• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • 1
  • 1
  • Tagged with
  • 13
  • 9
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

AUTLER-TOWNES SPECTROSCOPY OF THE LITHIUM DIMER MOLECULE

Salihoglu, Omer January 2009 (has links)
This thesis consists of two experimental applications of the Autler-Townes (AT) spectroscopy. In the first experiment, we have determined the electronic transition dipole moment for the 7Li2 A1Σu+ - X1Σg+ system experimentally by using a 4-level continuous wave extended Λ excitation scheme and compared our results with theoretical predictions. 7Li2 is a good test case for the accuracy of the AT splitting based technique to determine the transition dipole moment and its internuclear distance R dependence. The molecule has only 3 electrons per atom. The A1Σu+ - X1Σg+ potential energy curves were well known and thus, one could calculate accurate rovibrational wavefunctions for the simulations. In addition two different quantum mechanical models were available for the comparison: an all-electron valence bond self-consistent-field method and a pseudo-potential molecular orbital method. Our experimental results for the absolute magnitude of the transition dipole matrix elements for rovibronic transitions for different R-centroid values are in excellent agreement with ab initio theoretical calculations of the transition dipole moment. We believe that this technique will become an important method for accurate measurement of the absolute value and R-dependence of electronic transition dipole moments in molecules. The comparison with theory reinforces this view on the accuracy and universality of the AT method. The focus of the second part of this thesis is on experimentally controlling the singlet-triplet character of the 7Li2 molecule by using an external coupling laser field. We have demonstrated experimentally for the first time that the frequency domain quantum control scheme developed by T.Kirova and F. C. Spano (Physical Review A, 71, 063816, 2005) can be used to control the mixing coefficients of a weakly perturbed pair of singlet and triplet rovibrational levels. The coupling field, when tuned to resonance with the rovibronic transition involving the singlet component, causes it to AT split, leading to enhanced mixing of the pair of levels, as predicted by theory. / Physics
2

Untersuchungen zur Bedeutung der sal-ähnlichen Gene bei der Maus / Studies on the sal-like genes of the mice

Buck, Anja 30 November 2001 (has links)
No description available.
3

Terahertz studies on semiconductor quantum heterostructures in the low and high field regime

22 September 2010 (has links) (PDF)
In this thesis we investigate experimentally certain aspects of the interaction of terahertz (THz) radiation with intersubband transitions and excitonic transitions in semiconductor quantum wells. The first part deals with a more fundamental view on an intersubband transition in a symmetric, undoped GaAs/AlGaAs multiple quantum well. After optical excitation of carriers, the considered electronic conduction intersubband transition is probed in the low-intensity linear regime using broadband THz pulses. These pulses are detected via field-resolved electro-optic sampling. While the sample’s terahertz absorption shows the expected single peak of the resonant intersubband transition, the differential transmission spectra, i.e. the photoexcitation-induced changes in transmission, display strong Fano signatures. On the basis of a microscopic theory, we show that they originate from a phase sensitive superposition of THz current and ponderomotive current. The latter one results from the wiggling motion of carriers induced by the accelerating THz field. Our findings demonstrate for the first time that the ponderomotive contribution has to be taken into account also at the lowest THz intensities. The following issues consider the interaction with THz pulses of higher intensity from the free-electron laser (FEL) of the Forschungszentrum Dresden-Rossendorf. In one experiment we investigate efficient second order sideband generation in the GaAs/AlGaAs multiple quantum well mentioned above. To this end a near-infrared laser tuned to excitonic interband transitions is mixed inside the sample with the inplane polarized FEL beam to create the sum- and difference-frequencies between them. We compare the sideband efficiencies for the THz beam tuned to the interexcitonic heavy-hole light-hole transition and to the intraexcitonic heavy-hole 1s-2p transition. In the latter case we achieve a ten times higher n=+2 low-temperature efficiency around 0.1%. This value is comparable to previous studies in the literature, but our approach involves different transitions in a much simpler geometry. At room temperature the efficiency drops only by a factor of 7 for low THz powers. The last part of this thesis addresses another fundamental quantum-mechanical phenomenon: the splitting of an absorption line in a strong THz field. In the same abovementioned quantum well sample the FEL wavelength is tuned near the intraexcitonic 1s-2p heavy-hole transition. The THz radiation induces a power-dependent splitting of the heavy-hole 1s exciton absorption line which manifests itself in the transmitted spectrum of a broadband near-infrared probe beam. The FEL-wavelength-dependent strength of this so-called Autler-Townes splitting is discussed on the basis of a simple two-level model.
4

