Spelling suggestions: "subject:"homographie optique"" "subject:"d'homographie optique""
1 |
Conception de systèmes tomographiques à imageurs multiples pour la dosimétrie à scintillation volumétriqueRilling, Madison 27 January 2024 (has links)
Cette thèse se cadre dans le développement de systèmes de dosimétrie à scintillation volumétrique. Étant donné la complexité des distributions de dose de radiation qu’impliquent les techniques modernes de traitement en radiothérapie externe, il est nécessaire d’avoir des outils cliniques offrant une mesure complète d’une distribution tridimensionnelle (3D) de dose administrée par un accélérateur linéaire médical. Des solutions prometteuses, ayant une capacité de mesure intéressante autant spatialement que temporellement, résident dans la dosimétrie à scintillation volumétrique. Dans le but de faciliter le développement de prototypes expérimentaux, cette thèse met de l’avant un processus de conception généralisé qui exploite les fonctionnalités de tracé réel de rayons d’un logiciel de conception optique. L’approche proposée permet une modélisation optique complète de systèmes tomographiques employant multiples caméras — de type standard ou plénoptique — pour imager la lumière fluorescente émise d’un volume scintillant sous l’effet de la radiation. La thèse fournit le bagage à la fois contextuel et théorique de la physique médicale et de l’ingénierie optique nécessaire à la compréhension et l’appréciation des travaux présentés, tout en cadrant la motivation de ceux-ci dans une réalité clinique, soit celle de la radiothérapie externe. Les contributions principales de la thèse se divisent en trois portions. D’abord, des travaux de simulation valident le processus généralisé de modélisation optique de systèmes à imageurs multiples et le calcul de leur modèle tomographique au moyen d’un logiciel de conception optique. Ensuite, à partir du processus de simulation de prototypes virtuels, une étude de faisabilité démontre la mise en application d’un prototype expérimental employant de multiples caméras plénoptiques pour des mesures volumétriques en dosimétrie à scintillation. Enfin, une analyse comparative entre l’emploi des caméras standards versus plénoptiques dans le contexte de tomographie à émission est présentée, puis des pistes à explorer sont discutées afin de mieux élucider la question de leur apport tomographique respectif. En somme, le processus de conception généralisé mis de l’avant dans cette thèse découple et simplifie les étapes de développement expérimental, offrant une flexibilité accrue de design de futurs outils cliniques pour la dosimétrie 3D. Ce travail ouvre la voie au développement d’une nouvelle génération de systèmes de dosimétrie à scintillation volumétrique. / This thesis simplifies and generalizes the developmental workflow of volumetric scintillation dosimetry systems. Due to the high complexity of radiation dose distributions delivered to patients by means of modern radiotherapy treatment techniques, it is essential to have clinical tools capable of measuring the full three-dimensional (3D) dose distributions delivered by medical linear accelerators. Imaging-based volumetric scintillation dosimetry offers promising solutions with potential for both high spatial and temporal resolution. To ease the development of experimental prototypes, this thesis puts forth a generalized design workflow based on the real ray tracing capabilities of optical design software. The proposed method allows for a complete and precise optical modeling of tomographic systems composed of multiple cameras, either standard or plenoptic, used to image the fluorescent light emission induced by radiation in translucent scintillator volumes. This thesis provides the reader with both the contextual and theoretical background in medical physics and optical engineering to understand fully and to appreciate the work carried out in the context of external beam radiation therapy. The main contributions of the thesis are three-fold. First, a simulative study serves to validate the generalized workflow for optical and tomographic modeling of multiple imager-based scintillation dosimetry systems using optical design software. Subsequently, a feasibility study demonstrates the simulation-to-experimental implementation of a tomographic-based prototype using multiple plenoptic camera images of a plastic scintillator volume for volumetric dose measurements. Finally, a comparative analysis between the use of sandard versus plenoptic cameras in the context of emission computed tomography is carried out, leading to the discussion of potential future work needed to better define and quantify the tomographic contribution of each respective type of imaging system. Concretely, the generalized design workflow based on the innovative use of optical design software elaborated within the pages of this thesis both simplifies and decouples the phases of prototype development, offering increased flexibility in designing future clinical tools for 3D dosimetry. This work thus paves the way for developing next-generation measurement systems in volumetric scintillation dosimetry and other tomography-based imaging applications.
