• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 12
  • Tagged with
  • 25
  • 21
  • 17
  • 15
  • 12
  • 11
  • 9
  • 9
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Multi-Scale Topology Optimization of Lattice Structures Using Machine Learning / Flerskalig topologioptimering av gitterstrukturer med användning av maskininlärning

Ibstedt, Julia January 2023 (has links)
This thesis explores using multi-scale topology optimization (TO) by utilizing inverse homogenization to automate the adjustment of each unit-cell's geometry and placement in a lattice structure within a pressure vessel (the design domain) to achieve desired structural properties. The aim is to find the optimal material distribution within the design domain as well as desired material properties at each discretized element and use machine learning (ML) to map microstructures with corresponding prescribed effective properties. Effective properties are obtained through homogenization, where microscopic properties are upscaled to macroscopic ones. The symmetry group of a unit-cell's elasticity tensor can be utilized for stiffness directional tunability, i.e., to tune the cell's performance in different load directions.  A few geometrical variations of a chosen unit-cell were homogenized to build an effective anisotropic elastic material model by obtaining their effective elasticity. The symmetry group and the stiffness directionality of the cells’ effective elasticity tensors were identified. This was done using both the pattern of the matrix representation of the effective elasticity tensor and the roots of the monoclinic distance function. A cell library of symmetry-preserving variations with a corresponding material property space was created, displaying the achievable properties within the library. Two ML models were implemented to map material properties to appropriate cells. A TO algorithm was also implemented to produce an optimal material distribution within a design domain of a pressure vessel in 2D to maximize stiffness. However, the TO algorithm to obtain desired material properties for each element in the domain was not realized within the time frame of this thesis.  The cells were successfully homogenized. The effective elasticity tensor of the chosen cell was found to belong to the cubic symmetry group in its natural coordinate system. The results suggest that the symmetry group of an elasticity tensor retrieved through numerical experiments can be identified using the monoclinic distance function. If near-zero minima are present, they can be utilized to find the natural coordinate system. The cubic symmetry allowed the cell library's material property space to be spanned by only three elastic constants, derived from the elasticity matrix. The orthotropic symmetry group can enable a greater directional tunability and design flexibility than the cubic one. However, materials exhibiting cubic symmetry can be described by fewer material properties, limiting the property space, which could make the multi-scale TO less complex. The ML models successfully predicted the cell parameters for given elastic constants with satisfactory results. The TO algorithm was successfully implemented. Two different boundary condition cases were used – fixing the domain’s corner nodes and fixing the middle element’s nodes. The latter was found to produce more sensible results. The formation of a cylindrical outer shape could be distinguished in the produced material design, which was deemed reasonable since cylindrical pressure vessels are consistent with engineering practice due to their inherent ability to evenly distribute load. The TO algorithm must be extended to include the elastic constants as design variables to enable the multi-scale TO.
12

Topology optimization of a swing arm for a track driven vechile / Topologioptimering av en pendelarm tillhörande ett bandfordon

