• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Présence nucléaire et rôle de la monoxyde d'azote synthase endothéliale dans la régulation de la transcription génique

Geha, Antoinette January 2004 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
2

Effets d'un mélange d'ingrédients actifs de pesticides sur l'activation de la voie du récepteur aux hydrocarbures d'aryle

Bergeron, Sandra January 2017 (has links)
Depuis bon nombre d’années déjà, la question ne se pose plus ; l’utilisation des pesticides en agriculture est nécessaire puisque sans ces derniers les chances que les terres soient ravagées par les insectes, champignons ou petits rongeurs représenteraient un trop grand risque pour les agriculteurs. Cependant, cette utilisation massive de pesticides en agriculture apporte son lot de questionnements et d’inquiétudes face aux effets néfastes qu’ils pourraient avoir tant sur les humains que sur la faune et la flore. Bien que tous les pesticides utilisés au Canada soient homologués par Santé Canada, et sont donc jugés comme ne représentant pas de risques élevés ni pour l’environnement ni les humains, nul ne connait les effets d’un mélange de pesticides sur nos cellules, notre organisme. Ce projet de recherche vise donc à évaluer les effets d’un mélange de pesticides composé de cinq ingrédients actifs communément utilisés en agriculture sur les niveaux d’expression du gène CYP1A1, un gène cible du récepteur aux hydrocarbures d'aryle (AhR). Ce récepteur, bien qu’impliqué dans bon nombre d’autres réponses cellulaires, joue un rôle important dans la détoxification de l’organisme en activant la transcription de certains gènes dans la famille du cytochrome P450, dont le gène CYP1A1. Tel que mentionné précédemment, le but du présent projet de recherche est d’évaluer les effets d’un mélange composé d’au moins deux ingrédients actifs de pesticides sur l’activation de la voie de AhR. Les résultats du projet de recherche ont démontré que certaines combinaisons donnent lieu à une activation synergique de la voie AhR alors que d’autres donnent plutôt lieu à une activation additive. Dans le cas où la concentration des ingrédients actifs est élevée, on obtient plutôt un effet inhibiteur. N’est-ce pas paradoxal qu’à faibles doses, il y a un effet soit additif ou synergique alors qu’à de hautes concentrations, l’effet est plutôt inhibiteur ? Il ne faut alors pas croire que de fortes doses de pesticides sont bénéfiques puisque les effets sur les niveaux d’expression des gènes cibles de AhR ne signifient pas qu’il en sera de même pour les tous les autres gènes. Les résultats ont également démontré qu’en présence d’œstrogène, les ingrédients actifs seuls ou en combinaison ont le même effet que le 2,3,7,8-Tétrachlorodibenzo-para-dioxine (TCDD) sur l’interaction croisée entre AhR et le récepteur aux œstrogènes ; l’expression du gène CYP1A1 est réprimée alors que l’expression de CYP1B1 demeure inchangée. Maintenant qu’on comprend bien les effets que peuvent avoir une combinaison d’ingrédients actifs de pesticides sur l’activation AhR, il ne reste plus qu’à comprendre pourquoi certains mélanges donnent lieu à une activation synergique et d’autres additive. Une question bien simple, mais à laquelle il est si difficile de répondre.
3

Rôle de la transcription pervasive antisens chez Saccharomyces cerevisiae dans la régulation de l'expression des gènes / Role of pervasive transcription in gene expression regulation in Saccharomyces cerevisiae