The problem of evil twentieth century North American feminist theology /

Wuolle, Victoria R., January 2005 (has links)
Thesis (M.A.)--Catholic Theological Union at Chicago, 2005. / Vita. Includes bibliographical references (leaves 110-114).
5

The problem of evil twentieth century North American feminist theology /

Wuolle, Victoria R., January 1900 (has links)
Thesis (M.A.)--Catholic Theological Union at Chicago, 2005. / Vita. Includes bibliographical references (leaves 110-114).
6

Transition Dipole Moment and Lifetime Study of Sodium Dimer and Lithium Dimer Electronic States via Autler-Townes and Resolved Fluorescence Spectroscopy

SANLI, AYDIN January 2017 (has links)
This dissertation consists of three major studies. The first study, described in Chapter 3, focuses on the experimental work we carried out; experimental study of the electronic transition dipole moment matrix elements (TDMM) for the and electronic transitions of the sodium dimer molecule. Here we obtained the electronic transition dipole moments through Autler-Townes and resolved fluorescence spectroscopy and compared them to the theory. The second study, described in Chapter 4, is on sodium dimer ion-pair states. In this work, we calculated the radiative lifetimes and electronic transition dipole moments between Na2 ion-pair states ( , , , ) and state. This study was published in 2015. The last study, described in Chapter 5, is the total lifetime (bound-bound plus bound-free) and transition dipole moment calculations of the ion-pair electronic states, , of the lithium dimer molecule. / Physics
7

Stark Spectroscopy, Lifetimes and Coherence Effects in Diatomic Molecular Systems

Hansson, Annie January 2005 (has links)
<p>In this dissertation is exemplified how different laser based methods are applied in high-resolution spectroscopic studies of internal properties of diatomic molecules.</p><p>A molecular beam apparatus assembly is described, where a laser ablation source is combined with a time-of-flight mass spectrometer. Compounds investigated with this equipment are hafnium sulfide and hafnium oxide. The molecules are excited and ionized applying the resonant two-photon ionization (R2PI) scheme, which is a sensitive absorption and detection technique for probing the population of an excited state.</p><p>By means of the DC Stark effect, permanent electric dipole moments of HfS in the <i>D</i> <sup>1</sup>Π state and HfO in the <i>b</i> <sup>3</sup>Π<sub>1</sub> state are determined while the molecules are exposed to a static electric field. Under field-free conditions low temperature rotationally resolved spectra are recorded, generating line positions from which molecular parameters are derived.</p><p>The R2PI method, modified with an adjustable delay time, is also used in lifetime measurements of individual rotational levels of the HfS <i>D</i><sup> 1</sup>Π and HfO<i> b</i> <sup>3</sup>Π<sub>1</sub> states. Oscillator strengths for transitions from the ground state are calculated, and in this connection basic concepts like Einstein coefficients, line strengths and Hönl-London factors, are surveyed. Theoretical calculation of lifetimes is discussed in view of the fact that a commonly available computer program (LEVEL 7.5 by Le Roy) gives erroneous output.</p><p>Some coherence and quantum interference related phenomena, such as electromagnetically induced transparency (EIT) and Autler-Townes (AT) splitting, are presented in the latter part of this thesis. Fundamental concepts and relations are introduced and explained. The driven three-level cascade system is elucidated, including some of its experimental applications to alkali metal dimers, Na<sub>2</sub> and Li<sub>2</sub>.</p><p>A triple resonance spectroscopy experiment is described in terms of a three-laser, four-level inverted-Y excitation scheme, implemented in Na<sub>2</sub>. The accompanying density matrix formalism, providing the basis for theoretical simulations, is accounted for. From analysis of the results an absolute value of the electric dipole moment matrix element (transition moment) is extracted, using the AC Stark effect.</p><p>Some recently reported unexpected experimental results and unforeseen features, occurring in Doppler broadened samples and related to the open character of molecular systems, are briefly commented.</p>
8

Stark Spectroscopy, Lifetimes and Coherence Effects in Diatomic Molecular Systems