Nilsson, Philip January 2018 (has links)
The development in additive manufacturing methods has cleared the path for topology optimizationby making it possible to produce complex geometries, which would not be possible to produce bytraditional manufacturing methods. Topology optimization uses iterative structural computations tond an optimal material distribution given a maximum optimization domain, load cases and/or otherstructural criteria. The relation between retained mass and structural performance of a swing armfor the vehicle BvS10 was examined for two different materials. The first material was an estimate of an additive manufactured material and the other for a high structural steel. Given the extreme load cases, the geometrical limits of the swing arm and by specifying how much mass was to be retained the stiffness was to be maximized. The optimization was performed using an elastic material model in thecommercial software ANSYS. This elastic material models was based on standard material parameters of steel. Three geometries were generated, namely OG100, OG90 and OG80, which corresponded to 101 %, 87 % and 81 % of the mass of the original swing arm, respectively. The optimization procedurewas combined with geometry modications in SpaceClaim to simplify the obtained geometries. All these geometries consisted of a hollow geometry with a greater width compared to the original geometry. The geometries were then evaluated using multilinear plastic material models based on respective material. Using the additive manufactured material model no generated geometry could perform structurally better than the original swing arm. This indicates that greater material properties must be obtainedin order to be able to reduce the weight of the swing arm. By using the material properties of the highstructural steel, it was found that at least 31.3 kg per vehicle could be reduced by using the optimizedgeometry OG80, and still not perform structurally worse than of the original swing arm. / Utvecklingen inom additiv tillverkning har öppnat vägen för topologioptimering genom att kunna producera komplexa geometrier, som inte skulle vara möjliga att tillverka med hjälp av traditionella tillverkningsmetoder. Topologioptimering använder iterativa hållfasthetsberäkningar för att finna den optimala materialfördelning givet en maximal optimeringsdomän, lastfall och/eller andra strukturella kriterier. Relationen mellan bibehållen massa och strukturella prestationer hos en pendelarm till fordonet BvS10 har undersökts för två olika material. Det ena materialet var en uppskattning av ett additivt tillverkat material och det andra materialet var ett höghållfasthetsstål. Givet dem extrema lastfall, geometriska begränsningar hos pendelarmen och genom specficera hur mycket massa som skulle behållas så skulle styvheten maximeras. Optimeringarna utfördes med en elastisk materialmodell i den kommersiellamjukvaran ANSYS. Denna elastiska materialmodell var baserad på klassiska materialparametrarfor stål. Tre geometrier genererades. Optimeringsproceduren användes i kombination med geometriska modikationer i SpaceClaim för att förenkla de optimierade geometrierna. Dessa var OG100, OG90 och OG80, vilka motsvarade 101 %, 87 % och 81 % av pendelarmens originalvikt. Alla geometrier bestod av en ihålig geometri med större bredd än originalarmens. Geometrierna utvärderades sedan med hjälp av multilinjära plastiska materialmodeller baserat på respektive material. Ingen av dessa geometrier kunde prestera bättre än originalarmen när det additivt tillverkade materialet användes. Detta indikerar att bättre materialegenskaper måste uppnås för att kunna reducera vikten hos pendelarmen. Genom attanvända höghållfasthetsstålet upptäcktes att åtminstone 31.3 kg per fordon kunde reduceras genom attanvända OG80, och fortfarande inte prestera sämre än originalarmen.
13

Design of cooling-air permeable coil support / Design av luftgenomsläppligt spolstöd

Ghassemi, Rozbeh January 2023 (has links)