Chery, Alicia 04 October 2017 (has links)
L'expression des gènes est finement régulée dans la cellule et soumise à de multiples contrôles-qualité. Cette régulation intervient à différents niveaux, de façon à garantir une synthèse efficace des produits fonctionnels de l'expression génique, et pour assurer une adaptation à un changement environnemental. Notamment, les régulations transcriptionnelles sont cruciales pour contrôler la cinétique et le niveau d'expression des gènes. La transcription pervasive est une transcription généralisée non-codante et instable qui fut révélée chez la levure Saccharomyces cerevisiae. Bien que son potentiel régulateur ait été démontré de façon ponctuelle, la question de sa fonctionnalité globale restait ouverte. Lors de ma thèse, j'ai pu montrer l'existence de phénomènes multiples d'interférence transcriptionnelle liés à la transcription pervasive, pour co-réguler un ensemble de gènes entre la phase exponentielle et la quiescence. En effet, la transcription non-codante en antisens des gènes concernés conduit à leur répression, dans des conditions où ils ne doivent pas être exprimés. Le mécanisme de répression fait intervenir des modifications de la chromatine. La levure bourgeonnante, dépourvue de la machinerie d'ARN interférence, présente donc un système fin de régulation de l'expression génique utilisant la transcription pervasive. / In the cell, gene expression is finely tuned and is submitted to different quality-controls. Gene are regulated at different expression levels in order to guarantee a proper synthesis of functional products, and to ensure an optimal adaptation to environmental changes. In particular, transcriptional regulations are critical for gene expression level and kinetics.Pervasive transcription, defined as a generalized non-coding and unstable transcription, was discovered in the yeast Saccharomyces cerevisiae. Although its regulatory potential was punctually shown, the question of its global functionality still remained. During my PhD, I could show the existence of numerous transcriptional interference mechanisms involved in the co-regulation of a group of genes between exponential phase and quiescence. Indeed, non-coding transcription in antisense to genes promoter leads to its repression in conditions where they have to be switched off. The repression mechanism is allowed by chromatin modifications.Hence, budding yeast that lacks RNA interference machinery has developed a fine regulation system using pervasive transcription.
4

Around the poor use of dietary carbohydrate phenotype in trout (Oncorhynchus mykiss) : its epigenetic consequences and metabolic modulation through a programming strategy / Phénotype de faible utilisation des glucides alimentaires chez la truite arc-en-ciel (Oncorhynchus mykiss) : ses conséquences épigénétiques et sa modulation métabolique via une stratégie de programmation

Liu, Jingwei 24 September 2019 (has links)
La truite arc-en-ciel carnivore (Oncorhynchus mykiss) est considérée comme une espèce pauvre utilisatrice de glucides alimentaires. Des études récentes ont montré qu'une hypométhylation globale de l'ADN hépatique induite par un régime alimentaire riche en glucides et pauvre en protéines pourrait être impliquée dans l'établissement / le maintien du de ce phénotype chez la truite, mais le détail des mécanismes sous-jacents reste inconnu. La thèse vise à étudier les mécanismes épigénétiques sous-jacents à ce phénotype de faible utilisation des glucides alimentaire chez la truite et à examiner si le métabolisme du glucose et l’épigénome chez les juvéniles peuvent être programmés par un stimulus hypoxique précoce. Nous avons d’abord identifié tous les gènes paralogues liés aux voies de méthylation / déméthylation de l’ADN (dnmt, tet et tdg) dans le génome de la truite, clarifié leurs histoires évolutives et analysé leurs profils d’expression au cours de la gamétogenèse et de l’embryogenèse chez la truite. Nous avons ensuite étudiés plus en détail les processus et les mécanismes potentiellement à l’origine de l'hypométhylation de l'ADN hépatique global