|
2 |
Conception et optimisation de canaux de détection à base de photodiodes à avalanche (SPADs) pour le comptage de photons pour la tomographie optique diffusePichette, Charles 24 April 2018 (has links)
Ce mémoire présente les améliorations suggérées au scanneur de tomographie optique diffuse du groupe TomOptUS de l'Université de Sherbrooke. La tomographie optique diffuse est une modalité d'imagerie qui permet d'utiliser la lumière dans le proche infrarouge (650 - 950 nm) pour faire l'imagerie en profondeur (> 1 cm) de petits animaux comme des souris. Cette technique est très intéressante en pharmacologie et en oncologie où elle permet de faire le suivi de médicaments ou de la progression d'une pathologie. Elle permet également de réduire le nombre de sacrifices d'animaux, puisqu'elle est non-invasive. Il est donc possible de faire un suivi dans le temps de l'objet sous étude. Cette technique fonctionne aussi en fluorescence et permet donc d'utiliser différents agents pour faire le marquage d'objets d'intérêt dans l'animal. Ce scanneur fonctionne dans le domaine temporel et acquiert le temps de vol des photons qui ont traversé le sujet pour reconstruire l'impulsion laser via le comptage de photons corrélé en temps avec une source laser ultrarapide. Le présent scanneur utilise 7 canaux de détection sans contact positionnés en anneau autour du sujet. Ce nombre est présentement trop faible pour avoir un temps d'acquisition satisfaisant. Il a été déterminé que le facteur limitant est la rotation mécanique des canaux autour du sujet pour obtenir une couverture angulaire satisfaisante. Pour réduire le temps d'acquisition, il a été suggéré d'augmenter le nombre de canaux jusqu'à 32 voire 64. Toutefois, les présents canaux utilisent des tubes photomultiplicateurs qui sont trop volumineux pour une telle densité de détecteurs autour de l'animal. Des photodiodes à avalanches ont donc été envisagées pour les remplacer, puisqu'elles sont moins volumineuses, en plus d'offrir une meilleure efficacité quantique et une meilleure précision temporelle. Ceci les rend particulièrement efficaces pour le comptage de photons. Ces photodiodes ont cependant une zone photosensible avec un diamètre considérablement plus petit que les tubes photomultiplicateurs (25 - 100 μm comparativement à ≈ 1 cm pour les tubes photomultiplicateurs). Ceci réduit le taux de comptage, ainsi que le ratio signal sur bruit et rend l'alignement difficile. Le présent projet est donc d'optimiser les canaux de détection incorporant ces photodiodes à avalanches. Une analyse des paramètres et des contraintes a d'abord été faite pour cibler les spécifications optimales des canaux. Ensuite, plusieurs concepts optiques sont présentés et analysés qui offrent des performances optimales avec un taux de comptage maximal. Ces nouveaux canaux utilisent des lentilles d'immersion comme concentrateurs optiques. Ces lentilles hémisphériques peuvent atteindre un rapport de concentration de ≈ n², ce qui correspond dans le cas présent à ≈ 4. Ceci se traduit en une augmentation du taux de comptage et du rapport signal sur bruit du même rapport. L'installation et l'alignement de ces lentilles d'immersion sur les photodiodes à avalanches dans un module sur mesure ont ensuite été réalisés et la confirmation expérimentale de cette augmentation du taux de comptage a été démontrée avec des mesures intrinsèques et en fluorescence. Cette augmentation expérimentale est appuyée par des simulations Zemax qui sont en excellent accord avec l'expérimental. Finalement, la confirmation que ces lentilles n'affectent pas la précision temporelle des photodiodes a été obtenue expérimentalement. / This dissertation showcases the improvements suggested for the diffuse optical tomography scanner of the TomOptUS group at Université de Sherbrooke. Diffuse optical tomography is an imaging modality that uses near infrared light (650 - 950 nm) to image small animals such as mice in depth (> 1 cm). This technique is very interesting for pharmacology or oncology where it can be used to track medicine or the progress of pathology. It also decreases the number of necessary sacrifices since it is a non-invasive technique. The temporal progress of the object under consideration can, in that case, be acquired with ease. This technique can also be used with fluorescent agents to track different objects of interest in the animal. This scanner works in time domain where the time of flight of individual photons that