Coil supports are integral load-bearing components employed in generators andmotors. They serve the purpose of preventing excessive deformation and maintaininga stable position of the coils responsible for generating power and magnetic fieldswhen rotating. However, a problem with these coil supports is that they block theairflow aimed to cool the coils. Thus, this master thesis aimed to conduct a topologyoptimization to develop a cooling-air permeable coil support and select a suitablematerial. The new design was required to withstand 30,000 operational cycles andan overspeed test running at 120% speed without plastic deformation or failure. The material selection process was initiated and based on mechanical and physicalproperties requirements. One of these was that the material should be non-magnetic.Utilizing Ansys Granta EduPack, two materials were suggested, the reference materialcurrently used for the coil support, and a titanium alloy, Ti-6Al-4V. The subsequentstep was to create a CAD model of the original design based on technical drawingsprovided by ABB. With the generated design, finite element analysis (FEA) simulationand the topology optimization could be performed. The generated topology optimizedmodel was modified and two new models were created, one with smaller central cutoutsand one with larger central cutouts and a top surface cutout. Furthermore, a thirdmodel was created based on the fundamentals of fluid mechanics, the Rounded originalmodel. Computational Fluid Dynamics (CFD) simulations of the four models wereexecuted. The findings indicate that the design with larger central cutouts exhibited the mostsubstantial increase in airflow through and in between the coil supports, achieving a122 % improvement compared to the original design. The model satisfied the fatiguerequirement and successfully passed the overspeed test. Both the current referencematerial and the Ti-6Al4V alloy are suitable to use for coil support. However, theutilization of a titanium alloy might be deemed excessive in terms of its mechanicalproperties and cost. / Spolstöd är integrerade lastbärande komponenter som används i generatorer ochmotorer. De har till syfte att förhindra extrem deformation och bibehålla positionenför spolarna som ansvarar för att generera kraft och magnetfält när de roteras. Ettproblem med spolstöden är att de blockerar luftflödet avsett att kyla spolarna. Däravär syftet och målet med detta examensarbetet att genomföra en topologioptimeringför att utveckla luftgenomsläppligt spolstöd för förbättrad kylning samt att välja ettlämpligt material. Den nya konstruktionen är tvungen att klara av 30,000 driftcykleroch ett överspänningsprov vid 120% av hastigheten utan plastisk deformation ellerbrott. Materialvalsprocessen initierades och baserades på mekaniska och fysikaliska krav.En av dessa krav var att materialet skulle vara icke-magnetiskt. Användandet avAnsys Granta EduPack resulterade i två material, referensmaterialet som användsför att producera spolstödet i nuläget och en titanlegering, Ti-6Al-4V. Därefterskapades en CAD-modell av den ursprungliga designen baserat på tekniska ritningartillhandahållna från ABB. Med den genererade modellen kunde finita elementanalys(FEA) och topologioptimeringen utföras. Detta genererade i en topologioptimeradmodel som modifierades och lade grund till två nya modeller, en modell med mindrecentrala hål och en med större centrala hål. En tredje modell skapades dessutom,baserad på grundläggande principer inom fluidmekanik. Fluidmekanik (CFD) beräkningar av de fyra modellerna utfördes och resultatenvisade på att den tolpologioptimerade modellen med stora centrala hål hade denmest betydande ökningen i luftgneomströmning genom och mellan spolstödenmed en förbättring på 122 % jämfört med den ursprungliga designen. Modellenuppfyller även kraven på utmattning och maximal statisk spänning vid rusningsprov.Både referensmaterialet och titanlegeringen var lämpad att användas som spolstöd.Däremot kan användningen av titanlegeringen anses vara överdriven med hänsyn tilldess mekaniska egenskaper och kostnad.
14