constatée chez la truite après un régime riche en glucides et pauvre en protéines. Les résultats ont montré pour la première fois qu'une diminution du taux deprotéines et une augmentation du taux de glucides dans l’aliment induisent de manière indépendante et en interaction une hypométhylation hépatique globale chez la truite, qui semble établie par le biais d'une voie de déméthylation active. Nous avons également constaté qu’une forte hyperglycémie induite par une injection de glucose induit une hypométhylation globale de l’ADN au niveau des sites CmCGG dans le foie de la truite. Les mécanismes détaillés de ces processus de déméthylation restent à élucider. Enfin, grâce à la stratégie de programmation métabolique, nous avons pour la première fois confirmé que l’utilisation d’un stimulus non nutritionnel au début de la vie, l’hypoxie, pouvait moduler de façon persistante la transcription des gènes liés au métabolisme du glucose chez la truite juvénile sans nuire aux performances de croissance. De plus, selon sa nature chronique ou aigue, l’hypoxie, a tendance à induire des effets de programmation opposés sur les gènes codants pour les transporteurs au glucose notamment dans le foie et le muscle de la truite juvénile. Dans son ensemble, la thèse met en avant notre compréhension du rôle du méthylome dans la contribution à la faible capacité d'utilisation des glucides alimentaires chez la truiteLa thèse met aussi en lumière le potentiel d'utilisation de l'hypoxie comme stimulus pour programmer le métabolisme du glucose, l'épigénome et l'utilisation des glucides alimentaires chez la truite arc-en-ciel. / The carnivorous rainbow trout (Oncorhynchus mykiss) is considered as a poor user of dietary carbohydrates. Recent studies showed that a high-carbohydrate/low protein diet inducing hepatic global DNA hypomethylation could be involved in the establishment/maintenance of the poor dietary carbohydrates utilisation phenotype in trout, but the detail mechanisms remain unclear. The present thesis aimed at investigating the epigenetic mechanisms underlying this poor dietary carbohydrate utilisation phenotype in trout, and exploring if the glucose metabolism and the epigenome in juveniles can be programmed through a hypoxic stimulus during early life. We first identified all the paralogous genes related to DNA methylation/demethylation pathways (dnmt, tet and tdg) in trout genome, clarified their molecular evolution histories and monitored their transcriptional expression patterns during gametogenesis and embryogenesis in trout. Besides, we investigate further the causes, processes and potential mechanisms about the hepatic global DNA hypomethylation in trout after feeding a high carbohydrate/low protein diet. Results for the first time demonstrated that a decrease in protein content and an increase in carbohydrate content in the diet can independently as well as interactively induce hepatic global hypomethylation in trout. This global loss of methylation is probably established through an active demethylation pathway. We also found that a strong hyperglycaemia induced by glucose injection induces global CmCGG hypomethylation in the liver of trout. The detailed mechanisms of these demethylation processes remain to be elucidated. Finally, through metabolic programming strategy, we confirmed for the first time that using a non-nutritional stimulus, hypoxia, during early life stage persistently modulates the transcription of glucose metabolism-related genes in juvenile trout without negative effects on growth performance. Moreover, acute and chronic hypoxia tended to induce opposite programming effects on glucose-transporter encoding genes in both liver and muscle of juvenile trout. Together, the present thesis brings forward our understandings about the roles of epigenetics in contributing to the low ability to use dietary carbohydrates in trout, and sheds light on the potential of using hypoxia as the stimulus in metabolic programming strategy to tailor the glucose metabolism, the epigenome and dietary carbohydrate utilisation in rainbow trout.
5

