Spelling suggestions: "subject:"homographie"" "subject:"d'homographie""
591 |
Infrared Micro-tomography for the characterization of extra-terrestrial materials / Micro-tomographie infrarouge pour la caractérisation de matériaux extraterrestresDionnet, Zelia 26 September 2018 (has links)
L’étude en laboratoire d’échantillons extraterrestres, issus d’objets primitifs, est fondamentale aussi bien pour améliorer notre connaissance de la formation et de l’évolution de notre Système Solaire que pour interpréter les observations faites par les missions spatiales.Des analyses précises en laboratoire de ces échantillons sont essentielles pour comprendre les conditions physico-chimiques qui ont mené à la formation des petits corps et des planètes. Le but de cette thèse interdisciplinaire a été d’exploiter l’imagerie infrarouge et de développer un dispositif de microtomographie en spectroscopie infrarouge à transformée de Fourrier.Nous étudierons des fragments de météorites et de poussières astéroïdales. De plus, la tomographie en rayons X a été utilisée pour contraindre précisément la forme de l’échantillon. Avec ces analyses, nous avons caractérisé la composition de matériaux extraterrestres à très petite échelle sans les détruire. Nous avons étudié l’effet des processus post-accrétionels, comme l’altération spatiale, à l’intérieur du corps parent, ou l’altération spatiale, à la surface de l’astéroïde, à la fois sur les parties minérale et organique. En particulier,nous avons pu grâce à cette expérience,étudier la corrélation spatiale de la matière minérale et organique, ce qui est fondamental pour comprendre l’origine et l‘évolution de la matière organique. / Laboratory based studies of extraterrestrialmaterials derived from primitive objectsis fundamental to improve our knowledgeabout the formation and the evolutionof the Solar System as well as for interpretingobservations collected by spacecraftand landers. Precise laboratory analysesof samples obtained from sample returnmissions are essential to understand theconditions and the physico-chemical processes,which lead to the formation of thesmall bodies and planets. The aim of thisinterdisciplinary thesis was to exploit theinfrared imaging and to implement threedimensionalFourier transform infrared microtomographyto study different extraterrestrialmaterials (meteorites and asteroidaldust). Moreover, X-ray tomographywas used to determine the precise shape ofthe samples. With these analytical methods,we have characterized the compositionof extraterrestrial materials withoutdestroying them at very high resolution.We have studied the post-accretional effects,such as aqueous alteration inside theparent’s bodies or space weathering at thesurface of asteroids, on both the mineraland the organic components. In particular,we studied the correlations between the organicmaterials and the minerals observedin the sample, which is fundamental to understandthe origin and the evolution of theorganic matter.
|
592 |
Développement de techniques d’imageries pour le diagnostic et le pronostic des tumeurs du rein / Imaging Techniques Development for Renal Tumor Diagnostic and PrognosticIngels, Alexandre 11 December 2018 (has links)
Le but du projet est le développement de nouvelles techniques d’imagerie pour le diagnostic et le traitement du cancer du rein. Nous avons évalué différentes techniques comprenant la tomographie en cohérence optique et l’imagerie moléculaire. Nous avons évalué différents marqueurs potentiels pour l’imagerie moléculaire en étudiant l’expression de différents marqueurs dans le cancer du rein et leur association avec le pronostic de la maladie. Enfin, nous avons évalué deux techniques d’imagerie moléculaire sur des modèles précliniques : l’Imagerie par Résonnance Magnétique moléculaire et l’échographie moléculaire. / The aim of this project is the development of new imaging techniques for renal cancer diagnostic and treatment.We have assessed several techniques including optical coherence tomography and molecular imaging. We assessed a series of potential markers for molecular imaging by measuring some pre-defined markers expressions by immunohistochemistry in renal cell carcinoma and their association with disease’s prognostic. Finally, we assessed two molecular imaging techniques in pre-clinical models: Molecular Magnetic Resonance Imaging and Molecular Ultrasound Imaging.