propagated through the subject is registered to reconstruct the laser pulse via time-correlated single photon counting with an ultra-fast laser source. The current scanner uses 7 no-contact detection channels positioned in a ring around the subject. This number of channels is too low to obtain a satisfying acquisition time. It was determined that the limiting factor is the need to mechanically rotate the channels around the subject to obtain the necessary angular coverage. To reduce the acquisition time, it was suggested to increase the number of detection channels to 32 or even 64. However, the current channels use photomultiplier tubes which are too bulky to be used with such a high density of detectors. Single photon avalanche diodes have been considered to replace them because of their relative small size, excellent temporal resolution, and better quantum efficiency. These characteristics make them especially efficient for photon counting. These photodiodes, however, have a photosensitive surface with a very small diameter compared to the photomultiplier tubes (25 - 100 μm compared to ≈ 1 cm for photomultiplier tubes). This reduces the photon count rate, lowers the signal to noise ratio, and makes the alignment difficult. The goal of this project is to optimize the design of new detection channels that use these single photon avalanche diodes. A primary analysis of the parameters and constraints on the system was first conducted to pinpoint the optimal parameters. Several optical designs are then presented and analyzed. These channels can achieved a maximum photon count rate with the use of immersion lenses. These immersion lenses act as optical concentrators and achieve a concentration ratio of ≈ n² which is ≈ 4 in our case. This translates to an increase in the photon count rate and signal to noise ratio of the same ratio. The affixing of the immersion lens on a custom photodiode module was then performed and the experimental confirmation of the increase in photon count was obtained with intrinsic and fluorescence measurements. This experimental increase is supported with Zemax simulations which are in good agreement with the experiments. Finally, it was experimentally confirmed that those immersion lenses do not affect the excellent temporal resolution of the single photon avalanche diodes.
|
3 |
Caractérisation de nouveaux aspects de l'ataxie spastique autosomale récessive de Charlevoix-Saguenay à l'aide d'un procédé d'imagerie : la tomographie par cohérence optique (OCT)Paulo, Audrey 24 April 2018 (has links)
L’Ataxie spastique autosomale récessive de Charlevoix-Saguenay (ARSACS) est un syndrome héréditaire précoce caractérisé par un tableau clinique particulier incluant des anomalies oculaires. Quatorze ARSACS et 36 témoins sains ont été suivis prospectivement durant 20 mois et ont subi différents tests neuro-ophtalmologiques et des mesures par tomographie par cohérence optique. Des augmentations de l’épaisseur moyenne de la couche de fibres nerveuses (mRNFL), de l’épaisseur fovéolaire centrale et de l’épaisseur moyenne du cube maculaire (CAT) ont été mises en évidence chez les ARSACS en comparaison avec les témoins (p< 0,0001 à toutes les séances). Une différence cliniquement significative a été observée dans l’évolution au cours du suivi des épaisseurs de la mRNFL et la CAT des ARSACS par rapport aux contrôles (p=0,030, p=0,026 respectivement), et ces paramètres étaient inversement corrélés avec le degré de sévérité de la maladie, suggérant une diminution d’épaisseur de la mRNFL et de la CAT à mesure que progresse la maladie. / Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset hereditary disorder characterized by a typical phenotype including eye abnormalities. We performed a 20-month prospective follow-up of 14 ARSACS and 36 controls. Patients underwent neuro-ophthalmologic evaluations and measurements using an optical coherence tomography instrument. Increased thicknesses of the average retinal nerve fiber layer (mRNFL), the central subfield thickness (CST) and the macular cube average thickness (CAT) have been demonstrated in ARSACS compared with controls (p< 0,0001 in all sessions). Changes in the mRNFL and CAT thicknesses during the follow-up differed significantly (p=0,030 and p=0,026 respectively) between the 2 groups, and these parameters were inversely correlated with the degree of severity of the disease, which suggest a reduction of the mRNFL and CAT thicknesses as the disease progresses.
