Spelling suggestions: "subject:"ciming error"" "subject:"chiming error""
1 |
Revamping Timing Error Resilience to Tackle Choke Points at NTCBal, Aatreyi 01 May 2019 (has links)
The growing market of portable devices and smart wearables has contributed to innovation and development of systems with longer battery-life. While Near Threshold Computing (NTC) systems address the need for longer battery-life, they have certain limitations. NTC systems are prone to be significantly affected by variations in the fabrication process, commonly called process variation (PV). This dissertation explores an intriguing effect of PV, called choke points. Choke points are especially important due to their multifarious influence on the functional correctness of an NTC system. This work shows why novel research is required in this direction and proposes two techniques to resolve the problems created by choke points, while maintaining the reduced power needs.
|
2 |
New Quasi-Synchronous Sequences for CDMA Slotted ALOHA SystemsSaito, Masato, Yamazato, Takaya, Katayama, Masaaki, Ogawa, Akira 11 1900 (has links)
No description available.
|
3 |
On Real Time Digital Phase Locked Loop Implementation with Application to Timing RecoveryKippenberger, Roger Miles January 2006 (has links)
In digital communication systems symbol timing recovery is of fundamental importance. The accuracy in estimation of symbol timing has a direct effect on received data error rates. The primary objective of this thesis is to implement a practical Digital Phase Locked Loop capable of accurate synchronisation of symbols suffering channel corruption typical of modern mobile communications. This thesis describes an all-software implementation of a Digital Phase Locked in a real-time system. A timing error detection (TED) algorithms optimally implemented into a Digital Signal Processor. A real-time transmitter and receiver system is implemented in order to measure performance when the received signal is corrupted by both Additive White Gaussian Noise and Flat Fading. The Timing Error Detection algorithm implemented is a discrete time maximum likelihood one known as FFML1, developed at Canterbury University. FFML1 along with other components of the Digital Phase Locked loop are implemented entirely in software, using Motorola 56321 assembly language.
|
4 |
Throughput Improvement of CDMA Slotted ALOHA SystemsSaito, Masato, Okada, Hiraku, Sato, Takeshi, Yamazato, Takaya, Katayama, Masaaki, Ogawa, Akira 01 1900 (has links)
No description available.
|
5 |
Design of a parallel A/D converter system on PCB : For high-speed sampling and timing error correction / Kretskortskonstruktion av system med parallella A/D omvandlare : För höghastighetssampling och korrigering av tidsfel.Alfredsson, Jon January 2002 (has links)
The goals for most of today’s receiver system are sampling at high-speed, with high resolution and with as few errors as possible. This master thesis describes the design of a high-speed sampling system with"state-of-the-art"components available on the market. The system is designed with a parallel Analog-to-digital converter (ADC) architecture, also called time interleaving. It aims to increase the sampling speed of the system. The system described in this report uses four 12-bits ADCs in parallel. Each ADC can sample at 125 MHz and the total sampling speed will then theoretically become 500 Ms/s. The system has been implemented and manufactured on a printed circuit board (PCB). Up to four boards can be connected in parallel to get 2 Gs/s theoretically. In an approach to increase the systems performance even further, a timing error estimation algorithm will be used on the sampled data. This algorithm estimates the timing errors that occur when sampling with non-uniform time interval between samples. After the estimations, the sampling clocks can be adjusted to correct the errors. This thesis is concerning some ADC theory, system design and PCB implementation. It also describes how to test and measure the system’s performance. No measurement results are presented in this thesis because measurements will be done after this project. The last part of the thesis discusses future improvementsto achieve even higher performance.
|
6 |
Design of a parallel A/D converter system on PCB : For high-speed sampling and timing error correction / Kretskortskonstruktion av system med parallella A/D omvandlare : För höghastighetssampling och korrigering av tidsfel.Alfredsson, Jon January 2002 (has links)
<p>The goals for most of today’s receiver system are sampling at high-speed, with high resolution and with as few errors as possible. This master thesis describes the design of a high-speed sampling system with"state-of-the-art"components available on the market. The system is designed with a parallel Analog-to-digital converter (ADC) architecture, also called time interleaving. It aims to increase the sampling speed of the system. The system described in this report uses four 12-bits ADCs in parallel. Each ADC can sample at 125 MHz and the total sampling speed will then theoretically become 500 Ms/s. The system has been implemented and manufactured on a printed circuit board (PCB). Up to four boards can be connected in parallel to get 2 Gs/s theoretically. </p><p>In an approach to increase the systems performance even further, a timing error estimation algorithm will be used on the sampled data. This algorithm estimates the timing errors that occur when sampling with non-uniform time interval between samples. After the estimations, the sampling clocks can be adjusted to correct the errors. </p><p>This thesis is concerning some ADC theory, system design and PCB implementation. It also describes how to test and measure the system’s performance. No measurement results are presented in this thesis because measurements will be done after this project. The last part of the thesis discusses future improvementsto achieve even higher performance.</p>
|
7 |
Power efficient and power attacks resistant system design and analysis using aggressive scaling with timing speculationRathnala, Prasanthi January 2017 (has links)
Growing usage of smart and portable electronic devices demands embedded system designers to provide solutions with better performance and reduced power consumption. Due to the new development of IoT and embedded systems usage, not only power and performance of these devices but also security of them is becoming an important design constraint. In this work, a novel aggressive scaling based on timing speculation is proposed to overcome the drawbacks of traditional DVFS and provide security from power analysis attacks at the same time. Dynamic voltage and frequency scaling (DVFS) is proven to be the most suitable technique for power efficiency in processor designs. Due to its promising benefits, the technique is still getting researchers attention to trade off power and performance of modern processor designs. The issues of traditional DVFS are: 1) Due to its pre-calculated operating points, the system is not able to suit to modern process variations. 2) Since Process Voltage and Temperature (PVT) variations are not considered, large timing margins are added to guarantee a safe operation in the presence of variations. The research work presented here addresses these issues by employing aggressive scaling mechanisms to achieve more power savings with increased performance. This approach uses in-situ timing error monitoring and recovering mechanisms to reduce extra timing margins and to account for process variations. A novel timing error detection and correction mechanism, to achieve more power savings or high performance, is presented. This novel technique has also been shown to improve security of processors against differential power analysis attacks technique. Differential power analysis attacks can extract secret information from embedded systems without knowing much details about the internal architecture of the device. Simulated and experimental data show that the novel technique can provide a performance improvement of 24% or power savings of 44% while occupying less area and power overhead. Overall, the proposed aggressive scaling technique provides an improvement in power consumption and performance while increasing the security of processors from power analysis attacks.
|
8 |
Reliable Communications under Limited Knowledge of the ChannelYazdani, Raman Unknown Date
No description available.
|
Page generated in 0.0868 seconds