|
593 |
Développement de systèmes de microscopie par cohérence optique plein champ étendus spatialement et spectralement / Development of full-field optical coherence microscopy systems with extended spatial and spectral propertiesFederici, Antoine 20 October 2015 (has links)
La tomographie par cohérence optique plein champ (OCT plein champ) est une technique de microscopie interférométrique basée sur l’utilisation d’une source de lumière faiblement cohérente, telle qu’une lampe halogène. Elle permet de réaliser, de façon non invasive, des images tomographiques à plusieurs centaines de micromètres de profondeur dans les tissus biologiques et avec une résolution spatiale isotrope de l’ordre de 1 µm. Ces travaux de thèse concernent le développement de plusieurs systèmes d'OCT plein champ, dans le but de proposer de nouvelles performances et de nouveaux contrastes destinés à l’imagerie en trois dimensions de tissus biologiques. Nous avons dans un premier temps exploité la large bande spectrale d’émission d’une lampe halogène, afin d’apporter une information spectroscopique et d’être capable de distinguer et de caractériser des zones d’un échantillon qui seraient sinon indiscernables. Puis nous avons optimisé la résolution spatiale d’un montage d’OCT plein champ pour atteindre une valeur record de 0,5 µm (dans l’eau) dans les trois directions de l’espace, notamment grâce à l’utilisation d’une bande spectrale adaptée à l’imagerie de tissus, tels que la peau. Un montage dont le champ de vision est élargi à 18 mm x 18 mm a ensuite été développé et appliqué à l’imagerie du signal d’amplitude ainsi qu’à la mesure quantitative du signal de phase résolu en profondeur. Enfin un système utilisant un laser à balayage spectral comme source de lumière combiné à un traitement numérique de correction de la focalisation a été mis en œuvre. Nous avons ainsi démontré la possibilité de réaliser des images en trois dimensions avec une résolution latérale relativement élevée, sans utiliser le moindre déplacement mécanique durant l’acquisition. / Full-field optical coherence tomography (FF-OCT) is an optical technology based on low-coherence interference microscopy for tomographic imaging of semitransparent samples. Non-invasive three-dimensional imaging can be performed with an isotropic spatial resolution of the order of 1 µm. During the PhD thesis, several FF-OCT systems have been reported achieving extended performances or contrast enhanced images relevant for biological tissues imaging. Firstly, a three-band, 1.9-μm axial resolution FF-OCT system has been implemented to perform spectroscopic contrast enhanced imaging of biological tissues over a 530-1700 nm wavelength range. Then, a study of the FF-OCT axial response has been carried out for maximizing the axial resolution of the system. An isotropic spatial resolution of 0.5 µm (in water) has been obtained by combining 1.2-NA microscope objectives with an optimized broad spectral band adapted to biological tissues imaging, such as skin samples. A set-up with an extended field of view of 18 mm x 18 mm has been also designed and applied to amplitude signal detection as well as depth-resolved quantitative phase signal measurement. At last, we developed a technique based on the combination of full-field swept-source optical coherence tomography (FF-SSOCT) with low spatial coherence illumination and a special numerical processing that allows for numerically focused mechanical motion-free three-dimensional imaging.
|
594 |
Fast and Accurate 3D X ray Image Reconstruction for Non Destructive Test Industrial Applications / Reconstruction d'image en tomographie 3D pour des applications en contrôle Non Destructif (CND)Wang, Li 01 December 2017 (has links)
La tomographie en 2D et 3D sont largement utilisée dans l’imagerie médicale ainsi que dans le Contrôle Non Destructif (CND) pour l’industrie. Dans toutes les deux applications, il est nécessaire de réduire le nombre de projections. Dans certains cas, la reconstruction doit être faite avec un nombre d’angle de projections limité. Les données mesurées sont toujours avec des erreurs (erreurs de mesure et de modélisation). Nous sommes donc presque toujours dans la situation de problèmes inversés mal posés. Le rôle des méthodes probabilistes et de la modélisation a priori devient crucial. Pour la modélisation a priori, en particulier dans les applications NDT, l’objet à l’examen est composé de plusieurs matériaux homogènes, avec plusieurs blocs continus séparés par des discontinuités et des contours. Ce type d’objet est dit continu par morceaux. L’objet de cette thèse est sur la reconstruction des objets continu ou constante par morceaux, ou plus généralement homogène par morceaux. En résumé, deux méthodes principales sont proposées dans le contexte de l’inférence bayésienne. La première méthode consiste à reconstruire l’objet en imposant que sa transformée de Haar soit parcimonieuse. Un modèle bayésien hiérarchique est proposé. Dans cette méthode, les variables et les paramètres sont estimés et les hyper-paramètres sont initialisés selon la définition des modèles antérieurs. La deuxième méthode reconstruit les objets en estimant simultanément les contours. L’objet continu par morceaux est modélisé par un modèle markovien non-homogène, qui dépend du gradient de l’objet, et le gradient dépend aussi de l’estimation de l’objet. Cette méthode est également semi-supervisé, avec les paramètres estimés automatiquement. Ces méthodes sont adaptées aux reconstructions de grande taille de données 3D, dans lesquelles le processeur GPU est utilisé pour accélérer les calculs. Les méthodes sont validées avec des données simulées et des données réelles, et sont comparées avec plusieurs méthodes classiques. / 2D and 3D X-ray Computed Tomography (CT) is widely used in medical imaging as well as in Non Destructive Testing (NDT) for industrial applications. In both domains, there is a need to reduce the number of projections. In some cases we may also be limited in angles. The measured data are always with errors (measurement and modelling errors). We are consequently almost always in the situation of ill-posed inverse problems. The role of the probabilistic methods and the prior modelling become crucial. For prior modelling, in particular in NDT applications, the object under examination is composed with several homogeneous materials, with several continuous blocs separated by some discontinuities and contours. This type of object is called the piecewise-continuous object. The focus of this thesis on the reconstruction of the picewise continuous or constant, or more generally piecewise homogeneous objects. In summary two main methods are proposed in the context of the Bayesian inference. The first method consists in reconstructing the object while enforcing the sparsity of the discrete Haar transformation coefficients of the object. A hierarchical Bayesian model is proposed. In this method, the unknown variables and parameters are estimated and the hyper-parameters are initialized according to the definition of prior models. The second method reconstruct objects while the contours are estimated simultaneously. The piecewise continuous object is modeled by a non-homogeneous Markovian model, which depends on the gradient of the object, while the gradient also depends on the estimation of the object. In this methods, the semi-supervised system model is also achieved, with the parameters estimated automatically. Both methods are adapted to the 3D big data size reconstructions, in which the GPU processor is used to accelerate the computation. The methods are validated with both simulated and real data, and are compared with several conventional state-of-the-art methods.