|
4 |
Conception d'un convertisseur temps-numérique dédié aux applications de tomographie optique diffuse en technologie CMOS 130 nmKanoun, Moez January 2014 (has links)
La mesure de temps de vol de photons et/ou de temps de propagation d’ondes RF et ultra large bande est devenue une technique essentielle et indispensable pour de nombreuses applications telles qu’en géolocalisation en intérieur, en détection LASER et en imagerie biomédicale, notamment en tomographie optique diffuse (TOD) avec des mesures dans le domaine temporel (DT). De telles mesures nécessitent des convertisseurs temps-numérique aptes à mesurer des intervalles de temps très courts avec grande précision, et ce, à des résolutions temporelles allant de quelques picosecondes à quelques dizaines de picosecondes.
Les scanners TOD-DT ont généralement recours à des cartes électroniques de comptage de photons uniques intégrant essentiellement des convertisseurs temps-numérique hybrides (un mixte de circuits monolithiques et non-monolithiques). Dans le but de réduire le temps d’acquisition de ces appareils et d’augmenter leur précision, plusieurs mesures à différentes positions et longueurs d’ondes doivent pouvoir être effectuées en parallèle, ce qui exige plusieurs cartes de comptage de photons. L’implémentation de tels dispositifs en technologie CMOS apporte de multiples avantages particulièrement en termes de coût, d’intégration et de consommation de puissance.
Cette thèse apporte une solution architecturale d’un convertisseur temps-numérique à 10-bits dédié aux applications de TOD-DT. Le convertisseur réalisé en technologie CMOS 0,13 μm d’IBM et occupant une surface en silicium de 1,83 x 2,23 mm[indice supérieur 2] incluant les plots de connexion, présente une résolution temporelle de 12 ps sur une fenêtre de 12 ns pour une consommation en courant de 4,8 mA. Les avantages de l’architecture proposée par rapport à d’autres réalisations rapportées dans la littérature résident dans son immunité face aux variations globales du procédé de fabrication, l’indépendance de la résolution temporelle vis-à-vis de la technologie ciblée et la faible gigue temporelle qu’il présente.
Le circuit intégré réalisé trouvera plusieurs champs d’applications autres que la TOD notamment dans les tomographes d’émission par positrons, les boucles à verrouillage de phase numériques et dans les systèmes de télédétection et d’imagerie 3D.
|
5 |
Principe de tomographie et spectro-tomographie optique de cohérence par intercorrelation sans balayage basée sur un réseau de diffractionOuadour, Malha 27 May 2009 (has links) (PDF)
Cette thèse propose une nouvelle méthode de détection, intermédiaire entre les deux méthodes existantes en OCT, qui sont: l'OCT dans le domaine temporel et l'OCT dans le domaine fréquentiel (FDOCT). La technique OCT que nous présentons est basée sur un réseau de diffraction. Elle fournit le profil de réflectivité en profondeur de l'échantillon analysé instantanément, sans effectuer de balayage mécanique dans le bras de référence de l'interféromètre ni de traitement numérique du signal réfléchi par l'échantillon. Une partie de cette thèse est dédiée à la description du principe de fonctionnement et à l'architecture du dispositif. En introduisant un balayage transversal dans le système, des images en deux dimensions et en trois dimensions de l'échantillon ont été réalisées. Nous décrivons par la suite comment nous accédons à l'information spectroscopique en profondeur de l'échantillon analysé, de façon optique et sans post-traitement grâce à la même technique. Pour cela, un système de démultiplexage en longueur d'onde est introduit dans le dispositif OCT qui devient ainsi un instrument de spectro-tomographie optique de cohérence. De cette façon, pour chaque point objet analysé, une image en deux dimensions est affichée en temps réel sur un détecteur plan. La direction horizontale correspond à la profondeur tandis que la direction verticale correspond à la décomposition spectrale de la trace de corrélation. Nous présentons le principe du système et montrons quelques résultats expérimentaux.
