Spelling suggestions: "subject:"cotransport aquation"" "subject:"cotransport cquation""
61 |
Nouveaux algorithmes efficaces de modélisation 2D et 3D : Temps des premières arrivées, angles à la source et amplitudes / New efficient 2D and 3D modeling algorithms to compute travel times, take-off angles and amplitudesBelayouni, Nidhal 25 April 2013 (has links)
Les temps de trajet, amplitudes et angles à la source des ondes sismiques sont utilisés dans de nombreuses applications telles que la migration, la tomographie, l'estimation de la sensibilité de détection et la localisation des microséismes. Dans le contexte de la microsismicité, il est nécessaire de calculer en quasi temps réel ces attributs avec précision. Nous avons développé ici un ensemble d'algorithmes rapides et précis en 3D pour des modèles à fort contraste de vitesse.Nous présentons une nouvelle méthode pour calculer les temps de trajet, les amplitudes et les angles à la source des ondes correspondant aux premières arrivées. Plus précisément, nous résolvons l'équation Eikonal, l'équation de transport et l'équation des angles en nous basant sur une approche par différences finies pour des modèles de vitesse en 3D. Nous proposons une nouvelle méthode hybride qui bénéficie des avantages respectifs de plusieurs approches existantes de résolution de l'équation Eikonal. En particulier, les approches classiques proposent généralement de résoudre directement les équations et font l'approximation localement d'une onde plane. Cette approximation n'est pas bien adaptée au voisinage de la source car la courbure du front d'onde est importante. Des erreurs de temps de trajet sont alors générées près de la position de la source, puis propagées à travers tout le modèle de vitesse. Ceci empêche de calculer correctement les amplitudes et les angles à la source puisqu'ils reposent sur les gradients des temps. Nous surmontons cette difficulté en introduisant les opérateurs sphériques ; plus précisément nous reformulons les temps de trajet, amplitudes et angles à la source par la méthode des perturbations.Nous validons nos nouvelles méthodes pour différents modèles à fort contraste de vitesse en 2D et 3D et montrons notre contribution par rapport aux approches existantes. Nos résultats sont similaires à ceux calculés en utilisant la modélisation de la forme d'onde totale alors qu'ils sont bien moins coûteux en temps de calcul. Ces résultats ouvrent donc de nouvelles perspectives pour de nombreuses applications telles que la migration, l'estimation de la sensibilité de détection et l'inversion des mécanismes au foyer. / Traveltimes, amplitudes and take-off angles of seismic waves are used in many applications such as migration, tomography, detection sensitivity estimation and microseism location. In the microseismicty context it is necessary to compute in near real time accurately these attributes. Here we developed a set of fast and accurate algorithms in 3D for highly contrasted velocity models.We present a new accurate method for computing first arrival traveltimes, amplitudes and take-off angles; more precisely we solve the Eikonal, transport and take-off angle equations based on a finite difference approach for 3D velocity models. We propose a new hybrid method that benefits from the advantages of several existing Eikonal solvers. Common approaches that solve directly these equations assume that we are locally propagating a plane wave. This approximation is not well adapted in the neighborhood of the source since the wavefront curvature is important. Travel times errors are generated near the source position and then propagated through the whole velocity model. This prevents from properly calculating the amplitudes and the take-off angles since they rely on the travel time gradients that are not accurate. We overcome this difficulty by introducing spherical operators. Indeed we reformulate the traveltimes, amplitudes and take-off angles with the perturbation method.We validate our new methods on various highly contrasted velocity models in 2D and 3D and show our contribution compared to other existing approaches. Our results are similar to those computed using full waveform modeling while they are obtained in a much shorter CPU time. These results open thus new perspectives for several applications such as migration, detection sensitivity estimation and focal mechanism inversion.