|
595 |
Compréhension des mécanismes de transferts d'eau dans le bois / Study of water transfers mechanisms in woodZhou, Meng 09 November 2018 (has links)
Le bois possède des propriétés physiques remarquables mais qui dépendent étroitement du taux d’humidité dans le matériau. Du fait de sa structure multi-échelle et des différents états de l’eau dans le bois, les mécanismes de transferts d’eau dans le bois sont encore mal appréhendés. Nous étudions les phénomènes physiques essentiels à l’origine des propriétés d’imbibition et de séchage du bois de feuillu. On montre d’abord par des expériences macroscopiques classiques, que la dynamique d’imbibition d’eau dans le bois est significativement ralentie (plusieurs ordres de grandeur) par rapport aux prédictions du modèle de Washburn utilisant la perméabilité et la mouillabilité du bois mesurées indépendamment. Les distributions d’eau liée et d’eau libre obtenues par IRM au cours de l’imbibition montrent que l’eau liée adsorbée dans les parois cellulaires progresse en fait (par diffusion) plus vite que l’eau libre dans les pores. Il faut attendre que les parois soient saturées en eau liée pour que l’eau libre avance à son tour dans les lumens du bois. L’analyse des images tomographiques aux rayons X suggèrent que le ralentissement de la pénétration d’eau liquide dans le bois est dû à la modification des conditions de mouillage par la teneur en eau liée dans les parois. Les expériences d’imbibition avec un « bois artificiel » à base d’hydrogel confirment cette hypothèse. Finalement, l’étude du séchage du bois par IRM montre également différentes dynamiques de séchage pour l’eau liée et l’eau libre. Le séchage du bois est contrôlé par l’évaporation d’eau libre à partir d’un front sec à des teneurs en eau élevées. L’évaporation d’eau liée ne devient significative qu’à partir de la disparition totale de l’eau libre / Wood has excellent physical properties which however depend closely on the moisture content in the material. Because of its multi-scale structure and different states of water existing in the material, the mechanisms of water transfers in wood are still poorly understood. The essential phenomena at the origin of imbibition/drying properties of hardwood are studied in this thesis. We first show with classical macroscopic measurements that, water imbibition in wood is significantly damped compared to Washburn’s law which predicts the dynamic of capillary imbibition in the porous medium. The bound water and free water distributions obtained by MRI during imbibition show that, the bound water adsorbed in cell walls diffuses more quickly than the free water located in the pores. Free water cannot penetrate in the pores unless the cell walls have been saturated with bound water. The tomographic image analysis reveals that the damped dynamic of liquid water penetration in wood is due to the modification of wetting conditions by bound water content in the cell walls. Imbibition Tests with a hydrogel-based “artificial wood” confirm our hypothesis. Finally, the observations of wood drying by MRI show also different drying dynamics for bound and free water. At high moisture content, wood drying is controlled by the evaporation of free water from a dry front. Bound water starts to evaporate significantly only after the total disappearance of free water
|
596 |
Étude du comportement post-rupture de versants instables par l’observation et l’instrumentation / Study of unstable slopes’ post-rupture behavior by means of observation and instrumentationPalis, Édouard 20 March 2017 (has links)
Les processus gravitaires dans l’évolution de la morphologie des reliefs se produisent à de nombreuses échelles de temps et d’espace. Leur compréhension, fondamentale pour envisager la gestion des risques associés à ces phénomènes destructeurs, est subtile et complexe. En effet, les caractéristiques intrinsèques aux versants étudiés sont spécifiques et les facteurs externes agissant sur la dynamique de la déstabilisation présentent des temporalités et des intensités très variées. Afin de comprendre comment ces forçages influencent le comportement des instabilités de versant, une approche systémique a été adoptée dans ce travail pour mettre en perspective l’ensemble des processus en jeu dans l’évolution temporelle de leurs comportements. A travers deux cas d’étude situés dans les Alpes Maritimes (La Clapière à Saint-Etienne-de-Tinée et le Prat de Julian à Vence), véritables observatoires naturels disposant de plusieurs années de suivi multi-paramètres, la faculté de l’observation instrumentale à déterminer des paramètres comportementaux clés contrôlant l’évolution dynamique des versants instables a été explicitée. Des analyses multivariées intégrant l’état de surface (déplacements, déformations, perturbations) et interne (niveau piézométrique, résistivité électrique de la subsurface) ont permis de quantifier les liens entre l’état comportemental du versant étudié et les contributions météorologiques. Ce travail met finalement en avant l’importance des études observationnelles multi-paramètres dans l’élaboration des modèles descriptifs et prédictifs, ainsi que les systèmes d’alerte associés à ces risques majeurs. / Gravity processes occur at many scales of time and space in the evolution of landforms’ morphology. Their understanding is subtle and complex and it is fundamental to consider the management of the risks associated with these destructive phenomena. Indeed, the intrinsic characteristics of the studied slopes are specific and the external factors acting on the dynamics of the destabilization present a wide range of temporalities and intensities. In order to understand how these forcings influence the behavior of slope instabilities, a systemic approach has been adopted in this work to put into perspective all the processes involved in the temporal evolution of their behaviors. Through two study cases located in the Alpes Maritimes (La Clapière at Saint-Etienne-de-Tinée and the Prat de Julian at Vence, France), real natural observatories with several years of multi-parameter monitoring, we were able to clarify the ability of instrumental observation to determine key behavioral parameters controlling the dynamic evolution of unstable slopes. Multivariate analyzes integrating the surface (displacements, deformations, disturbances) and internal state (groundwater level, electrical resistivity of the subsurface) allowed to quantify the links between the behavioral state of the studied slope and the meteorological contributions. This work finally highlights the importance of multi-parameter observational studies in the development of descriptive and predictive models, as well as the alert systems associated with these major risks.