Additiv tillverkning i metall och topologioptimering

Bousquet, Anna January 2017 (has links)
This thesis project was conducted as a case study at Scania CV, a manufacturer of trucks, buses and industrial and marine engines. The project aimed to investigate how topology optimization can be used to design end products for metal additive manufacturing (AM). The main research questions for the project was: How can topology optimization be used to design parts for metal additive manufacturing? Which gave rise to further research questions: Which parts are suitable for metal additive manufacturing? Which factors has to be considered when designing end products for metal additive manufacturing? The main benefits of additive manufacturing revealed in the literature were short lead time, possibility to manufacture complex geometries and consolidate multiple parts into a single part. The applications of metal additive manufacturing found in the literature included prototypes and end products as well as tools and spare parts. Small, complex geometries which are expensive to manufacture traditionally due to expensive tooling or low volumes are most likely to be suitable for metal additive manufacturing. Parts where trade-offs have to be made between manufacturing cost and performance could also be interesting to investigate for AM. The build size of the selected machine is a limiting factor when choosing parts and the build direction of the part, the need for support material during manufacturing and post processing are important to consider when designing parts for metal AM. The case study was performed based on Design for Additive Manufacturing (DFAM), a method for designing parts for AM. DFAM consists of deciding the specifications for the part, consolidate parts if possible, optimize the geometry of the part and make sure it is possible to manufacture. Two parts were optimized with topology optimization during the case study and the resulting geometries were imported to Catia in order to create CAD-models. The results from the case study showed it was possible to automatically create CAD-models based on the resulting geometries from topology optimization. However the automatic CAD-models are not suitable for manufacturing of end parts. But the case study indicates a weight reduction of about 30 % seems to be possible for topology optimization combined with AM even for parts already optimized for low weight but adapted for traditional manufacturing methods. Reducing the overall weight of trucks is important since the carrying capacity is important for customers when choosing vehicles for transportation and the gross vehicle weight is regulated by laws. This makes topology optimization and metal AM a highly interesting area for further investigation. As for now, small, complex parts which are traditionally expensive to manufacture are most likely to be profitable for manufacturing of end parts with metal AM. / Arbetet har utförts som en fallstudie på Scania CV som tillverkar lastbilar, bussar samt industri- och marinmotorer. Syftet med projektet var att undersöka hur topologioptimering kan användas för konstruktion av slutprodukter som ska tillverkas med additiv tillverkning (AM) i metall. Utifrån det togs tre frågeställningar fram som låg till grund för projektet. Huvudfrågeställningen var Hur kan topologioptimering användas vid konstruktion av artiklar för additiv tillverkning i metall? För att kunna svara på det krävdes mer kunskap om additiv tillverkning vilket ledde till följande två frågeställningar: Vilka produkter är lämpliga för additiv tillverkning i metall? samt Vilka faktorer behöver tas hänsyn till vid konstruktion för direkttillverkning av slutprodukter i metall med additiv tillverkning? De största fördelarna med additiv tillverkning som framkom i litteraturen var korta ledtider, möjlighet att tillverka komplexa geometrier och slå samman flera delar till en enda. Användningsområden för additiv tillverkning var allt från prototyper till serietillverkning samt tillverkning av verktyg och reservdelar.  De artiklar som är lämpliga att tillverka med AM är de som är dyra att tillverka traditionellt på grund av komplex geometri, dyra verktyg eller låga volymer. Men även artiklar som får ge avkall på funktion för att tillverkas eller har långa ledtider och höga lagerkostnader. Andra faktorer som är viktiga att tänka på är byggytans storlek för den maskin som ska användas samt vilken byggriktning som väljs, behovet av stödmaterial vid tillverkning och efterbearbetning av utskriven detalj. En fallstudie genomfördes baserat på Design for Additive Manufacturing som är en metod för att konstruera artiklar för AM. Metoden går ut på att bestämma vad komponenten ska ha för funktioner och prestanda, slå samman eventuella delkomponenter, optimera utformningen och sedan kontrollera att den är möjlig att tillverka. Under fallstudien undersöktes två fästen med topologioptimering och resultaten importerades till Catia för att skapa CAD-modeller. Resultatet påvisade att det är möjligt att skapa en automatisk CAD-modell i Catia utifrån resultatet från topologioptimeringen. Däremot blir resultatet inte tillräckligt bra för att i nuläget kunna använda den automatiska modellen för tillverkning av slutprodukter. Resultatet från fallstudien tyder dock på en viktminskningspotential runt 30 % även för redan lättviktsoptimerade artiklar anpassade för andra tillverkningstekniker vid anpassning till AM. Eftersom lastkapaciteten är en avgörande faktor för kundens val av fordon samt för att uppfylla gällande lagstiftning kring fordonets totalvikt och minska miljöpåverkan så är lättviktsoptimering av alla ingående komponenter ett viktigt utvecklingsområde. Därmed är även topologioptimering och AM intressant att undersöka vidare. För att AM i dagsläget ska vara lönsamt för tillverkning av slutprodukter rekommenderas i första hand små, geometriskt komplexa artiklar som är dyra att tillverka traditionellt på grund av exempelvis höga verktygs- eller bearbetningskostnader eller små volymer.
15