|
62 |
Imagerie sélective des tissus biologiques : apport de la polarisation pour une sélection en profondeurRehn, Simon 21 December 2012 (has links)
Les techniques d'imagerie optique, dans la gamme de longueurs d'onde visible et proche infrarouge, permettent d'examiner très facilement les tissus biologiques de manière non invasive. Toutefois la forte diffusion des tissus biologiques limite fortement leur examen en profondeur. Examinés en rétrodiffusion (examen de la peau ou du col de l'uterus par exemple), non seulement les mesures sont polluées par la réflexion spéculaire, mais l'information sur la source volumique du signal est également perdue du fait de la forte diffusion. La prise en compte de la diffusion dans le modèle de propagation de la lumière permet d'évaluer cette distribution volumique du signal lumineux en fonction des propriétés optiques du milieu. Pour sophistiquer l'approche, nous introduisons un filtrage polarimétrique, basé sur l'utilisation de la lumière polarisée elliptiquement, particulièrement approprié à la géométrie de rétrodiffusion, permettant avant tout un sondage sélectif en profondeur tout en s'affranchissant de la réflexion spéculaire. Cette technique permet ainsi d'examiner les tissus à l'échelle mésoscopique (jusqu'à l'échelle du millimètre). / Optical imaging techniques using the visible and near-infrared wavelengths allow an easy and non-invasive way of analysing biological tissues. However, the high scattering of biological tissues significantly limits the depth of examination. Backscattering examination (of skin or of the cervix for example) shows not only that the measurements are polluted by mirror reflection, but also that information about the source of the signal is lost as a result of the high scattering. Including scattering in the light propagation model allows the evaluation of the volume distribution of the light signal as a function of the optical properties of the medium. In order to make the approach more sophisticated, we introduced a polarimetric filtering that uses elliptically polarised light. This is not only particularly appropriate for backscattering geometry, but also allows firstly to probe at selected depths and secondly to eliminate mirror reflection. Thus, this technique allows the examination of tissues at a mesoscopic scale (up to the milimeter scale).
|
63 |
Adaptive Mesh Refinement Solution Techniques for the Multigroup SN Transport Equation Using a Higher-Order Discontinuous Finite Element MethodWang, Yaqi 16 January 2010 (has links)
In this dissertation, we develop Adaptive Mesh Refinement (AMR) techniques
for the steady-state multigroup SN neutron transport equation using a higher-order
Discontinuous Galerkin Finite Element Method (DGFEM). We propose two error estimations,
a projection-based estimator and a jump-based indicator, both of which
are shown to reliably drive the spatial discretization error down using h-type AMR.
Algorithms to treat the mesh irregularity resulting from the local refinement are
implemented in a matrix-free fashion. The DGFEM spatial discretization scheme
employed in this research allows the easy use of adapted meshes and can, therefore,
follow the physics tightly by generating group-dependent adapted meshes. Indeed,
the spatial discretization error is controlled with AMR for the entire multigroup SNtransport
simulation, resulting in group-dependent AMR meshes. The computing
efforts, both in memory and CPU-time, are significantly reduced. While the convergence
rates obtained using uniform mesh refinement are limited by the singularity
index of transport solution (3/2 when the solution is continuous, 1/2 when it is discontinuous),
the convergence rates achieved with mesh adaptivity are superior. The
accuracy in the AMR solution reaches a level where the solution angular error (or ray
effects) are highlighted by the mesh adaptivity process. The superiority of higherorder
calculations based on a matrix-free scheme is verified on modern computing architectures.
A stable symmetric positive definite Diffusion Synthetic Acceleration (DSA)
scheme is devised for the DGFEM-discretized transport equation using a variational
argument. The Modified Interior Penalty (MIP) diffusion form used to accelerate the
SN transport solves has been obtained directly from the DGFEM variational form of
the SN equations. This MIP form is stable and compatible with AMR meshes. Because
this MIP form is based on a DGFEM formulation as well, it avoids the costly
continuity requirements of continuous finite elements. It has been used as a preconditioner
for both the standard source iteration and the GMRes solution technique
employed when solving the transport equation. The variational argument used in
devising transport acceleration schemes is a powerful tool for obtaining transportconforming
diffusion schemes.
xuthus, a 2-D AMR transport code implementing these findings, has been developed
for unstructured triangular meshes.