|
597 |
Quantitative off-axis Electron Holography and (multi-)ferroic interfacesLubk, Axel 07 May 2010 (has links)
A particularly interesting class of modern materials is ferroic ceramics. Their characteristic order parameter is a result of quantum chemistry taking place on a sub-Å length scale and long-range couplings, e.g. mediated by electrostatic or stress fields. Furthermore, the particular subclass of multiferroics possesses more than one order parameter and exhibits an intriguing coupling between them, which is interesting both from the fundamental physics point of view as well as from a technological vantage point. While on a more fundamental level it is desirable to elucidate the physical details of the coupling mechanism, this knowledge could subsequently lead to new and technologically interesting multiferroic materials, which overcome their current drawback that only one of the multiple order parameters is appreciably large while the others stay small. Due to the short and long range nature of the driving forces, one challenge for thoroughly understanding ferroic ceramics is the characterization of material properties within a large interval of length scales from several tens of µm to sub-Å. To that end, it is useful to exploit that all order parameters can be described as macroscopic fields, e.g. electric polarization or strain, which, in turn, can be either directly or indirectly probed with an electron beam such as used in Transmission Electron Microscopy (TEM). Consequently, TEM is excellently suited for investigating ferroic materials, i.e., state-of-the-art instruments facilitate aberration corrected imaging within a large magnification interval covering the length scales of interest, in particular the atomic regime. A general drawback of conventional TEM techniques is the loss of phase information originally contained in the scattered electron wave introduced by recording only the electron density. Electron Holography is an advanced TEM technique that facilitates the complete evaluation of the complex electron wave, which, in combination with the manifold possibilities of TEM, provides rather straightforward access to static electromagnetic fields within the ceramic. Nevertheless, quantification of order parameters such as the electric polarization or minute details in electromagnetic fields still require to correlate the experimentally gained observations to physical models, which combine the details of the microscopic imaging process, the electron-specimen scattering, and solid state physics of the specimen. The goal of this work is to investigate and advance the limits of Electron Holography as a truly quantitative TEM technique and apply the findings in, e.g., the investigation of ferroic ceramics. In the light of the previously mentioned difficulties, the problem has to be tackled from different directions:
Firstly, the whole holographic imaging process is reviewed and extended, if necessary, in order to provide quantitative measures for systematic and statistical errors inherent to reconstructed waves. In the course of that process, two previously not recognized holography-specific aberrations are identified, firstly, a resolution limiting spatial envelope and secondly, a spatial distortion to the reconstructed wave. Furthermore, several correction strategies have been developed, in order to correct the aforementioned two and other well-known disturbances, e.g. Fresnel fringes from the biprism filament. The previous holographic noise model has been extended to incorporate the important contribution from the detector and consequently to provide realistic statistic error bars of the holographically reconstructed amplitude and phase.
Secondly, an investigation of the electron-specimen scattering process itself is conducted, leading to a density matrix description of the holographic measurement. The general laws of quantum electrodynamics provide the framework of that description. Relativistic phenomena such as retardation of electromagnetic fields exchanged between beam electron and specimen and spin-orbit coupling of the beam electron are quantified, where the latter is found to be negligible within TEM. The decoherence of the electron wave by statistical coupling to the thermally moving crystal lattice of ceramics is treated by a newly developed algorithm facilitating in particular the accurate quantification of elastic scattering on heavy elements. Inelastic excitations in the ceramic, e.g. bulk plasmons or core electrons, are treated in combination with elastic scattering to identify their role in the holographic reconstruction process and to develop methods for an accurate calculation. A new scattering algorithm combining elastic and inelastic scattering is developed and applied to predict peculiar scattering contrasts of dipole transitions and to discuss the long-standing problem of contrast mismatch between scattering simulations and conventional imaging. To provide a user-friendly and continuing use of the findings, a software package SEMI (Simulation of Electron Microscopy Imaging) has been written, which facilitates the simulation of elastic and inelastic scattering processes and the subsequent imaging within different approximations, incorporating the newly developed algorithms.