Venturi Undertray : KTH Bachelor Thesis Report

Boudali, Selma, Olausson, Mattias January 2020 (has links)
This bachelor thesis aims to describe the work performed for the design of the undertray for the Kungliga Tekniska Högskolan Formula Student(KTHFS) race car. The goal was to achieve an aerodynamically optimized undertray design that follows the regulations of the competition and the targets set by KTHFS concerning the weight, the size, the materials needed for its manufacture and costs. After some research on previous work, the concept, on which we decided that the undertray would rely on, is Venturi tunnels inspired by the Aston Martin Valkyrie, chosen for its ability to provide a large amount of downforce with a negligible amount of drag using ”ground effect”. Numerous CAD design models were created in Solid Edge and a finalized design was then ported over to Siemens NX to be analyzed using Star-CCM+ and its Design Manager feature. The CFD analyses and optimization was performed in Star-CCM+ with regards to pressure gradient, streamline velocity and downforce. These were done with variable parameters in areas such as expansion height, inlet area and ride height. Contained within this report is a more detailed description of how the CFD analysis was performed as well as suggestions for manufacturing said undertray. Given the time constraints and the societal impacts of COVID-19, manufacturing had to be removed from the scope of the project, however, a step-by-step manufacture guide is provided within. Analysis of uur final design showed 428 N of downforce, a weight of 2.55 kg and a production cost of approximately 2320 SEK. It therefore passes the requirements for weight, cost and ride-height rule regulations set by Formula Student and internal KTHFS targets. / Detta kandidatexamesarbete syftar till att beskriva arbetet som utförts för konstruktionsdesignen av Kungliga Tekniska Högskolan Formula Student (KTHFS) racerbils underrede. Målet var att uppnå en aerodynamisk optimerad underredes design som följer de regler och krav fastställda av KTHFS gällande vikt, storlek, material som behövs till tillverkningen och kostnader. Efter en litteraturstudie på tidigare arbete, blev Venturi tunnlar, inspirerade av Aston Martin Valkyrie, konceptet som vi beslutade att uderreden skulle bygga på och valda på grund av deras förmåga att förbättra bilens prestanda genom sitt nedkraftsbildande och försumbar mängd drag med hjälp av ”ground effect”. Många CAD-designmodeller skapades i Solid Edge och en slutgiltig design överfördes sedan till Siemens NX för att analyseras med Star CCM+ och dess Design Managerfunktion. CFD-analyserna och optimeringen utfördes i Star CCM+ med avseende på tryckgradient, strömlinjehastighet och nedkrafter. Dessa gjordes med variabla parametrar i områden som utvidgningshöjd, inloppsarea och frigångshöjd. I denna rapport finns en mer detaljerad beskrivning av hur CFD-analysen utfördes samt förslag för tillverkning. Med tanke på tidsbegränsningarna och samhällseffekterna av COVID-19 fick vi ta bort tillverknink från projektets omfattning, men en steg-för-steg tillverkningsguide tillhandahålls i rapporten. Analyser av vår slutgiltiga design visade på 428N downforce, en vikt på 2,55 kg och en produktionskostnad på cirka 2320 SEK. Den överenstämmer därför kraven för vikt, kostnad och frigångshöjd som fastställdes av Formula Student.
16

Design of a weight optimized casted ADI component using topology and shape optimization / Konstruktion av viktoptimerade gjutna ADI-komponenter med topologi- och parmeteroptimering

CHAKKALAKKAL, JOSEPH JUNIOR January 2018 (has links)
Structural Optimization techniques are widely used in product development process in ‘modern industry’ to generate optimal designs with only sufficient material to serve the purpose of the component. In conventional design problems, the design process usually generates overdesigned components with excess material and weight. This will in turn increase the life time cost of machines, both in terms material wastage and expense of usage. The thesis “Design of a weight optimized casted ADI component using topology and shape optimization” deals with redesigning a component from a welded steel plate structure into a castable design for reduced manufacturing cost and weight reduction. The component “Drill Steel Support” mounted in front of the drilling boom of a Face Drilling Machine is redesigned during this work. The main objective of the thesis is to provide an alternative design with lower weight that can be mounted on the existing machine layout without any changes in the mounting interfaces. This thesis report covers in detail procedure followed for attaining the weight reduction of the “Drill Steel Support” and presents the results and methodology which is based on both topology and shape optimization. / Strukturoptimering används ofta i produktutvecklingsprocessen i modern industri för att ta fram optimala konstruktioner med minsta möjliga materialåtgång för komponenten. Konventionella konstruktionsmetoder genererar vanligtvis överdimensionerade komponenter med överflödigt material och vikt. Detta ökar i sin tur livstidskostnaderna för maskiner både i termer av materialavfall och användning. Avhandlingen "Konstruktion av viktoptimerad gjuten ADI-komponent" behandlar omkonstruktionen av en komponent från en svetsad stålplåtstruktur till en gjutbar konstruktion med minskad tillverkningskostnad och vikt. Komponenten “Borrstöd” monterad i framkant av bommen på en ortdrivningsmaskin är omkonstruerad under detta arbete. Huvudsyftet med avhandlingen är ta fram en alternativ konstruktion med lägre vikt och som kan monteras på befintlig maskinlayout utan någon ändring i monteringsgränssnittet. Denna avhandling innehåller en detaljerad beskrivning av förfarandet för att uppnå viktminskningen av "borrstödet" och presenterar resultaten samt metodiken som baseras på både topologi- och parameter- optimering.
17

Design of Reliable Lightweight Cast Components : An Optimization Driven Design Appraoch / Tillförlitlig lättviktsdesign av gjutna komponenter : En optimeringdriven konstruktionstrategi