Hansson, Annie January 2005 (has links)
In this dissertation is exemplified how different laser based methods are applied in high-resolution spectroscopic studies of internal properties of diatomic molecules. A molecular beam apparatus assembly is described, where a laser ablation source is combined with a time-of-flight mass spectrometer. Compounds investigated with this equipment are hafnium sulfide and hafnium oxide. The molecules are excited and ionized applying the resonant two-photon ionization (R2PI) scheme, which is a sensitive absorption and detection technique for probing the population of an excited state. By means of the DC Stark effect, permanent electric dipole moments of HfS in the D 1Π state and HfO in the b 3Π1 state are determined while the molecules are exposed to a static electric field. Under field-free conditions low temperature rotationally resolved spectra are recorded, generating line positions from which molecular parameters are derived. The R2PI method, modified with an adjustable delay time, is also used in lifetime measurements of individual rotational levels of the HfS D 1Π and HfO b 3Π1 states. Oscillator strengths for transitions from the ground state are calculated, and in this connection basic concepts like Einstein coefficients, line strengths and Hönl-London factors, are surveyed. Theoretical calculation of lifetimes is discussed in view of the fact that a commonly available computer program (LEVEL 7.5 by Le Roy) gives erroneous output. Some coherence and quantum interference related phenomena, such as electromagnetically induced transparency (EIT) and Autler-Townes (AT) splitting, are presented in the latter part of this thesis. Fundamental concepts and relations are introduced and explained. The driven three-level cascade system is elucidated, including some of its experimental applications to alkali metal dimers, Na2 and Li2. A triple resonance spectroscopy experiment is described in terms of a three-laser, four-level inverted-Y excitation scheme, implemented in Na2. The accompanying density matrix formalism, providing the basis for theoretical simulations, is accounted for. From analysis of the results an absolute value of the electric dipole moment matrix element (transition moment) is extracted, using the AC Stark effect. Some recently reported unexpected experimental results and unforeseen features, occurring in Doppler broadened samples and related to the open character of molecular systems, are briefly commented.
9

THz pump-probe spectroscopy of the intersubband AC-Stark effect in a GaAs quantum well

Schmidt, Johannes 05 February 2020 (has links)
In this thesis we present a study about strong light-matter interaction in a broad single GaAs/AlGaAs quantum well representing a 3-level system. In particular we investigate the AC-Stark effect, where we observe in THz absorption spectra an Autler-Townes splitting as well as a Mollow-triplet. Compared to previous work, we showed for the first time an all-THz pump-probe experiment in the THz regime below the Reststrahlenband. Furthermore, we observe a strong frequency shift in the absorption energy of the first intersubband transition depending on the charge carrier density in the quantum well. The Autler-Townes splitting as well as the absorption frequency shift can be potentially exploited for THz-modulation applications. Beyond nonlinear optics many interesting effects occur in the strong light-matter interaction regime such as Rabi oscillations, coherent population trapping, lasing without inversion, electromagnetically induced transparency (EIT) and the AC-Stark effect. Our quantum well represents a 3-level system in which we investigate a splitting behaviour in the absorption spectrum of the first and second intersubband transition. Especially a splitting for the first intersubband transition is predicted also for electromagnetically induced transparency, while the second intersubband transition is pumped with a strong varying electric field. Naturally, a fundamental question is, how to distinguish EIT and an Autler-Townes duplet since both result in a spectrally transparent window. The method of choice for investigations combines narrowband pulses in the THz range provided by a free-electron laser and broadband THz pulses generated in a GaP crystl within a THz time-domain spectroscopy setup. In this unique configuration we perform time-resolved pump and probe spectroscopy experiments by pumping resonantly the second intersubband transition at 3.4 THz to induce a splitting of the second and third subband. Broadband THz pulses then probe an absorption splitting of about 0.2 THz related to the first intersubband transition at ≈ 2.3 THz as well as a splitting of the second intersubband transition (Mollow triplet). Analyzing experiments and using a theoretical criteria to distinguish EIT and Autler-Townes splitting, we conclude to observe an Autler-Townes doublet instead of an EIT effect. / In dieser Arbeit berichten wir über die starke Licht-Materie Wechselwirkung in 3-Niveau system anhand eines einzelnen, breiten GaAs/AlGaAs Quantentopfes. Insbesondere untersuchen wir den AC-Stark Effekt und beobachten eine Aufspaltung des Absorptionsspektrums durch das Autler-Townes Dublett und das Mollow Triplett. Im direkten Vergleich mit vorangegangenen Arbeiten zeigen wir zum ersten Mal ein reines THz Anrege-Abfrage Experiment mit Frequenzen unterhalb des Reststrahlenbandes. Weiterhin beobachten wir eine starke Frequenzverschiebung der Absorptionsenergie des ersten Intersubbandübergangs in Abhängigkeit von der Ladungsträgerdichte im Quantentopf. Sowohl das Autler-Townes Dublett als auch die Verschiebung der Absorptionsfrequenz ermöglichen potentielle Anwendung im Bereich der THz-Modulation. Im Bereich der starken Licht-Materie Wechselwirkung sind viele interessante Effekte beobachtbar wie Rabi Oszillationen, coherent population trapping, Lasern ohne Inversion, elektromagnetisch induzierte Transparenz (EIT) und der AC-Stark Effekt. Unser Quantentopf stellt ein 3-Niveau System dar, in welchem wir eine Aufspaltung der Absorption bezüglich des ersten und zweiten Intersubbandübergangs beobachten. Insbesondere für den ersten Intersubbandübergang ist auch eine Absorptionsaufspaltung durch den EIT Effekt vorhergesagt, während der zweite Intersubbandübergang durch ein starkes, elektrisches Wechselfeld angeregt wird. Es stellt sich dann die Frage, wodurch sich die Effekte EIT und Autler-Townes splitting unterscheiden, weil beide durch ein spektrales transparentes Fenster gekennzeichnet sind. Die von uns gewählte Methode verknüpft schmalbandige, starke elecktrische Wechselfelder im THz-Bereich eines freien Elektronen Lasers und breitbandigen THz-Pulsen, welche durch nichtlineare optische Effekte in einem THz Zeit-Bereichs Spektroskopie Aufbaus erzeugt werden. In dieser einzigartigen Konfiguration führen wir zeitaufgelöste Anrege-Abfrage Spektroskopie Experimente durch, in dem wir den zweiten Intersubbandübergang bei 3, 4 THz nahezu resonant anregen und das zweite und dritte Subband aufspalten. Mit breitbandigen THz Pulsen fragen wir dann die Absorptionsaufspaltung von ca. 0, 2 THz des ersten Intersubbandübergangs bei ≈ 2, 3 THz und des zweiten Intersubbandübergangs (Mollow-Triplett) ab. Nach Auswerten der Experimente und theoretischer Kriterien für die Unterscheidung zwischen EIT und Autler-Townes splitting schlussfolgern wir, ein Autler-Townes Dublett zu beobachten.
10