Thirdly, Density Function Theory (DFT) solid state calculations have been employed to identify and quantify structural modifications and characteristic electromagnetic fields, such as occurring at domain boundaries, within typical ferroic ceramics like BaTiO3 or BiFeO3, and concomitantly provide models correlating observables of the (holographic) experiment to characteristics of the materials, e.g. the order parameters. This is particularly important when static electromagnetic fields provide no direct information about the order parameter, e.g. the electric polarization, i.e., it is possible to correlate the measurable atomic positions to the electric polarization within linear response theory. A software package ATA (AuTomated Atomic contrast fitting) has been developed facilitating an automated fitting of atomic positions and a subsequent determination of local polarization.
In a fourth step, electron holographic experiments analyzed with the help of the revised imaging process in combination with the knowledge gained from scattering theory are used as an input to the models established from solid state physics to yield quantitative information about bulk ferroelectric materials such as BaTiO3 and PbTiO3 and more complicated configurations such as domain walls in BiFeO3 and KnbO3. It is found that particular atomic shifts characteristic for ferroelectrics provide the most reliable quantitative information about the polarization down to nm length scales, whereas minute wave modification due to characteristic electron distributions within the ceramic are currently insufficiently quantitatively interpretable within Electron Holography. The linear response program, correlating atomic positions to ferroelectric polarization with the help of ab-initio calculated Born effective charges, has been successfully applied to determine finite size effects, screening layer widths and polarization charges in non-ferroelectric/ferroelectric layered systems.
Finally, a special section considers the evaluation of 3D electromagnetic fields by Electron Holographic Tomography, which provides the means to characterize even more complex 3D domain wall configurations. As the capabilities of the technique are still limited by holographic reconstruction errors and particular tomographic issues such as incomplete projection data, the main focus of that section is put on the characterization and improvement of the tomographic reconstruction process. A Singular Value based reconstruction method is developed, which facilitates a quantification and control of the tomographic reconstruction error. Furthermore, vector field reconstruction is extended in order to treat magnetic vector fields leaking out from the reconstruction volume. / Ferroische Keramiken bilden eine besonders interessante Klasse moderner funktionaler Werkstoffe. Ihr charakteristischer Ordnungsparameter ist das Ergebnis quantenchemischer Prozesse innerhalb einer sub- Å Längenskala und spezifischer langreichweitiger Kopplungen, welche beispielsweise durch elektromagnetische oder Spannungsfelder vermittelt werden. Des Weiteren besitzt die besondere Unterklasse der Multiferroika mehr als einen Ordnungsparameter und zeigt eine faszinierende Kopplung zwischen ihnen, was sowohl vom Standpunkt physikalischer Grundlagenforschung als auch aus technologischer Sicht von Interesse ist. Während es vom fundamentalen Standpunkt erstrebenswert ist, die physikalischen Details des Kopplungsmechanismus aufzuklären, könnte in der Folge dieses Wissen zu neuen und technologisch interessanten multiferroischen Materialien führen, welche den derzeit bestehenden Nachteil, dass nur ein Ordnungsparameter genügend groß ist, während die jeweils anderen klein bleiben, hinter sich lassen. Aufgrund der kurz- und langreichweitigen Natur der Antriebskräfte besteht eine Herausforderung für das umfassende Verständnis ferroischer Keramiken aus der Charakterisierung von Materialeigenschaften innerhalb eines breiten Intervalls von Längenskalen, welches von einigen 10 µm bis unterhalb eines Å reicht. Um dieses Ziel zu erreichen ist es zweckmäßig auszunutzen, dass alle Ordnungsparameter als makroskopische, beispielsweise elektrostatische oder Verzerrungs-, Felder beschrieben werden können, welche wiederum direkt oder indirekt mit einem Elektronenstrahl, wie er im Transmissionselektronenmikrokop (TEM) zur Anwendung kommt, gemessen werden können. Folglich ist die Transmissionselektronenmikroskopie hervorragend geeignet um ferroische Materialien zu untersuchen, das heißt, modernste Geräte ermöglichen aberrationskorrigierte Aufnahmen innerhalb eines großen Vergrößerungsbereiches, welche die interessanten Längenskalen und insbesondere den atomaren Bereich abdecken. Ein allgemeiner Nachteil der konventionellen TEM Techniken ist der Verlust der Phaseninformationen, welche ursprünglich in der Elektronenwelle vorhanden sind und durch die Aufzeichnung der Elektronenintensität zerstört werden. Elektronenholographie ist eine weiterentwickelte TEM Technik, welche die vollständige Auswertung der komplexen Elektronenwelle ermöglicht, was wiederum in Verbindung mit den vielfältigen Möglichkeiten der TEM einen vergleichsweise direkten Zugang zu elektromagnetischen Feldern in der Keramik ermöglicht. Nichtsdestotrotz erfordert die Quantifizierung von Ordnungsparametern, wie der elektrische Polarisierung, oder von kleinsten Details elektromagnetischer Felder die Korrelation experimenteller Daten mit physikalischen Modellen, welche die Details des mikroskopischen Bildgebungsprozesses mit der Elektronen-Objekt Streuung und der Festkörperphysik des Objektes kombinieren. Das Ziel dieser Arbeit besteht aus der Untersuchung und Erweiterung der Möglichkeiten von Elektronenholographie als quantitative TEM Messmethode und der Anwendung dieser Ergebnisse bei der Untersuchung ferroischer Keramiken. Im Lichte der eben erwähnten Schwierigkeiten muss das Problem von verschiedenen Richtungen bearbeitet werden:
Erstens wird der komplette holographische Bildgebungsprozess mit dem Ziel einer quantitativen Bewertung systematischer und statistischer Fehler der rekonstruierten Welle analysiert und gegebenenfalls erweitert. Im diesem Zuge wurden zwei bisher nicht erkannte holographiespezifische Fehler identifiziert, erstens eine auflösungsbegrenzende räumliche Enveloppe und zweitens eine räumliche Verzerrung der rekonstruierten Welle. Außerdem wurden verschiedene Korrekturmöglichkeiten entwickelt, um die zwei eben genannten und andere wohlbekannte Störungen, wie zum Beispiel die Fresnelstreifen des Biprismafadens, zu korrigieren. Das bisherige holographische Rauschmodel wurde erweitert um den beträchtlichen Einfluss des Detektors zu berücksichtigen und damit realistische Fehlerbalken für die holographisch rekonstruierte Amplitude und Phase zu erhalten.