|
6 |
Instrumentation optique pour la caractérisation des tissus : analyse de la complémentarité et des limites techniques de fluorescence hyperspectrale et de Tomographie Optique Cohérente en vue de leur intégration multimodale. / Optical instrumentaation for biological tissues caracterization : Complementarity and limits analysis of hyperspectral fluorescence technic and otpical coherence tomography for multimodal integrationMéteau, Jérémy 08 July 2014 (has links)
L'objectif de ce travail de recherche est le développement d'un système fibré d'imagerie point par point d'auto fluorescence multi-excitation, de tissus biologiques en utilisant la technique de fluorescence hyperspectrale et l'étude d'un système de tomographie optique cohérente comme possible modalité supplémentaire. La première partie de ce rapport présente les propriétés optique des tissus biologiques et les fluorophores pertinents pour la détection de tumeurs cancéreuses. La deuxième partie présente l'instrumentation du système d'imagerie de fluorescence et l'analyse hyperspectrale des résultats obtenus in vitro.Il est démontré la pertinence de ce type d'analyse qui permet de déterminer la concentration de certains fluorophores. La troisième partie présente le système de tomographie optique cohérente appelé "scan free" OCT car il permet de réaliser des images sans déplacement d'éléments optiques. Ce système est caractérisé et présente des fonctionnalités intéressantes comme la compensation de la dispersion dépendante de la profondeur. Les divers résultats obtenus montrent que ces deux techniques sont complémentaires car elles apportent des informations de nature différentes. La première technique donne de se informations sur la composition biochimique des tissus, la seconde donne des information sur la structure. / The aim of this activity is the development of a mono point imaging fiber system which uses hyperspectral multi-excitation auto fluorescence technique for biological tissues and the study of an Optical Coherence Tomography system like another modality. At first, this report presents the optical properties of biological tissues and the relevant fluorophores for cancerous tumors detection. Secondly, the fluorescence imaging system instrumentation and hyperspectral analysis are presented with in vitro results. The third part presents the "scan free" optical coherence tomography system which is able to image without optical displacement. It's characterized and have interesting functionality like depth dependant dispersion compensation. These both techniques are complementary because they get different kind of information. The information of the first one is about biochemical composition of the tissues and the information of the second one is about the stucture.
|
7 |
Model-based and machine learning techniques for nonlinear image reconstruction in diffuse optical tomography / Techniques basées sur des modèles et apprentissage machine pour la reconstruction d’image non-linéaire en tomographie optique diffuseEttehadi, Seyedrohollah January 2017 (has links)
La tomographie optique diffuse (TOD) est une modalité d’imagerie biomédicale 3D peu
dispendieuse et non-invasive qui permet de reconstruire les propriétés optiques d’un tissu
biologique. Le processus de reconstruction d’images en TOD est difficile à réaliser puisqu’il
nécessite de résoudre un problème non-linéaire et mal posé. Les propriétés optiques sont
calculées à partir des mesures de surface du milieu à l’étude. Dans ce projet, deux méthodes
de reconstruction non-linéaire pour la TOD ont été développées. La première méthode
utilise un modèle itératif, une approche encore en développement qu’on retrouve dans la
littérature. L’approximation de la diffusion est le modèle utilisé pour résoudre le problème
direct. Par ailleurs, la reconstruction d’image à été réalisée dans différents régimes, continu
et temporel, avec des mesures intrinsèques et de fluorescence. Dans un premier temps, un
algorithme de reconstruction en régime continu et utilisant des mesures multispectrales
est développé pour reconstruire la concentration des chromophores qui se trouve dans
différents types de tissus. Dans un second temps, un algorithme de reconstruction est
développé pour calculer le temps de vie de différents marqueurs fluorescents à partir de
mesures optiques dans le domaine temporel. Une approche innovatrice a été d’utiliser
la totalité de l’information du signal temporel dans le but d’améliorer la reconstruction
d’image. Par ailleurs, cet algorithme permettrait de distinguer plus de trois temps de vie,
ce qui n’a pas encore été démontré en imagerie de fluorescence. La deuxième méthode
qui a été développée utilise l’apprentissage machine et plus spécifiquement l’apprentissage
profond. Un modèle d’apprentissage profond génératif est mis en place pour reconstruire la
distribution de sources d’émissions de fluorescence à partir de mesures en régime continu.