Régulations épigénétiques et cancer : coopération ou antagonisme entre le suppresseur de tumeurs BAP1 et les facteurs de transcription FOXKs ?

Ahmed, Oumaima 03 1900 (has links)
Le suppresseur de tumeurs BAP1 est la déubiquitinase la plus fréquemment mutée dans le cancer humain. Ce dernier est impliqué dans la régulation des gènes cibles des facteurs de transcription E2Fs, qui sont des régulateurs centraux de la prolifération cellulaire en contrôlant, les points de contrôle du cycle cellulaire, la mitose, la réparation de l'ADN et l'apoptose. Dans le complexe BAP1, nous notons plusieurs protéines liant la chromatine, telles que les facteurs de transcription FOXKs (FOXK1 et FOXK2), qui sont connues pour recruter BAP1 sur ses gènes cibles. En effet, le complexe BAP1 est recruté à la chromatine pour assurer sa fonction de déubiquitination de la marque d’histone répressive H2AK119ub, et ainsi, réguler l'expression des gènes. Dans cette étude, nous avons cherché à étudier l'axe BAP1-FOXKs dans la régulation des fonctions cellulaires associées à ce complexe. Fait intéressant, FOXK1, mais pas FOXK2, est connue pour avoir des propriétés oncogéniques, car des niveaux d'expression plus élevés de FOXK1 ont été observés dans une variété de cancers et sont corrélés avec la progression tumorale, l'invasion et les métastases. Ce fait soulève de nombreuses questions sur la nature de la régulation entre ces protéines dont la question suivante : s’agit-il d’une relation de coopération ou antagonisme, entre le suppresseur de tumeurs BAP1 et l’oncogène FOXK1 ? De façon intéressante, nous avons découvert que les protéines FOXK1 et FOXK2 forment deux complexes mutuellement exclusifs avec le complexe BAP1, ce qui suggère qu'elles ont des fonctions moléculaires et cellulaires distinctes à travers ce complexe. Nos études phénotypiques en utilisant des fibroblastes primaires humains montrent que FOXK1 et FOXK2 régulent différemment la prolifération cellulaire, la sénescence cellulaire et la transformation oncogénique. En effet, FOXK1, mais pas FOXK2, favorise la prolifération cellulaire via l’activation de l'expression d'E2F1 et de ses gènes cibles. En conséquence, FOXK1 retarde la sénescence cellulaire et favorise une réplication prolongée des fibroblastes primaires. De plus, la surexpression de FOXK1 favorise la transformation oncogénique des fibroblastes primaires transduits par les oncoprotéines E1A et RAS V12G en augmentant la pénétrance et en diminuant le temps de latence de formation des tumeurs. Ces résultats confirment que ces facteurs disposent de fonctions de signalisation cellulaire distinctes et suggèrent qu'ils sont régulés de manière différentielle au niveau moléculaire. Afin d’investiguer davantage le mécanisme moléculaire qui pourrait distinguer entre les fonctions cellulaires de FOXK1 et FOXK2, nous avons cherché à étudier les modifications post-traductionnelles de ces facteurs. Fait intéressant, nos données de spectrométrie de masse ont révélé que seul FOXK1, mais pas FOXK2, est modifié par O-GlcNAcylation, une modification post-traductionnelle catalysée par l'enzyme OGT. Nos essaies in-vitro montrent que cette modification régule la fonction de FOXK1 dans la prolifération cellulaire car le mutant de la O-GlcNAcylation réduit l'impact prolifératif de FOXK1 sur des cellules. Nos essaies in-vivo, en utilisant un modèle de xénogreffe de cellules cancéreuses humaines chez la souris, confirment que la O-GlcNAcylation de FOXK1 favorise la croissance tumorale. Plus intéressant, le mutant de la O-GlcNAcylation de FOXK1 affecte la transformation oncogénique des fibroblastes primaires transduits par E1A et RAS V12G, en augmentant le temps de latence tumorale et diminuant la taille finale de la tumeur. Au niveau de la chromatine, la O-GlcNAcylation de FOXK1 favorise le recrutement de BAP1 sur les gènes cibles des facteurs E2Fs afin deubiquitiner H2AK119Ub et permettre leur expression. En conclusion, la O-GlcNAcylation est un mécanisme clé qui régule la fonction de FOXK1 dans la prolifération cellulaire, et qui contribue à son activité oncogénique. Dans une autre perspective de cette étude, et afin d'investiguer l'importance de l'axe de signalisation BAP1-FOXKs dans la fonction de suppression tumorale de BAP1, nous avons étudié le rôle fonctionnel de l’interaction BAP1-FOXKs dans un modèle murin. Nous avons généré un modèle de souris en utilisant le système d'édition de gènes CRISPR/Cas9 pour muter la thréonine 492 du gène bap1, en alanine et ainsi perturber l'interaction entre les FOXKs et BAP1 chez la souris. Des descendants hétérozygotes de Bap1T492A/+ ont été croisés pour générer des individus homozygotes et étudier leur phénotype. Fait intéressant, nos résultats montrent que les souris homozygotes Bap1T492A/T492A meurent au stade embryonnaire. De plus, les quelques souris homozygotes Bap1T492A/T492A viables échappant à la barrière de létalité (qui représentent seulement 4.7 % au lieu de 25%) sont remarquablement plus petites et certaines d'entre elles ont présenté des anomalies de développement. De plus, lors de l'analyse du système immunitaire des souris adultes homozygotes Bap1T492A/T492A, nous avons constaté