Zum Zweiten wird der Streuprozess selber untersucht, was zu einer Dichtematrixbeschreibung der holographischen Messung führt. Den Rahmen dieser Untersuchungen liefern die Gesetze der Quantenelektrodynamik. Relativistische Phänomene wie die Retardierung elektromagnetischer Felder, welche zwischen Strahlelektron und Objekt ausgetauscht werden, oder Spin-Bahn Kopplung des Strahlelektrons werden quantifiziert, wobei letzteres als unwichtig für TEM eingestuft werden konnte. Die Dekohärenz der Elektronenwelle durch die statistische Kopplung an das thermisch bewegte Kristallgitter der Keramik wird mit einem neu entwickelten Algorithmus beschrieben, welcher insbesondere die genaue Quantifizierung der elastischen Streuung an schweren Elementen erlaubt. Ein weiterer neuer Streualgorithmus, welcher elastische und inelastische Streuung kombiniert, wird entwickelt und angewendet, um spezifische Streukontraste von Dipolübergängen vorauszusagen und das altbekannte Problem der Kontrastdiskrepanz zwischen simulierten und experimentellen Bildkontrasten zu diskutieren. Um eine anwenderfreundliche und fortdauernde Anwendung der Erkenntnisse zu ermöglichen, wurde das Softwarepaket SEMI geschrieben, welches die Simulation elastischer und inelastischer Streuprozesse und des nachfolgenden Bildgebungsprozesses innerhalb verschiedener Näherungen ermöglicht und die neu entwickelten Algorithmen beinhaltet.
Zum Dritten kommen dichtefunktionalbasierte Festkörperrechenmethoden zur Anwendung um charakteristische elektromagnetische Felder, wie sie beispielsweise an Domänengrenzen entstehen, innerhalb typischer ferroischer Keramiken wie BaTiO3 oder BiFeO3 zu identifizieren und zu quantifizieren und gleichzeitig Modelle zu entwickeln, welche Observablen des (holographischen) Experiments mit Charakteristika des Materials, beispielsweise den Ordnungsparamtern, korrelieren. Dies ist besonders wichtig, wenn statische elektromagnetische Felder keinen direkten Zugang zu den Ordnungsparametern, wie zum Beispiel die ferroelektrische Polarisation, liefern; beispielsweise besteht innerhalb linearer Antworttheorie die Möglichkeit, atomare Positionen mit der elektrischen Polarisation zu korrelieren. Ein Softwarepaket wurde entwickelt, welches die automatische Bestimmung der Atompositionen und der daraus resultierenden lokalen Polarisation ermöglicht.
In einem vierten Schritt wurden mit Hilfe des überarbeiteten holographischen Bildgebungsprozesses in Kombination mit den aus der Streutheorie gewonnenen Erkenntnissen holographische Experimente analysiert und als Input für die mit Hilfe der Festkörpertheorie entwickelten Modelle genutzt, um quantitative Informationen über raumferroische Materialien wie BaTiO3 und PbTiO3 und kompliziertere Anordnungen wie Domänengrenzen in BiFeO3 und KnbO3 zu gewinnen. Es konnte festgestellt werden, dass spezifische atomare Verschiebungen, welche charakteristisch für Ferroelektrika sind, die zuverlässigste quantitative Information über die Polarisation bis in den Längenbereich einiger nm liefern, wogegen kleinste Wellenmodifikationen aufgrund charakteristischer Elektronenverteilungen innerhalb der Keramik mit Hilfe von Elektronenholographie nur unzureichend interpretierbar sind. Das lineare Antwortprogramm, welches die Atompositionen über Bornsche effektive Ladungen mit ferroelektrischer Polarisation korreliert, wurde erfolgreich angewendet, um Größeneffekte und Ausdehnungen von Abschirmschichten und Polarisationladungen in nichtferroelektrisch/ferroelektrischen Schichtsystemen zu bestimmen.