Il s’agit de la première utilisation d’un algorithme d’apprentissage profond appliqué à la
reconstruction d’images en TOD de fluorescence. La validation de la méthode est réalisée
avec une mire aux propriétés optiques connues dans laquelle sont inséres des marqueurs
fluorescents. La robustesse de cette méthode est démontrée même dans les situations où
le nombre de mesures est limité et en présence de bruit. / Abstract : Diffuse optical tomography (DOT) is a low cost and noninvasive 3D biomedical imaging
technique to reconstruct the optical properties of biological tissues. Image reconstruction
in DOT is inherently a difficult problem, because the inversion process is nonlinear and
ill-posed. During DOT image reconstruction, the optical properties of the medium are
recovered from the boundary measurements at the surface of the medium. In this work,
two approaches are proposed for non-linear DOT image reconstruction. The first approach
relies on the use of iterative model-based image reconstruction, which is still under development
for DOT and that can be found in the literature. A 3D forward model is developed
based on the diffusion equation, which is an approximation of the radiative transfer equation.
The forward model developed can simulate light propagation in complex geometries.
Additionally, the forward model is developed to deal with different types of optical data
such as continuous-wave (CW) and time-domain (TD) data for both intrinsic and fluorescence
signals. First, a multispectral image reconstruction algorithm is developed to
reconstruct the concentration of different tissue chromophores simultaneously from a set
of CW measurements at different wavelengths. A second image reconstruction algorithm
is developed to reconstruct the fluorescence lifetime (FLT) of different fluorescent markers
from time-domain fluorescence measurements. In this algorithm, all the information contained
in full temporal curves is used along with an acceleration technique to render the
algorithm of practical use. Moreover, the proposed algorithm has the potential of being
able to distinguish more than 3 FLTs, which is a first in fluorescence imaging. The second
approach is based on machine learning techniques, in particular deep learning models. A
deep generative model is proposed to reconstruct the fluorescence distribution map from
CW fluorescence measurements. It is the first time that such a model is applied for fluorescence
DOT image reconstruction. The performance of the proposed algorithm is validated
with an optical phantom and a fluorescent marker. The proposed algorithm recovers the
fluorescence distribution even from very noisy and sparse measurements, which is a big
limitation in fluorescence DOT imaging.
