Spelling suggestions: "subject:"transcendance"" "subject:"transcendances""
21 |
Le paradoxe dans les Alices de Lewis Carroll : la force du littéraire dans la théorisation de l'irrésoluble /Faucher, Benoît January 2006 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
22 |
Approximation et indépendance algébrique de quasi-périodes de variétés abéliennesGrinspan, Pierre 15 September 2000 (has links) (PDF)
Périodes et ``quasi-périodes'' (aussi appelées, resp., périodes de première et deuxième espèce) d'une variété abélienne $A$ définie sur un sous-corps de $\CC$ s'obtiennent par intégration, le long des chemins fermés sur $A(\CC)$, des différentielles rationnelles sur $A$, méromorphes et sans résidus de sorte que ces intégrales soient bien définies; les premières sont obtenues en se restreignant aux différentielles régulières. Au premier chapitre de la thèse, la ``méthode modulaire'' de Barré, Diaz, Gramain, Philibert et Nesterenko est utilisée et quelque peu raffinée pour obtenir notamment une mesure d'approximation algébrique du quotient d'une période d'une courbe elliptique définie sur $\bar\QQ$ par sa quasi-période associée; ceci améliore un résultat récent de N. Saradha, en lui faisant presque contenir celui obtenu en 1980 par Reyssat avec la ``méthode elliptique''. Puis, dans la deuxième partie, nous étudions diverses extensions possibles des théorèmes de Chudnovsky (des années 70) sur l'indépendance algébrique de quasi-périodes de courbes elliptiques; ceci inclut des extensions aux variétés abéliennes de dimension quelconque, ainsi que des résultats d'approximation (algébrique) simultanée précisant les assertions d'indépendance algébrique. Au coeur des deux parties, bien que celles-ci soient par ailleurs très différentes, se trouve une astuce suggérée par Chudnovsky au début des années 80, consistant à faire apparaître et exploiter des propriétés de ``G-fonctions'' (ou ``condition d'Eisenstein'' de Polya et Szegö) dans les estimations arithmétiques de la preuve de transcendance; pour ce faire on utilise, dans la deuxième partie, des généralisations en plusieurs variables du théorème d'Eisenstein et de la fonction sigma de Weierstrass qui avaient servi à Chudnovsky, et dans la première, les liens entre les fonctions modulaires (thêta notamment) et hypergéométriques.
|
23 |
Le paradoxe dans les Alices de Lewis Carroll : la force du littéraire dans la théorisation de l'irrésoluble /Faucher, Benoît January 2006 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
|
24 |
Écrire le divin : Georges Bataille face aux textes mystiquesBreton, Mahité January 2004 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
25 |
La quête spirituelle dans la poésie française de 1918 à 1945 (Jouve, Bataille, Valéry) / The spiritual quest in French poetry from 1918 to 1945 (Jouve, Bataille, Valéry)Kouakou, Kouassi ange-valery 28 June 2013 (has links)
Traversé par une insatiable soif de spiritualité et de liberté, le XXe siècle est connu pour être celui de la « Mort de Dieu » ou plus explicitement celui du repositionnement de l’homme au centre du divin. C’est dans l’élan de modernité, de renouvellement spirituelle, donc de rejet de toute sorte de tradition religieuse que s’inscrit l’expérience poétique de Pierre Jean Jouve, Georges Bataille et Paul Valéry.Alors que rien ne semble a priori les réunir, ces trois poètes aux idées divergentes et souvent opposées, un croyant iconoclaste et hétérodoxe, un athée hanté par la quête du sacré et un pur rationaliste à la recherche de son « Dieu », ont fait de l’univers de la poésie un lieu de questionnement, d’exploration profonde de l’intériorité et de quête de soi. A travers une extase à la fois poétique et mystique qui fait le lit à l’éros, à l’amour, à la musique et à la mort dans une sorte de jonction entre Immanence et Transcendance, il se dessinent de nouvelles voies d’expérimentation spirituelle qui érigent ces poètes en véritables prophètes de leur époque. / Crossed by insatiable one thirst of spirituality and freedom, the XXth centuryis known to be the one of «God’s Death or more explicitly that repositioning of theman in the center of the divine. It is in the moose of spiritual modernity, of renewal,thus various rejection of religious tradition that joins the poetic experience of PierreJean Jouve, Georges Bataille and Paul Valéry. While nothing seems to gather them, these three poets in the divergent andoften set ideas, an iconoclastic and heterodox believer, an atheist haunted by the questof the sacred and a pure rationalist in search of his "God", made of the universe of the poetry a place of questioning, deep exploration of the interiority and quest of one.Through an ecstasy at the same time poetic and mystic which makes the bedfor éros, love, music and death in a junction of Immanence and Transcendence, it take shape new ways of spiritual experiment which set up these poets as real prophetsof their time.