Abschließend widmet sich ein spezieller Abschnitt der Auswertung 3D elektromagnetischer Felder mit Hilfe der elektronenholographischen Tomographie, was die Voraussetzung für die Charakterisierung von noch komplizierteren 3D Domänenwandanordnungen liefert. Da die Möglichkeiten dieser Technik durch den holographischen Rekonstruktionsfehler und spezifisch tomographische Probleme noch beschränkt sind, liegt der Schwerpunkt dieses Abschnitts in der Charakterisierung und Verbesserung des tomographischen Rekonstruktionsprozesses. Es wird eine singulärwertbasierte Rekonstruktionsmethode entwickelt, welche die Quantifizierung und Kontrolle des Rekonstruktionsfehlers ermöglicht. Außerdem wird die Vektorfeldrekonstruktion erweitert, um magnetische Vektorfelder, welche über das Rekonstruktionsvolumen hinausragen, zu behandeln.
|
598 |
High-Resolution 3D PtychographyStephan, Sandra 15 April 2013 (has links)
Coherent imaging is a promising method in the field of x-ray microscopy allowing for the nondestructive determination of the interior structure of radiation-hard samples with a spatial resolution that is only limited by the fluence on the sample and the scattering strength of the sample. Ultimately, the achievable spatial resolution is limited by the wavelength of the incoming x-ray radiation.
Combining coherent imaging with scanning microscopy to a method called ptychography enables one to also probe extended objects. In this method, a sample is scanned through a defined coherent x-ray beam and at each scan point a diffraction pattern is recorded with a diffraction camera located in the far field of the sample. Neighboring illuminated areas must have a certain overlap to guarantee the collection of sufficient information about the object for a subsequent successful and unique computational reconstruction of the object.
Modern ptychographic reconstruction algorithms are even able to reconstruct the complex-valued transmission function of the sample and the complex illumination wave field at the same time. Once the 2D transmission function of a sample is known, it is an obvious step forward to combine ptychography with tomographic techniques yielding the 3D internal structure of an object with unprecedented spatial resolution. Here, projections at varying angular positions of the sample are generated via ptychographic scans and are subsequently used for the tomographic reconstruction.
In this thesis the development of 3D ptychography is described. It includes the description of the required experimental environment, the numerical implementation of ptychographic phase retrieval and tomographic reconstruction routines, and a detailed analysis of the performance of 3D ptychography using an example of an experiment carried out at beamline P06 of PETRA III at DESY in Hamburg. In that experiment the investigated object was a Mo/UO2 thin film, which is a simplified model for spent nuclear fuel from nuclear power plant reactors. Such models find application in systematic scientific investigations related to the safe disposal of nuclear waste. We determined the three-dimensional interior structure of this sample with an unprecedented spatial resolution of at least 18 nm.
The measurement of the fluorescence signal at each scan point of the ptychograms delivers the two- and three-dimensional elemental distribution of the sample with a spatial resolution of 80 nm. Using the fluorescence data, we assigned the chemical element to the area of the corresponding phase shift in the ptychographic reconstruction of the object phase and to the corresponding refractive index decrement in the tomographic reconstruction.
The successful demonstration of the feasibility of the 3D ptychography motivates further applications, for instance, in the field of medicine, of material science, and of basic physical research. / Kohärente Bildgebung ist eine vielversprechende Methode der Röntgenmikroskopie. Sie ermöglicht die zerstörungsfreie Bestimmung der inneren Struktur von strahlenharten Untersuchungsobjekten mit einer räumlichen Auflösung, die im Prinzip nur von der integralen Anzahl der Photonen auf der Probe sowie deren Streukraft abhängt. Letztendlich stellt die Wellenlänge der verwendeten Röntgenstrahlung eine Grenze für die erreichbare räumliche Auflösung dar.
Die Kombination der kohärenten Bildgebung mit der Rastermikroskopie zur sogenannten Ptychographie eröffnet die Möglichkeit, auch ausgedehnte Objekte mit hoher Auflösung zu untersuchen. Dabei wird die Probe mit einem räumlich begrenzten, kohärenten Röntgenstrahl abgerastert und an jedem Rasterpunkt ein Beugungsbild von einer im Fernfeld platzierten Beugungskamera registriert. Die Beleuchtungen benachbarter Rasterpunkte müssen dabei zu einem bestimmten Prozentsatz überlappen, um genügend Informationen für eine anschließende computergestützte und eindeutige Rekonstruktion des Objektes sicherzustellen.
Moderne Rekonstruktionsalgorithmen ermöglichen sogar die gleichzeitige Rekonstruktion der Transmissionsfunktion des Objektes und der Beleuchtungsfunktion des eintreffenden Röntgenstrahls. Die Verknüpfung der Ptychographie mit der Tomographie zur 3D-Ptychographie ist der nahe liegende Schritt, um nun auch die dreidimensionale innere Struktur von Objekten mit hoher räumlicher Auflösung zu bestimmen. Die Projektionen an den verschiedenen Winkelpositionen der Probe werden dabei mittels ptychographischer Abrasterung der Probe erzeugt und anschließend der tomographischen Rekonstruktion zugrunde gelegt.