|
8 |
Débruitage, déconvolution et extraction de caractéristiques de signaux dans le domaine temporel pour imagerie biomédicale optiqueBodi, Geoffroy January 2010 (has links)
Un scanner permettant l'imagerie moléculaire est d'un grand intérêt pour l'industrie pharmaceutique dans le développement de nouveaux médicaments, notamment pour visualiser leur efficacité m-vivo (par exemple pour le cancer). Le groupe de recherche TomOptUS développe un scanner par tomographie optique diffuse par fluorescence pour imagerie moléculaire sur petit animal. Le but est de localiser en 3D les centres de fluorescence d'un traceur injecté dans l'animal. À cette fin, nous utilisons des mesures de signaux optiques de fluorescence obtenues par comptage de photons corrélé en temps (mesures dans le domaine temporel). On sait que les mesures contiennent de l'information sur les caractéristiques optiques du milieu, mais à ce jour, cette information n'est pas exploitée à son plein potentiel. Extraire cette information est essentiel en reconstruction tomographique. Le système d'instrumentation, comme tout système de mesure, celle-ci influe sur le signal optique à mesurer. Mathématiquement, les mesures optiques dans un milieu peuvent être décrites comme la convolution entre le signal d'intérêt et la fonction de réponse (ou fonction de transfert) du système de mesures optiques (IRF - instrument response function), le tout perturbé par du bruit. Les causes du bruit proviennent du système de détection, des conditions d'utilisation du système et des facteurs extérieurs. Il est indispensable d'éliminer les différents effets perturbateurs pour permettre l'extraction de caractéristiques de ces signaux. Ces caractéristiques dépendent des paramètres optiques du milieu diffusant. On distingue deux propriétés physiques, le coefficient d'absorption µ[indice inférieur a] et le coefficient de diffusion réduit µ'[indice inférieur s]. Un premier objectif du projet est de débruiter les mesures. À cette fin, un algorithme de débruitage par les ondelettes a été développé. Un second objectif est de concevoir un algorithme de déconvolution pour éliminer l'influence de l'IRF. La déconvolution est le raisonnement inverse de la convolution. Une solution est l'utilisation du filtre optimal de Wiener. Une fois cela réalisé, un troisième objectif consistait à implémenter un algorithme de régression non linéaire pour extraire les caractérisitiques optiques du milieu des courbes temporelles afin de caractériser le milieu. Pour cela, un modèle analytique de propagation de la lumière, le modèle développé par Patterson, Chance et Wilson, est comparé à nos mesures traitées. Par minimisation de l'erreur quadratique moyenne, il est ainsi possible de déterminer la valeur des paramètres optiques recherchés. Pour qualifier au mieux la méthode de déconvolution, la convolution itérative (IC- Itérative Convolution) ou reconvolution a également été implémentée. Actuellement, la reconvolution est la méthode la plus couramment utilisée en imagerie optique pour caractériser un milieu. Elle consiste à convoluer le modèle avec l'IRF du système pour obtenir un modèle représentatif des mesures optiques du système d'instrumentation. Enfin, un quatrième objectif consiste à étudier, à l'aide du même modèle, des changements du comportement du signal, lorsqu'on fait varier les paramètres µ[indice inférieur a], µ'[indice inférieur s]. Ceci permettra d'acquérir de nouvelles connaissances sur les vitesses de propagation dans le milieu et sur les temps d'arrivée des premiers photons.
|
9 |
Ajout de degrés de liberté à un appareil d'imagerie optique pour acquisition de données destinées à la reconstruction 3D par tomographie optique diffuseLetendre-Jauniaux, Mathieu January 2013 (has links)
La tomographie optique diffuse (TOD) et la tomographie optique diffuse par fluorescence (TODF) sont de nouvelles techniques d'imagerie médicale fort prometteuses. L'utilisation de lumière dans le proche infrarouge(PIR) permet une acquisition in vivo fréquente et même en continue sans danger pour l'opérateur ou pour le sujet. Ces méthodes sont présentement le sujet de plusieurs recherches notamment par le groupe TomOptUS. Un appareil d'imagerie optique sur petit animal, le Quidd Optical imaging System (QOS) est disponible au Centre Hospitalier Universitaire de Sherbrooke (CHUS). Muni d'une caméra refroidie à haute sensibilité et d'actionneurs contrôlés par ordinateur, il donne une grande flexibilité dans la géométrie d'acquisition en permettant notamment une rotation de la caméra sur une plage de ±60 degrés. L'appareil ne permet toutefois que l'acquisition de données en rétro-diffusion (ou épi-illumination), c'est à dire que la détection sur l'animal se fait du même côté que l'illumination. En TODF, un enjeu majeur est de pouvoir imager en profondeur dans les tissus. Pour ce faire, il devient important d'avoir accès à des mesures en transillumination. Le présent mémoire traite de l'ajout de degrés de libertés au QOS affin de permettre l'imagerie en transillumination tout en conservant la capacité d'épi-illumination. La configuration développée permet de déplacer l'excitation lumineuse indépendamment de l'acquisition et ce linéairement ainsi qu'angulairement autour du sujet. L'implantation nécessitant trois degrés de libertés (DDL) supplémentaires, l'utilisation de composantes standard a été préférée. Étant donné les contraintes identifiées, un actionneur rotatif ainsi que son contrôleur à base de micro-contrôleur ont été développés. Le présent document détaille les choix de conception ainsi que l'architecture du contrôleur. Avec la réalisation de ce projet, les utilisateurs du QOS disposent dorénavant d'un appareil flexible permettant l'acquisition de données tomographiques qui aideront à imager en profondeur dans le sujet. Quoique ceci ne fasse pas partie du cadre de cette maîtrise, le but ultime de l'acquisition de ces données est la reconstruction en trois dimensions de l'intérieur de l'animal imagé.
