena affect the global behavior of a composite, the hybrid interphase model was applied to the carbon nanotubes-epoxy system. For the nanocomposites that were manufactured with the ultrasonication method the adhesion efficiency coefficient value was calculated k=0.70 while for the ones manufactured by high speed shearing the respective value was k=0.20. For the two given adhesion conditions the variation of the viscoelastic interphase thickness was also predicted as a function of loading time. The hybrid interphase model was also applied in order to investigate the interphasial elastic and viscoelastic behavior in a human osteoblast cells-TiO2 nanotubes system. The interphase overlapping was considered to be leading to TiO2 nanotube arrays mediocre biocompatibility due to the anchoring of cells to nanotubes and increased stiffness in the area between nanotubes.
|
30 |
Fabrication and characterization of highly-ordered TiO2-CoO, CNTs@TiO2-CoO and TiO2-SnO2 nanotubes as novel anode materials in lithium ion batteriesMadian, Mahmoud 30 January 2018 (has links) (PDF)
Developed rechargeable batteries are urgently required to make more efficient use of renewable energy sources to support our modern way of life. Among all battery types, lithium batteries have attracted the most attention because of the high energy density (both gravimetric and volumetric), long cycle life, reasonable production cost and the ease of manufacturing flexible designs. Indeed, electrode material characteristics need to be improved urgently to fulfil the requirements for high performance lithium ion batteries. TiO2-based anodes are highly promising materials for LIBs to replace carbon due to fast lithium insertion/extraction kinetics, environmentally-friendly behavior, low cost and low volume change (less than 4%) therewith, high structural stability as well as improved safety issues are obtained. Nevertheless, the low ionic and electric conductivity (≈ 10−12 S m−1) of TiO2 represent the main challenge. In short, the present work aims at developing, optimization and construction of novel anode materials for lithium ion batteries using materials that are stable, abundant and environmentally friendly.
Herein, both of two-phase Ti80Co20 and single phase Ti-Sn alloys (with different Sn contents of 1 to 10 at.%) were used to fabricate highly ordered, vertically oriented and dimension-controlled 1D nanotubes of mixed transition metal oxides (TiO2-CoO and TiO2-SnO2) via a straight-forward anodic oxidation step in organic electrolytes containing NH4F. Surface morphology and current density for the initial nanotube formation are found to be dependent on the crystal structure of the alloy phases. Various characterization tools such as SEM, EDXS, TEM, XPS and Raman spectroscopy were used to characterize the grown nanotube films.
The results reveal the successful formation of mixed TiO2-CoO and TiO2-SnO2 nanotubes under the selected voltage ranges. The as-formed nanotubes are amorphous and their dimensions are precisely controlled by tuning the formation voltage. The electrochemical performance of the grown nanotubes was evaluated against a Li/Li+ electrode at different current densities. The results revealed that TiO2-CoO nanotubes prepared at 60 V exhibited the highest areal capacity of ~ 600 µAh cm–2 (i.e. 315 mAh g–1) at a current density of 10 µA cm–2. At higher current densities TiO2-CoO nanotubes showed nearly doubled lithium ion intercalation and a coulombic efficiency of 96 % after 100 cycles compared to lower effective TiO2 nanotubes prepared under identical conditions. To further improve the electrochemical performance of the TiO2-CoO nanotubes, a novel ternary carbon nanotubes (CNTs)@TiO2-CoO nanotubes composite was fabricated by a two-step synthesis method. The preparation includes an initial anodic fabrication of well-ordered TiO2-CoO NTs from a Ti-Co alloy, followed by growing of CNTs horizontally on the top of the oxide films using a simple spray pyrolysis technique. The unique 1D structure of such a hybrid nanostructure with the inclusion of CNTs demonstrates significantly enhanced areal capacity and rate performances compared to pure TiO2 and TiO2-CoO NTs without CNTs tested under identical conditions. The findings reveal that CNTs provide a highly conductive network that improves Li+ ion diffusivity promoting a strongly favored lithium insertion into the TiO2-CoO NT framework, and hence results in high capacity and extremely reproducible high rate capability. On the other hand, the results demonstrate that TiO2-SnO2 nanotubes prepared at 40 V on a Ti-Sn alloy with 1 at.% Sn display an average 1.4 fold increase in areal capacity with excellent cycling stability over more than 400 cycles compared to the pure TiO2 nanotubes fabricated and tested under identical conditions.
The thesis is organized as follows:
Chapter 1: General introduction, in which the common situation of energy demand, along with the importance of lithium ion batteries in renewable energy systems and portable devices are discussed. A brief introduction to TiO2-based anode in lithium ion batteries and the genera strategies for developing TiO2 anodes are also presented. The scope of this thesis as well as the main tasks are summarized.