Kulkarni, Rohan January 2018 (has links)
The present-day automotive industry is striving to design lightweight components by optimizing the design for minimization of weight. The topology optimization is used widely for the design of lightweight components. The casting process is time and cost effective for mass production and widely adopted within the automotive industry. Generally, castability is not considered in the weight optimization process. These weight optimized components are optimized once again in the later stage for cost-effectiveness in the casting process. The modified design usually weighs more than the weight optimized design. The design can be optimized for weight and castability simultaneously in the early stage of design and this thesis report presents an optimization process for the same. The optimization process presents effective usage of the topology optimization to design lightweight components without compromising castability. It is a three-step process where thetopology optimization is integrated with solidification simulation along with DFX -castability evaluation. The reliability of the conceptual design is predicted based on the mapping of solidification and stress hotspots. The process is implemented to design three components of Scaniatruck and weight is reduced by 15% to 25%. / Dagens bilindustri strävar efter att utforma lätta komponenter genom att optimera designen för att minimera vikt. Topologioptimering används i stor utsträckning för design av lätta komponenter. Gjutningsprocessen är tids-och kostnadseffektiv för massproduktion och allmänt vedertagen inom bilindustrin. Generellt ingår inte gjutbarhet i viktoptimeringsprocessen. Dessa viktoptimerade komponenter optimeras igen i ett senare skede för kostnadseffektivitet vid massproduktion. De flesta gånger är viktoptimerade koncept modifierade för att erhålla kostnadseffektivitet vid gjutning genom att lägga till extra vikt. I den här rapporten presenteras enoptimeringsdriven designprocess för att få pålitlig lättviktsgjutbar design. Optimeringsprocessen presenterar effektiv användning av topologioptimering för att utformalätta komponenter utan att kompromissa med gjutbarheten. Det är en trestegsprocess där topologioptimering integreras med förstärkningssimulering tillsammans med utvärdering avDFX-sårbarhet. Tillförlitligheten hos den konceptuella designen förutses baserat på kartläggningav stelningen och spänninggskoncentrationer. Processen är implementerad för att optimera utformningen av tre komponenter i Scania-lastbilar och vikten minskas med 15% till 25%.
18

Methodology Development for Topology Optimization of Power Transfer Unit Housing Structures / Metodutveckling för topologioptimering av växellådshusstrukturer" i kraftöverföringsenheter

Palanisamy, Povendhan January 2020 (has links)
Simulation driven design is a method and process that has been developed over many years, and with today’s advanced software, the possibility to embed simulation into the design process has become a reality. The advantages of using simulation driven design in the product development process is well known and compared to a more traditional design process, the simulation driven design process can give the user the possibility to explore, optimize and design products with reduced lead time.  One of the methods that is applied in simulation driven design is the use of topology optimization (structural optimization). Topology optimization is something that GKN uses in the design process. Due to the complexity of the products GKN design and manufacture, the output from the topology optimization lacks good design interpretability and the design process requires a lot of time and effort.  The purpose of the thesis is to explore different simulation tools used for topology optimization and improve the methodology and process with higher design interpretability for a static topology optimization. This requires a good understanding of the component and the product development process. It is imperative that the topology result must have high design interpretability, and the visualization of the result must show the formation of clear rib structures.  The software’s used for performing topology optimization in this thesis are Inspire, SimLab, HyperMesh, and OptiStruct (HyperWorks suite). Static topology optimization is conducted, and manufacturing constraints for the casting process are considered. The methodology developed is robust for similar gearbox housing structures, and the process is set up to be efficient. The proposed method is verified by implementing it on a housing structure.  The resulting concept from the topology optimization is deemed to have higher design interpretability which improves knowledge transfer in the design process when compared to the current topology results. The weight of the product is reduced, and a more optimum design is reached with a lesser number of iterations. / Simuleringsdriven design är en metod och process som har utvecklats i många år, och med dagens avancerade programvaror har möjligheten att få in simulering direkt i designprocessen blivit verklighet. Fördelarna med att använda simuleringsdriven design i produktutvecklingsprocessen är välkända och jämfört med en mer traditionell designprocess kan den simuleringsdrivna designprocessen ge användaren möjlighet att utforska, optimera och designa produkter med reducerade ledtider som följd.  En av de metoder som tillämpas i simuleringsdriven design är användning av topologioptimering (strukturoptimering). Topologioptimering är något som GKN använder i designprocessen. På grund av komplexiteten hos produkterna GKN designar och tillverkar kräver designprocessen mycket ingenjörsarbete och tid. Produktionen har också problem med att tolka topologioptimeringsresultaten.. Syftet med avhandlingen är att utforska olika simuleringsverktyg som används för topologioptimering och förbättra metodiken och processen för att öka designtolkningen av en statisk topologioptimering. Detta kräver en god förståelse för komponenten och produktutvecklingsprocessen. För att förbättra osäkerheterna i resultaten från optimeringen, är det nödvändigt att dessa resultat är lätta att tolka, och visualiseringen av resultaten ska vara tydliga och visa hur lastvägarna går och därmed vart ribbor ska läggas.  Programvarorna som användes för att utföra topologioptimering i denna avhandling är Inspire, SimLab, HyperMesh och OptiStruct (HyperWorks suite). Statisk topologioptimering är utförd och tillverkningsbegränsningar för gjutningsprocesser har inkluderats.  Den metod som utvecklats är robust för liknande växellådshusstrukturer, och processen som föreslås är mera effektiv. Den föreslagna metoden har verifierats genom att den tillämpats för ett växellådshus.  Det resulterande topologikonceptet antas ha en bättre designtolkningsbarhet, vilket möjliggör en förbättrad kommunikation och kunskapsöverföring i konstruktionsprocessen, jämfört med den nuvarande processen. Produktens vikt minskas, och en mer optimal design nås med färre iterationer.
19