|
64 |
Rayonnement sonore dans un écoulement subsonique complexe en régime harmonique : analyse et simulation numérique du couplage entre les phénomènes acoustiques et hydrodynamiques / Sound radiation in a complex subsonic mean flow in frequency regime : analysis and numerical simulations of the coupling between acoustic and hydrodynamic phenomenaPeynaud, Emilie 21 June 2013 (has links)
La thèse porte sur la simulation, en régime fréquentiel, du rayonnement acoustique en écoulement subsonique quelconque et dans un domaine infini. L'approche choisie s'appuie sur la résolution d'un système équivalent aux équations d'Euler linéarisées : le modèle de Galbrun. Ce modèle repose sur une représentation mixte Lagrange-Euler et aboutit à une équation dont l'unique inconnue est la perturbation du déplacement Lagrangien. Une des difficultés de l'approche de Galbrun est qu'une discrétisation directe de cette équation par une méthode d'éléments finis standard n'est pas stable. Un moyen de contourner cet obstacle est d'écrire une équation augmentée en ajoutant une nouvelle inconnue, le rotationnel du déplacement, appelée par abus vorticité. Cette approche conduit à un système qui couple une équation de type équation des ondes avec une équation de transport en régime fréquentiel. Et elle permet l'utilisation de couches parfaitement adaptées (PML) pour borner le domaine de calcul. La première partie du manuscrit est dédiée à l’étude de l’équation de transport harmonique et de sa résolution numérique, en particulier par un schéma de type Galerkin discontinu. Un des points délicats est lié au caractère oscillant des solutions de l'équation. Une fois cette étape franchie, la résolution du problème de propagation acoustique a été abordée. Une approximation basée sur l'utilisation d'éléments finis mixtes continus-discontinus avec couches parfaitement adaptées (PML) a été étudiée. En particulier, les caractères bien posés des problèmes continu et discret ainsi que la convergence du schéma numérique ont été démontrés sous certaines conditions sur l'écoulement porteur. Enfin, une mise en œuvre a été effectuée. Les résultats montrent la validité de cette approche mais aussi sa pertinence dans le cas d'écoulements complexes, voire d'écoulements dits instables / This thesis deals with the numerical simulation of time harmonic acoustic propagation in an arbitrary mean flow in an unbounded domain. Our approach is based on an equation equivalent to the linearized Euler equations called the Galbrun equation. It is derived from a mixed Eulerian-Lagrangian formulation and results in a single equation whose only unknown is the perturbation of the Lagrangian displacement. A direct solution using finite elements is unstable but this difficulty can be overcome by using an augmented equation which is constructed by adding a new unknown, the vorticity, defined as the curl of the displacement. This leads to a set of equations coupling a wave like equation with a time harmonic transport equation which allows the use of perfectly matched layers (PML) at artificial boundaries to bound the computational domain. The first part of the thesis is a study of the time harmonic transport equation and its approximation by means of a discontinuous Galerkin scheme, the difficulties coming from the oscillating behaviour of its solutions. Once these difficulties have been overcome, it is possible to deal with the resolution of the acoustic propagation problem. The approximation method is based on a mixed continuous-Galerkin and discontinuous-Galerkin finite element scheme. The well-posedness of both the continuous and discrete problems is established and the convergence of the approximation under some mean flow conditions is proved. Finally a numerical implementation is achieved and numerical results are given which confirm the validity of the method and also show that it is relevant in complex cases, even for unstable flows
|
65 |
Reconstrução intranodal da solução numérica gerada pelo método espectronodal constante para problemas Sn de autovalor em geometria retangular bidimensional / Nodal reconstruction scheme for the numerical solution generated by the constant spectral nodal method for Sn eingenvalue problem in X, Y geometryWelton Alves de Menezes 03 April 2009 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / Nesta dissertação o método espectronodal SD-SGF-CN, cf. spectral diamond spectral Green's function - constant nodal, é utilizado para a determinação dos fluxos angulares médios nas faces dos nodos homogeneizados em domínio heterogêneo. Utilizando esses resultados, desenvolvemos um algoritmo para a reconstrução intranodal da solução numérica visto que, em cálculos de malha grossa, soluções numéricas mais localizadas não são geradas. Resultados numéricos são apresentados para ilustrar a precisão do algoritmo desenvolvido. / In this dissertation the spectral nodal method SD-SGF-CN, cf. spectral diamond spectral Green's function - constant nodal, is used to determine the angular fluxes averaged along the edges of the homogenized nodes in heterogeneous domains. Using these results, we developed an algorithm for the reconstruction of the node-edge average angular fluxes within the nodes of the spatial grid set up on the domain, since more localized numerical solutions are not generated by coarse-mesh numerical methods. Numerical results are presented to illustrate the accuracy of the algorithm we offer.