In dieser Arbeit wird die Entwicklung der 3D-Ptychographie beschrieben. Das beinhaltet die Beschreibung der experimentellen Umgebung, der numerischen Implementierung des ptychographischen und des tomographischen Rekonstruktionsalgorithmus als auch eine detaillierte Darstellung der Durchführung der 3D-Ptychographie am Beispiel eines Experiments, welches unter Verwendung des modernen Nanoprobe-Aufbaus des Strahlrohres P06 am PETRA III Synchrotronring des DESY in Hamburg durchgeführt wurde.
Als Untersuchungsobjekt diente dabei ein dünner Mo/UO2-Film, der ein vereinfachtes Modell für die in Reaktoren von Atomkraftwerken verbrauchten Brennstäbe darstellt und deshalb im Bereich des Umweltschutzes Anwendung findet.
Die dreidimensionale Struktur der Probe wurde mit einer - für diese Methode bisher einmaligen - räumlichen Auflösung von 18 nm bestimmt. Die Messung des von der Probe kommenden Fluoreszenz-Signals an jedem Rasterpunkt der Ptychogramme ermöglichte zusätzlich die Bestimmung der zwei- und dreidimensionalen Elementverteilung innerhalb der Probe mit einer räumlichen Auflösung von 80 nm. Anhand der Fluoreszenzdaten konnte sowohl den Bereichen verschiedener Phasenschübe in den ptychographischen Rekonstruktionen der Objektphase als auch den verschiedenen Werten des Dekrementes des Brechungsindex in der tomographischen Rekonstruktion, das entsprechende chemische Element zugeordnet werden.
Die erfolgreiche Demonstration der Durchführbarkeit der 3D-Ptychographie motiviert weitere zukünftige Anwendungen, z. B. auf dem Gebiet der Medizin, der Materialforschung und der physikalischen Grundlagenforschung.
|
599 |
Akustische Tomographie zur gleichzeitigen Bestimmung von Temperatur- und Strömungsfeldern in InnenräumenBarth, Markus, Raabe, Armin 23 March 2017 (has links)
Das Verfahren der akustischen Laufzeittomographie nutzt die Abhängigkeit der Schallgeschwindigkeit von den Parametern Temperatur und Strömung entlang des Ausbreitungsweges akustischer Signale, um diese Parameter zu bestimmen. Es wird ein Algorithmus vorgestellt, der eine tomographische Rekonstruktion der 2-dimensionalen Strömungsfelder innerhalb eines Messgebietes erlaubt, wobei die räumliche Auflösung des Vektorfeldes der Auflösung des Temperaturfeldes entspricht. Neben Ergebnissen von Simulationen verschiedener Strömungssituationen wird eine Anwendung vorgestellt, welches die Anwendbarkeit des Verfahrens zur Detektion von Strömungs- und Temperaturverteilung in einem abgeschlossenen Raum demonstriert. / Acoustic travel time tomography uses the dependency of sound speed from temperature and flow properties along the propagation path to measure these parameters. An algorithm is introduced which is capable of resolving the two-dimensional flow field within a certain measuring area comparable to the resolution of the temperature field. Different flow fields have been simulated in order to show the reconstruction properties of the algorithm. Furthermore an experiment has been carried out, which demonstrates the applicability of the acoustic tomographic
method to detect temperature and flow fields indoor.
|
600 |
Akustische Tomographie und optische Scintillometertechnik zur Sondierung der atmosphärischen GrenzschichtTeichmann, Ulrich, Ziemann, Astrid, Arnold, Klaus, Raabe, Armin 24 November 2016 (has links)
Während eines Experimentes an der Forschungsstation Melpitz des IfT (Institut für Tropossphärenforschung) im September 1997 wurden erstmalig zwei verschiedene Meßmethoden gleichzeitig eingesetzt, die flächengemittelte Lufttemperaturen (Akustische Tomographie - Leipziger Institut für Meteorologie (LIM)) sowie liniengemittelte fühlbare Wärmeflüsse (Scintillometertechnik - IfT) lieferten. Es konnte gezeigt werden, daß teilweise erhebliche Temperaturdifferenzen an einem Strahlungstag auf dieser oberflächlich betrachteten horizontal homogenen Wiese existieren. Die geringe Datenbasis, größtenteils bedingt durch die ungünstige Anströmrichtung während dieses Zeitraums, läßt noch keinen sicheren Schluß zu, ob diese horizontalen Temperaturdifferenzen für die ebenfalls beobachteten horizontalen Unterschiede der vertikalen fühlbaren Wärmeflüsse und damit für die manchmal in Melpitz beobachtete Nicht-Schließung der Energiebilanz verantwortlich sind. / During an experiment at the Iff field research station Melpitz in September 1997 for the first time two different techniques were used to determine simultaneously area averaged air temperatures (Acoustic Tomography -LIM) and line averaged sensible heat fluxes (Scintillation
technique - IfT). lt could be shown that on a \''golden\'' day appreciably large temperature differences occurred on this superficially considered horizontal homogeneous meadow. Because of the weak data base mostly due to difficult fetch conditions it could not be proven that these
temperature differences led to the horizontal differences of vertical sensible heat fluxes and therefore to the sometimes observed non-closure of the energy balance in Melpitz.
|
Page generated in 0.0457 seconds