|
10 |
Imagerie de fluorescence et intrinsèque de milieux diffusants par temps d’arrivée des premiers photonsPichette, Julien January 2014 (has links)
La tomographie optique diffuse (DOT) se caractérise par l’utilisation de la lumière dans un régime de propagation diffusif pour sonder les tissus biologiques. L’utilisation de marqueurs fluorescents permet de cibler des processus biologiques précis (tomographie optique diffuse en fluorescence - FDOT) et d’améliorer le contraste dans les images obtenues. Les applications typiques de la DOT/FDOT sont la mammographie laser, l’imagerie cérébrale de nouveau-nés et les investigations non-invasives sur petits animaux, notamment pour l’imagerie moléculaire. Le présent projet fait partie du programme de recherche TomOptUS dirigé par le professeur Yves Bérubé-Lauzière. Un scanner optique pour petits animaux y est en cours de développement. Ce scanner possède la particularité de fonctionner avec une prise de mesures sans contact dans le domaine temporel.
La première partie du projet a pour point de départ l’algorithme développé en FDOT par Vincent Robichaud qui permet la localisation spatiale d’une seule inclusion fluorescente ponctuelle immergée dans un milieu diffusant homogène ayant une géométrie cylindrique. Une nouvelle approche de localisation pour une pluralité d’inclusions discrètes est ici introduite. Cette dernière exploite l’information contenue dans le temps de vol des premiers photons provenant d’une émission de fluorescence. Chaque mesure permet de définir un lieu géométrique où une inclusion peut se trouver : ces lieux prennent la forme d’ovales en 2D ou d’ovoïdes en 3D. À partir de ces lieux, une carte de probabilité de présence des inclusions est construite : les maxima de la carte correspondent à la position des inclusions. Cette approche géométrique est soutenue par des simulations Monte Carlo en fluorescence dans des milieux reproduisant les propriétés optiques des tissus biologiques. Plusieurs expériences sont ensuite effectuées sur une mire optique homogène répliquant les propriétés optiques des tissus dans lequel des inclusions remplies de vert d’indocyanine (ICG) sont placées. L’approche permet la localisation avec une erreur positionnelle de l’ordre du millimètre. Les résultats démontrent que l’approche est précise, rapide et efficace pour localisation des inclusions fluorescentes dans un milieu hautement diffusant mimant les tissus biologiques. Des simulations Monte Carlo sur un modèle réaliste de souris montrent la faisabilité de la technique pour l’imagerie sur petits animaux.
Le second volet de la thèse s’intéresse aux mesures intrinsèques par le développement d’une approche de reconstruction d’une carte des vitesses de propagation des ondes lumineuses diffuses dans un milieu diffusant hétérogène. De telles vitesses constituent un nouveau contraste pour de l’imagerie DOT. La méthode utilise une configuration en faisceaux lumineux analogue aux méthodes utilisées en tomographie par rayons X. Ici, toutefois, les temps d’arrivée des premiers photons sont utilisés plutôt que l’amplitude du signal. Des résultats sont présentés en 2D pour différentes configurations d’inclusions démontrant la validité de l’approche. Des simulations Monte Carlo sont utilisées pour simuler la propagation intrinsèque dans des milieux hétérogènes et pour venir appuyer la démarche.
|
Page generated in 0.0874 seconds