Terahertz studies on semiconductor quantum heterostructures in the low and high field regime

Wagner, M. January 2010 (has links)
In this thesis we investigate experimentally certain aspects of the interaction of terahertz (THz) radiation with intersubband transitions and excitonic transitions in semiconductor quantum wells. The first part deals with a more fundamental view on an intersubband transition in a symmetric, undoped GaAs/AlGaAs multiple quantum well. After optical excitation of carriers, the considered electronic conduction intersubband transition is probed in the low-intensity linear regime using broadband THz pulses. These pulses are detected via field-resolved electro-optic sampling. While the sample’s terahertz absorption shows the expected single peak of the resonant intersubband transition, the differential transmission spectra, i.e. the photoexcitation-induced changes in transmission, display strong Fano signatures. On the basis of a microscopic theory, we show that they originate from a phase sensitive superposition of THz current and ponderomotive current. The latter one results from the wiggling motion of carriers induced by the accelerating THz field. Our findings demonstrate for the first time that the ponderomotive contribution has to be taken into account also at the lowest THz intensities. The following issues consider the interaction with THz pulses of higher intensity from the free-electron laser (FEL) of the Forschungszentrum Dresden-Rossendorf. In one experiment we investigate efficient second order sideband generation in the GaAs/AlGaAs multiple quantum well mentioned above. To this end a near-infrared laser tuned to excitonic interband transitions is mixed inside the sample with the inplane polarized FEL beam to create the sum- and difference-frequencies between them. We compare the sideband efficiencies for the THz beam tuned to the interexcitonic heavy-hole light-hole transition and to the intraexcitonic heavy-hole 1s-2p transition. In the latter case we achieve a ten times higher n=+2 low-temperature efficiency around 0.1%. This value is comparable to previous studies in the literature, but our approach involves different transitions in a much simpler geometry. At room temperature the efficiency drops only by a factor of 7 for low THz powers. The last part of this thesis addresses another fundamental quantum-mechanical phenomenon: the splitting of an absorption line in a strong THz field. In the same abovementioned quantum well sample the FEL wavelength is tuned near the intraexcitonic 1s-2p heavy-hole transition. The THz radiation induces a power-dependent splitting of the heavy-hole 1s exciton absorption line which manifests itself in the transmitted spectrum of a broadband near-infrared probe beam. The FEL-wavelength-dependent strength of this so-called Autler-Townes splitting is discussed on the basis of a simple two-level model.

Page generated in 0.0217 seconds