une réduction importante dans les proportions des cellules NKT qui sont des combattants du système immunitaire pouvant éliminer les cellules cancéreuses. Ensemble, ces données montrent que l'axe BAP1-FOXKs est important pour le développement et fournissent de nouvelles informations sur la manière dont les événements de signalisation entre le suppresseur de tumeurs BAP1 et les facteurs FOXKs doivent être étroitement contrôlés pour maintenir une homéostasie cellulaire normale et prévenir le cancer. / The tumor suppressor BAP1 is one of the most frequently mutated deubiquitinase in human cancer. This latter is involved in the regulation of the E2F target genes, which are central regulators of cellular proliferation by controlling, cell cycle checkpoints, mitosis, DNA repair, and apoptosis. Importantly, in the BAP1 complex, we note several chromatin-binding proteins, such as FOXKs transcription factors, which are known to recruit BAP1 to its target genes. Indeed, the BAP1 complex is recruited to chromatin to ensure its deubiquitinating function of the repressive histone mark H2AK119ub and thus regulating gene expression. In this study, we sought to investigate the BAP1-FOXKs axis in regulating associated cellular functions. Interestingly, FOXK1 but not FOXK2, is known to have oncogenic properties as higher expression levels of FOXK1 has been observed in a variety of cancers and is correlated with tumor progression, invasion, and metastasis. These results raise many questions about the nature of the regulation between these proteins, including whether there is a cooperative or antagonistic relationship between the tumor suppressor BAP1 and the oncogene FOXK1? Interestingly, we found that FOXK1 and FOXK2 proteins are mutually exclusive for their interactions with the BAP1 complex, which suggests that they have distinct molecular and cellular functions within this complex. Our functional studies using human primary fibroblasts show that FOXK1 and FOXK2 regulate differentially cell proliferation, cellular senescence, and oncogenic transformation. Indeed, FOXK1, but not FOXK2, promotes cellular proliferation through the activation of the expression of E2F1 and its target genes. As a consequence, FOXK1 delays cellular senescence and promotes prolonged primary cell replication. In addition, overexpression of FOXK1 promotes oncogenic transformation of primary fibroblasts transduced by E1A and RAS V12G oncogenes, by increasing tumor penetrance and decreasing latency of tumor formation. These results confirm that these factors have distinct cellular signalling functions and suggest that they are regulated differentially on the molecular level. To further investigate the molecular mechanism, which could distinguish FOXK1 and FOXK2 cellular functions, we sought to study posttranslational modifications of these factors. Interestingly, our mass spectrometry data revealed that only FOXK1, but not FOXK2, is modified by O-GlcNAcylation, a protein posttranslational modification catalyzed by the enzyme OGT. Our in vitro data shows that this modification regulates FOXK1 function in cellular proliferation as the expression of the O-GlcNAc mutant reduces the proliferative potential of FOXK1. Our in-vivo data, using human cancer cell xenografts on mice, confirms that FOXK1 O-GlcNAcylation promotes tumor growth. More interestingly, FOXK1 O-GlcNAcylation mutants affect the oncogenic transformation of primary fibroblasts expressing E1A and RAS V12G by increasing tumor latency and decreasing tumor size. At the chromatin level, O-GlcNAcylation of FOXK1 promotes the recruitment of BAP1 to target genes of E2Fs factors in order to deubiquitinate H2AK119Ub and allow their expression. In conclusion, O-GlcNAcylation is a key mechanism that regulates the function of FOXK1 in cell proliferation, which contributes to its oncogenic activity. In another perspective of this study, and in order to investigate the importance of BAP1- FOXKs signaling axis in the tumor suppression function of BAP1, we sought to study the functional role of BAP1-FOXKs interaction in a murine model. We generated a mouse model using the CRISPR/Cas9 gene-editing system by mutating BAP1-threonine 492 into alanine and thus disrupting the interaction between FOXKs and BAP1. Heterozygous offspring of Bap1T492A/+ were crossed to generate homozygous litters to study their phenotypes. Interestingly, our results show that homozygous Bap1T492A/T492A mice are embryonic lethal. Moreover, a few homozygous Bap1T492A/T492A mice can escape the embryonic lethality (representing only 4.7% instead of 25%), are remarkably smaller, and some of them showed developmental abnormalities. Moreover, when analyzing the immune system of adult homozygous Bap1T492A/T492A mice, we found a significant reduction of NKT cells proportions, which could be central fighters against cancer cell development. Altogether, these data show that BAP1-FOXKs axis is important for development and provide novel insights into how signaling events between the tumor suppressor BAP1 and FOXKs should be tightly controlled to maintain normal cellular homeostasis and prevent cancer.

Page generated in 0.0791 seconds