|
26 |
Lemmes de zéros et distribution des valeurs des fonctions méromorphes / Zero estimates and value distribution of meromorphic functionsVillemot, Pierre 06 November 2018 (has links)
Cette thèse porte sur des propriétés arithmétiques des fonctions méromorphes et transcendantes d'une variable. Dans le chapitre 3, nous définissons des mesures de transcendance pour les fonctions holomorphes et méromorphes sur un domaine régulier de C puis nous majorons ces mesures en fonction de la distribution des petites valeurs de la fonction étudiée.Grâce aux théories de Nevanlinna et d'Ahlfors, nous étudions dans le chapitre 4 la distribution des petites valeurs de certaines classes de fonctions méromorphes sur D ou C afin d'obtenir pour celles-ci des majorations explicites de leurs mesures de transcendance. L'application principale de ce travail est l'obtention de nouveaux lemmes de zéros polynomiaux pour de grandes familles de fonctions méromorphes et en particulier pour les fonctions de Weierstrass et les fonctions fuchsiennes. Dans le chapitre 5, nous montrons que ces lemmes de zéros polynomiaux conduisent à des bornes logarithmiques du nombre de points algébriques de degré et hauteur bornée contenus dans les graphes des fonctions étudiées. / This PhD thesis is about some arithmetic properties of meromorphic functions of one variable.In chapter 3, we define the transcendental measures for holomorphic and meromorphic functions on a regular domain of C, then we obtain upper bounds of these measures in terms of the distribution of small values of the function.Thanks to the Nevanlinna and Ahlfors theories, we study in chapter 4 the distribution of small values of some classes of meromorphic functions on D or C in order to obtain explicit upper bounds of transcendental measures.The main application of this work is the demonstration of new polynomial zero estimates for large classes of meromorphic functions, in particular for Weierstrass functions and fuchsian functions.In chapter 5, we prove that polynomial zero estimates lead to logarithmic bounds of the number of algebraic points of bounded degree and height contained in the graph of the function.
|
27 |
Corps enveloppants des algèbres de Lie en dimension infinie et en caractéristique positiveBois, Jean-Marie 03 December 2004 (has links) (PDF)
Soient g une k-algèbre de Lie, U(g) son algèbre enveloppante, K(g) le corps des fractions de U(g). L'objet de cette thèse est d'étudier des propriétés algébriques du corps gauche K(g) dans les deux cas suivants : d'une part si k est de caractéristique 0 et g est de dimension infinie ; d'autre part si k est de caractéristique positive et g est de dimension finie.<br /><br />On suppose k de caractéristique nulle. On définit d'abord la notion de "degré de transcendance de niveau q" pour les algèbres de Poisson. Cette notion est introduite à partir de la notion de dimension de niveau q définie par V. Pétrogradsky pour les algèbres associatives et les algèbres de Lie. On démontre, sous des hypothèses peu restrictives sur g, que le degré de transcendance de niveau q+1 de K(g) est égal à la dimension de niveau q de g.<br /><br />On s'attache ensuite à l'étude de la famille des algèbres de type Witt définies par R. Yu. On construit ainsi des familles infinies de corps gauches deux à deux non isomorphes mais de même degré de transcendance de niveau 3 donné. On étudie aussi la question des centralisateurs dans les corps enveloppants des parties positives des algèbres de type Witt. On établit en particulier le résultat suivant : il existe des algèbres de Lie non commutatives de dimension infinie g telles que le premier corps de Weyl ne se plonge pas dans K(g).<br /><br />Supposons maintenant k de caractéristique p>0. On étudie le cas particuliers des algèbres de Lie suivantes : les algèbres gl(n) ; les algèbres sl(n) lorsque p ne divise pas n ; l'algèbre de Witt modulaire W(1) et une sous-algèbre P de l'algèbre de Witt W(2) (s'identifiant à un produit tensoriel de l'algèbre de Lie W(1) avec une algèbre associative de polynômes tronqués). Dans tous les cas, on démontre que le corps enveloppant est isomorphe à un corps de Weyl. Pour les algèbres W(1) et P, on démontre en outre que le centre de l'algèbre enveloppante est un anneau factoriel, en accord avec une conjecture récente de A. Braun et C. Hajarnavis.