|
66 |
Reconstrução intranodal da solução numérica gerada pelo método espectronodal constante para problemas Sn de autovalor em geometria retangular bidimensional / Nodal reconstruction scheme for the numerical solution generated by the constant spectral nodal method for Sn eingenvalue problem in X, Y geometryWelton Alves de Menezes 03 April 2009 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / Nesta dissertação o método espectronodal SD-SGF-CN, cf. spectral diamond spectral Green's function - constant nodal, é utilizado para a determinação dos fluxos angulares médios nas faces dos nodos homogeneizados em domínio heterogêneo. Utilizando esses resultados, desenvolvemos um algoritmo para a reconstrução intranodal da solução numérica visto que, em cálculos de malha grossa, soluções numéricas mais localizadas não são geradas. Resultados numéricos são apresentados para ilustrar a precisão do algoritmo desenvolvido. / In this dissertation the spectral nodal method SD-SGF-CN, cf. spectral diamond spectral Green's function - constant nodal, is used to determine the angular fluxes averaged along the edges of the homogenized nodes in heterogeneous domains. Using these results, we developed an algorithm for the reconstruction of the node-edge average angular fluxes within the nodes of the spatial grid set up on the domain, since more localized numerical solutions are not generated by coarse-mesh numerical methods. Numerical results are presented to illustrate the accuracy of the algorithm we offer.
|
67 |
Méthode de décomposition de domaine avec parallélisme hybride et accélération non linéaire pour la résolution de l'équation du transport Sn en géométrie non-structurée / Domain decomposition method using a hybrid parallelism and a low-order acceleration for solving the Sn transport equation on unstructured geometryOdry, Nans 07 October 2016 (has links)
Les schémas de calcul déterministes permettent une modélisation à moindre coût du comportement de la population de neutrons en réacteur, mais sont traditionnellement construits sur des approximations (décomposition réseau/cœur, homogénéisation spatiale et énergétique…). La thèse revient sur une partie de ces sources d’erreur, de façon à rapprocher la méthode déterministe d’un schéma de référence. L’objectif est de profiter des architectures informatiques modernes (HPC) pour résoudre le problème neutronique à l’échelle du cœur 3D, tout en préservant l’opérateur de transport et une partie des hétérogénéités de la géométrie. Ce travail est réalisé au sein du solveur cœur Sn Minaret de la plateforme de calcul Apollo3® pour des réacteurs à neutrons rapides.Une méthode de décomposition de domaine en espace, est retenue. L'idée consiste à décomposer un problème de grande dimension en sous-problèmes "indépendants" de taille réduite. La convergence vers la solution globale est assurée par échange de flux angulaires entre sous-domaines au cours d'un processus itératif. En favorisant un recours massif au parallélisme, les méthodes de décomposition de domaine contribuent à lever les contraintes en mémoire et temps de calcul. La mise en place d'un parallélisme hybride, couplant les technologies MPI et OpenMP, est en particulier propice au passage sur supercalculateur. Une méthode d'accélération de type Coarse Mesh Rebalance est ajoutée pour pallier à la pénalité de convergence constatée sur la méthode de décomposition de domaine. Le potentiel du nouveau schéma est finalement mis en évidence sur un coeur CFV 3D, construit en préservant l'hétérogénéité des assemblages absorbants. / Deterministic calculation schemes are devised to numerically solve the neutron transport equation in nuclear reactors. Dealing with core-sized problems is very challenging for computers, so much that the dedicated core codes have no choice but to allow simplifying assumptions (assembly- then core-scale steps…). The PhD work aims to correct some of these ‘standard’ approximations, in order to get closer of reference calculations: thanks to important increases in calculation capacities (HPC), nowadays one can solve 3D core-sized problems, using both high mesh refinement and the transport operator. Developments were performed inside the Sn core solver Minaret, from the new CEA neutronics platform Apollo3® for fast neutrons reactors of the CFV-kind.This work focuses on a Domain Decomposition Method in space. The fundamental idea involves splitting a core-sized problem into smaller and 'independent' subproblems. Angular flux is exchanged between adjacent subdomains. In doing so, all combined subproblems converge to the global solution at the outcome of an iterative process. Domain decomposition is well-suited to massive parallelism, allowing much more ambitious computations in terms of both memory requirements and calculation time. An hybrid MPI/OpenMP parallelism is chosen to match the supercomputers architecture. A Coarse Mesh Rebalance accelration technique is added to balance the convergence penalty observed using Domain Decomposition. The potential of the new calculation scheme is demonstrated on a 3D core of the CFV-kind, using an heterogeneous description of the absorbent rods.