Design for Additive Manufacturing : An Optimization driven design approach / Design för additiv tillverkning : En optimieringsdriven designmetod

Dash, Satabdee January 2020 (has links)
Increasing application of Additive Manufacturing (AM) in industrial production demands product reimagination (assemblies, subsystems) from an AM standpoint. Simulation driven design tools play an important part in achieving this with design optimization subject to the capabilities of AM technologies. Therefore, the bus frames department (RBRF) in Scania CV AB, Södertälje wanted to examine the synergies between topology optimization and Design for AM (DfAM) in the context of this thesis. In this thesis, a methodology is developed to establish a DfAM framework involving topology optimization and is accompanied by a manufacturability analysis stage. A case study implementation of this developed methodology is performed for validation and further development. The case study replaces an existing load bearing cross member with a new structure optimized with respect to weight and manufacturing process. It resulted in a nearly self supporting AM friendly design with improved stiffness along with a 9.5% weight reduction, thereby proving the benefit of incorporating topology optimization and AM design fundamentals during the early design phase. / Ökad användning av Additive Manufacturing (AM) i industriell produktion kräver ett nytänkade av produkter (enheter, delsystem) ur AM-synvinkel. Simuleringsdrivna designverktyg spelar en viktig roll för att nå detta med designoptimering med hänsyn taget till AM-teknikens möjligheter. Därför ville bussramavdelningen (RBRF) på Scania CV AB, Södertälje undersöka synergierna mellan topologioptimering och Design för AM (DfAM) i detta examensarbete. I examensarbetet utvecklas en metodik för att skapa en DfAM-ramverk som involverar topologioptimering och åtföljs av ett tillverkningsanalyssteg. En fallstudieimplementering av denna utvecklade metodik utförs för validering och fortsatt utveckling. Fallstudien ersätter en befintlig lastbärande tvärbalk med en ny struktur optimerad med avseende på vikt och tillverkningsprocess. Det resulterade i en nästan självbärande AM-vänlig design med förbättrad styvhet tillsammans med en viktminskning på 9,5 %, vilket visar fördelen med att integrera topologioptimering och grundläggande AM-design tidigt i designfasen.
20

Användning av Siemens NX topologioptimeringsmodul i utvecklingsprocessen på Saab AB, Järfälla / Use of Siemens NX topology optimization module in the development process at Saab AB, Järfälla