|
28 |
Vibrations de classe Cs/2 des tores plats Ts et théorie des nombresAllouche, Jean-Paul 08 May 1978 (has links) (PDF)
Nous montrons que, sur le tore Ts muni d'une métrique à coefficients strictement positifs et pour certaines valeurs de ces coefficients, il existe une solution de l'équation des ondes qui soit de classe Cs/2 et non presque-périodique en temps.
|
29 |
Théorie des nombres et automatesAllouche, Jean-Paul 16 June 1983 (has links) (PDF)
Nous mettons en évidence un certain nombre de liens entre la théorie des nombres et celle des automates :<br>- étude de sous-suites de la suite "somme des chiffres", étude des itérées de cette suite ;<br>- utilisation de suites automatiques particulières (baptisées q-miroirs) dans le problème de l'itération des fonctions continues unimodales réelles ;<br>- étude d'un curieux ensemble de répartition modulo 1 de nombres réels ; <br>- propriétés arithmétiques d'un automate cellulaire ;<br>- répartition modulo 1 des puissances de séries formelles à coefficients automatiques (donc algébrique sur le corps des fractions rationnelles sur un corps fini).
|
30 |
Minoration de la hauteur normalisée en petite codimensionPontreau, Corentin 09 December 2005 (has links) (PDF)
Le point de départ de cette thèse est l'étude du problème de Lehmer en dimension supérieure à deux. Le but ici est de trouver dans le cadre plus général du groupe multiplicatif $G_m^n$, des bornes inférieures pour la hauteur de sous-variétés de petite dimension, ou plutôt de petite codimension. <br /><br />Dans un premier temps nous regroupons un certain nombre de résultats plus ou moins connus sur les sous-groupes algébriques et le comportement des sous-variétés après multiplication par un entier dans $G_m^n$. Par la suite, nous montrons des minorations de type arithmétique et géométrique pour les sous-variétés de codimension 1 et 2 de $G_m^2$ et $G_m^3$ respectivement. A la différence de ce qui est fait dans les travaux antérieurs de F. Amoroso et S. David, concernant les sous-variétés de codimension différente de 1, nous n'utilisons pas de descente finale pour conclure nos preuves, mais un nouvel argument géométrique. Ceci simplifie grandement la démarche, et apporte de réelles améliorations quantitatives dans ces cas étudiés.<br /><br />Nous nous intéressons enfin à l'étude des petits points d'une sous-variété. Etant donnée une surface $V$ de $G_m^3$ géométriquement irréductible, nous montrons qu'en dehors d'un nombre fini de translatés de tores exceptionnels inclus dans $V$, dont nous majorons la somme des degrés, tous les points sont de hauteur minorée par une quantité quasi-optimale $\epsilon(V)>0$, essentiellement linéaire en l'inverse du degré de $V$, chose que l'on ne sait pas faire dans le cas général.
|
Page generated in 0.0704 seconds