Chapter 2: The basic concepts of lithium ion batteries with an overview about their main components are discussed, including a brief information about the anode materials and the crystal structure of TiO2 anode. A detailed review for TiO2 nanomaterials for LIBs including the fabrication methods and the electrochemical performance of various TiO2 nanostructures (nanoparticles, nanorods, nanoneedles, nanowires and nanotubes) as well as porousTiO2 nanostructures is presented. The fabrication of TiO2 nanotubes by anodic oxidation, along with the growth mechanism are highlighted. The factors affecting the electrochemical performance of anodically fabricated pure TiO2, TiO2/carbon composites and TiO2-mixed with another metal oxide are reviewed.
Chapter 3: In this chapter, the synthesis of TiO2-CoO, (CNTs)@TiO2-CoO and TiO2-SnO2 nanotubes, along with the characterization techniques and the electrochemical basics and concepts are discussed.
Chapter 4: Detailed results and discussion of synthesis, characterizations and the electrochemical performance of TiO2-CoO nanotubes and ternary (CNTs)@TiO2/CoO nanotube composites are presented.
Chapter 5: Detailed results and discussion of synthesis, characterizations and the electrochemical performance of ternary (CNTs)@TiO2-CoO nanotube composites are explained.
Chapter 6: Detailed results and discussion of synthesis, characterizations and the electrochemical performance of TiO2-SnO2 nanotubes are presented.
Chapter 7: Summarizes the results presented in this work finishing with realistic conclusions, and highlights interesting work for the future. / Um die zur Aufrechterhaltung unserer modernen Lebensweise unabdingbaren erneuerbaren Energiequellen effizient nutzen zu können, werden hochentwickelte wiederaufladbare Batterien dringend benötigt. Lithium-Ionenbatterien gelten aufgrund ihrer hohen Energiedichte (sowohl gravimetrisch als auch volumetrisch), ihrer langen Lebensdauer, moderater Produktionskosten und aufgrund der Möglichkeit, vielfältige Konzepte einfach herstellen zu können, als vielversprechend. Dennoch müssen die Elektrodenmaterialien dringend verbessert werden, um den Ansprüchen an zukünftige hochentwickelte Lithium-Ionenbatterien gerecht zu werden. TiO2-basierte Anoden gelten aufgrund ihrer schnellen Lade- und Entladekinetik, ihres umweltfreundlichen Verhaltens und niedriger Kosten als aussichtsreiche Alternativen zu Kohlenstoffen. Durch die geringe Volumenänderung beim Lithiumeinbau (unter 4%) werden außerdem eine hohe strukturelle Stabilität und erhöhte Sicherheit gewährleistet. Die hauptsächlichen Herausforderungen stellen die niedrige ionische und elektrische Leitfähigkeit (≈ 10−12 S m−1) von TiO2 dar.
Zusammengefasst liegt das Ziel der vorliegenden Arbeit in der Entwicklung, Optimierung und Herstellung neuartiger Anodenmaterialien für Lithium-Ionenbatterien unter Verwendung stabiler, verfügbarer und umweltfreundlicher Materialien.
In dieser Arbeit wurden sowohl zweiphasiges Ti80Co20 und einphasige Ti-Sn-Legierungen (mit verschiedenen Sn-Gehalten zwischen 1 und 10 at-%) zur Herstellung hochgeordneter, vertikal orientierter eindimensionaler Nanoröhren aus gemischten Übergangsmetalloxiden (TiO2–CoO und TiO2–SnO2) mittels anodischer Oxidation in NH4F-haltigen organischen Elektrolyten genutzt. Dabei wurden Abhängigkeiten der Oberflächenmorphologie und der Stromdichte für die Bildung der Nanoröhren von der Kristallstruktur der zugrundeliegenden Legierung beobachtet. Vielfältige Methoden wie REM, EDXS, TEM, XPS und Ramanspektroskopie wurden genutzt, um die Nanoröhren zu charakterisieren. Die Ergebnisse zeigen, dass gemischte TiO2-CoO und TiO2-SnO2 Nanoröhren in den gewählten Spannungsfenstern erfolgreich gebildet werden konnten. Die so hergestellten Nanoröhren sind amorph und in ihren Dimensionen präzise durch die Wahl der Spannung einstellbar. Eine elektrochemische Beurteilung der Nanoröhren erfolgte durch Tests gegen eine Li/Li+-Elektrode bei veschiedenen Stromdichten. Die Resultate zeigen, dass