Hosseini, Nicole, Thorberg, Sebastian, Wistedt, Ellen January 2022 (has links)
I och med en ökande konkurrens och tekniska framsteg har flygbranschen tvingats ta till nya metoder för att utveckla komponenter. I flygbranschen är viktoptimering en viktig faktor och på senare tid har man sett stora möjligheter med att genomföra detta med hjälp av topologioptimering och additiv tillverkning. På Saab finns det ett intresse av att undersöka hur topologioptimering kan användas för att om möjligt förenkla och förbättra den utvecklingsprocess man har i dag och göra de produkterna man tillverkar ännu bättre. Speciellt vill man titta på hur topologioptimeringsmodulen i det befintliga CAD systemet Siemens NX fungerar för att se hur konstruktörer skulle kunna använda sig av verktyget för att minska vikten på komponenterna. Syftet med denna studie är att undersöka hur topologioptimering kan genomföras i Siemens NX för att se hur det kan användas i utvecklingsarbetet på Saab samt för att se vilka möjligheter/utmaningar verktyget för med sig. Arbetet är baserat på en litteraturstudie, en intervjustudie, en workshop och undersökningar av Siemens NX topologioptimeringsmodul. Resultatet från intervjuerna visade att man på Saab ser en vinst i att använda sig av topologioptimering på flera ställen i utvecklingsprocessen. Undersökningen av Siemens topologioptimeringsmodul visar att verktyget kan användas, framförallt under en av de tidpunkterna i processen som föreslagits under intervjuerna, för att ta fram en kvalificerad första gissning på en konstruktion. Vinsten med att använda topologioptimering har visat sig vara att antalet iterationer mellan konstruktör och strukturanalytiker kan minska, vilket kan leda till en tidseffektiviserad utvecklingsprocess. Det har framkommit under intervju med en strukturanalytiker att färdiga komponenter, där topologioptimering använts, tenderar att vara bättre uppbyggda och ha lättare att klara av de ställda kraven. Arbetet har också visat att det finns utmaningar med att använda Siemens topologioptimeringsmodul på Saab. Ett av de stora problemen som framkommit under arbetet är att det är svårt att ta fram exakta lastfall på Saabs komponenter vilket krävs för att topologioptimera i Siemens NX. Ytterligare en försvårande faktor är att Saabs produkter i många fall har en låst förformskonstruktion med förutbestämda designparametrar, som dimensioner och funktioner. Detta medför att det i vissa fall varit svårt att få fram relevanta resultat. Resultaten från undersökning av Siemens topologioptimering har visat sig ge bäst resultat då den förformskonstruktion som optimeras har en stor designfrihet. / As a consequence of great technical progress in today's society and the increasing competition industries in between, the aviation industry has been forced to implement new methods in their product development to stay competitive. Topology optimization together with additive manufacturing is one of them and is used to optimize the weight of a component. Optimization in weight is a crucial factor in the aviation industry and topology optimization is recently shown to be a useful method. At Saab there is an interest in evaluating topology optimization and its capability to both improve and simplify today's development process to make even better products in the end. In particular, they want to look at how the topology optimization module in the existing CAD system Siemens NX works to explore the opportunities for the designersto reduce the weights of the components. This study aims to examine the use of topology optimization in Siemens NX to explore if it is a useful method to implement in the development process at Saab. The purpose is also to see what advantages and what challenges it brings. The work is based on a literature review, an interview study, a workshop and an investigation of the topology optimization module in Siemens NX.  Results from the interviews showed that Saab can benefit from the usage of topology optimization in several parts of the development process. Siemens NX topology optimization module, specifically, was found to fit in one of the suggested places, where it can be used to create a first qualified iteration. One of the advantages topology optimization can bring is fewer design iterations between designers and analysts which can help reduce the development time and improve the process. Furthermore one of the interviewed structural analysts claims that parts, where topology optimization tools has been used, has been found to be better constructed and has easier to pass through the validation process. The study has also revealed some difficulties with the usage of Siemens NX topology optimization module at Saab where the biggest question is whether relevant load cases exists or not. Topology optimization in Siemens NX requires definitive load cases which has been hard or even impossible to find in many of Saab´s products. Another difficulty with the usage of Siemens Topology optimization on Saab´s product is the limited freedom in the design space. The respondents mean that most of the constructed parts has a lot of predetermined parameters and in the topology optimization module this fact has sometimes made it difficult to produce relevant results.

Page generated in 0.0956 seconds