TiO2-CoO-Nanoröhren, welche bei 60 V hergestellt wurden, die höchsten Flächenkapazitäten von ~ 600 µAh cm–2 (d.h. 315 mAh g–1) bei einer Stromdichte von 10 µA cm–2 aufweisen. Bei höheren Stromdichten zeigen TiO2-CoO-Nanoröhren nahezu verdoppelte Lithiuminterkalation und eine Coulomb-Effizienz von 96 % nach 100 Zyklen, verglichen mit weniger effektiven TiO2–Nanoröhren, welche unter identischen Bedingungen hergestellt wurden. Um die elektrochemischen Eigenschaften der TiO2-CoO-Nanoröhren weiter zu verbessern, wurde ein neuer Komposit aus Kohlenstoff-Nanoröhren und TiO2-CoO-Nanoröhren ((CNT)s@TiO2/CoO) durch eine zweistufige Synthese hergestellt. Die Herstellung beinhaltet zunächst die anodische Bildung geordneter TiO2/CoO-Nanoröhren, ausgehend von einer Ti-Co-Legierung, gefolgt von einem horizontalen Kohlenstoff-Nanoröhren-Wachstum auf dem Oxid mittels einer simplen Sprühpyrolyse. Die einzigartige 1D-Struktur einer solchen hybriden Nanostruktur mit eingebundenen CNTs zeigt deutlich erhöhte Flächenkapazitäten und Belastbarkeiten im Vergleich zu Nanoröhren aus TiO2 und TiO2/CoO-Nanoröhren ohne CNTs, die unter identischen Bedingungen getestet wurden. Die Ergebnisse zeigen, dass die CNTs ein hochleitfähiges Netzwerk bilden, welches die Diffusion von Lithium-Ionen und deren Einbau in die TiO2/CoO-Nanoröhren begünstigt und somit hohe Kapazitäten und reproduzierbare hohe Belastbarkeiten bewirkt. Außerdem zeigen die Resultate, dass TiO2-SnO2 Nanoröhren, welche bei 40 V auf einer Ti-Sn-Legierung mit 1 at.% Sn hergestellt wurden, im Mittel eine 1,4-fache Erhöhung der Flächenkapazität und eine exzellente Zyklenstabilität über mehr als 400 Zyklen, verglichen mit unter identischen Konditionen hergestellten und getesteten TiO2-Nanoröhren, zeigen.
Die Arbeit ist wie folgt organisiert:
Kapitel 1: Allgemeine Einführung, in der die Energienachfrage und die Bedeutung von Lithium-Ionenbatterien in erneuerbaren Energiesystemen und tragbaren Geräten diskutiert wird. Eine kurze Einleitung zu TiO2-basierten Anoden in Lithium-Ionenbatterien und allgemeine Strategien zur Entwicklung von TiO2-Anoden werden ebenfalls gezeigt. Das Ziel der Arbeit und hauptsächliche Aufgaben werden zusammengefasst.
Kapitel 2: Das grundlegende Konzept der Lithium-Ionenbatterie mit einem Überblick über ihre Hauptkomponenten wird diskutiert. Dies beinhaltet auch eine kurze Darstellung der Anodenmaterialien und der Kristallstruktur von TiO2-Anoden. Eine detaillierte Übersicht über TiO2-Nanomaterialien für LIB, welche Herstellungsmethoden und die elektrochemische Performance verschiedener TiO2-Nanostrukturen (Nanopartikel, Nanostäbe, Nanonadeln, Nanodrähte und Nanoröhren) und poröser TiO2-Nanostrukturen beinhaltet, wird gezeigt. Die Bildung von TiO2-Nanoröhren durch anodische Oxidation und der Wachstumsmechanismus werden hervorgehoben. Faktoren, welche die elektrochemische Performance anodisch hergestellter TiO2-Materialien, TiO2/Kohlenstoff-Komposite und TiO2 als Gemisch mit anderen Metalloxiden beeinflussen, werden diskutiert.
Kapitel 3: In diesem Kapitel werden die Synthese von TiO2-CoO, (CNTs)@TiO2/CoO und TiO2-SnO2-Nanoröhren, die Charakterisierungsmethoden, elektrochemische Grundlagen und Konzepte diskutiert.
Kapitel 4: Detaillierte Resultate und die Diskussion der Synthese, Charakterisierung und der elektrochemischen Performance der TiO2-CoO- Nanoröhren und der ternären (CNTs)@TiO2/CoO-Nanoröhrenkomposite werden gezeigt.
Kapitel 5: Detaillierte Resultate und die Diskussion der Synthese, Charakterisierung und der elektrochemischen Performance der der ternären (CNTs)@TiO2/CoO-Nanoröhrenkomposite werden diskutiert.
Kapitel 6: Detaillierte Resultate und die Diskussion der Synthese, Charakterisierung und der elektrochemischen Performance von TiO2-SnO2-Nanoröhren werden gezeigt.
Kapitel 7: Eine Zusammenfassung der Resultate, die in dieser Arbeit gezeigt wurden und Schlussfolgerungen, sowie interessante Ansatzpunkte für zukünftige Arbeiten werden präsentiert.
|
Page generated in 0.0754 seconds