|
68 |
Flots quasi-invariants associés aux champs de vecteur non réguliers / Quasi-invariant flows associated with irregular vector fieldsLee, Huaiqian 28 April 2011 (has links)
La thèse est composée de deux parties.Dans la première partie, nous allons étudier le flot quasi-invariant défini par une équation différentielle stochastique de Stratanovich avec le dérive ayant seulement la BV-régularitésur un espace euclidien, en généralisant des résultats de L. Ambrosio sur l'existence,unicité et stabilité des flots lagrangiens associés aux équations différentielles ordinaires[Invent. Math. 158 (2004), 227{260]. Comme une application d'un résultat de stabilité,nous allons construire une solution explicite à l'equation de transport stochastique enterme de flot stochastique. La différentiabilité approximative du flot sera aussi investie,lorsque le dérive possµede une régularité de Sobolev.Dans la deuxième partie, nous allons généraliser la théorie de DiPerna-Lions aux cas desvariétés riemanniennes complètes. Nous allons utiliser le semi-groupe de la chaleur pourrégulariser des fonctions et des champs de vecteur. L'estimation sur le commutateur seraobtenue par la méthode probabiliste. Une application de cette estimation est de prouverl'unicité des solutions à l'équation de transport à l'aide du concept des solutions renormal-isables. L'équation différentielle ordinaire associée à un champ de vecteur de régularité deSobolev sera enfin résolue en adoptant une méhode due à L. Ambrosio. La fin de cett par-tie consacre à la construction des processus de diffusion, par la méthode de la variation deconstante, sur une variété riemannienne complète, ayant comme générateur, un opérateurelliptique contenant le dérive non-régulier. Pour cela, nous allons donner des conditionssur la courbure pour que le flot horizontal canonique soit un flot de difféomorphismes / The thesis mainly consists of two parts.In the first part, we study the quasi-invariant flow generated by the Stratonovich stochas-tic differential equation with BV drift coefficients in the Euclidean space. We generalizethe results of Ambrosio [Invent. Math. 158 (2004), 227{260] on the existence, uniquenessand stability of regular Lagrangian flows of ordinary differential equations to Stratonovichstochastic differential equations with BV drift coefficients. As an application of the sta-bility result, we construct an explicit solution to the corresponding stochastic transportequation in terms of the stochastic flow. The approximate differentiability of the flow isalso studied when the drift coefficient has some Sobolev regularity.In the second part, we generalize the DiPerna-Lions theory in the Euclidean space to thecomplete Riemannian manifold. We define the commutator on the complete Riemannianmanifold which is a probabilistic version of the one in the DiPerna-Lions theory, andestablish the commutator estimate by the probabilistic method. As a direct applicationof the commutator estimate, we investigate the uniqueness of solutions to the transportequation by the method of the renormalized solution. Following Ambrosio's method, weconstruct the DiPerna-Lions flow on the Riemannian manifold. In order to construct thediffusion process associated to an elliptic operator with irregular drift on the completeRiemannian manifold, we give some conditions which guarantee the strong completenessof the horizontal flow. Finally, we construct the diffusion process with the drift coefficienthaving only Sobolev regularity.Besides, we present a brief introduction of the classical theory on the ordinary differentialequation in the smooth case and the quasi-invariant flow of homeomorphisms under theOsgood condition before the first part; and we recall some basic tools and results whichare widely used throughout the whole thesis after the second part.
|
69 |
Théorie spectrale d'opérateurs symétrisables non compacts et modèles cinétiques partiellement élastiques / Spectral theory of non compact symmetrizable operators and partly elastic kinetic modelsMohamed, Yahya 02 July 2015 (has links)
Cette thèse porte sur la théorie spectrale d’équations neutroniques partiellement élastiques introduites en 1974 par les physiciens E. W LARSEN et P. F. ZWEIFEL. L’opérateur de collision est alors la somme d’une partie inélastique (correspondant aux modèles neutroniques classiques) et d’une partie élastique qui induit des phénomènes spectraux nouveaux que l’on veut étudier. L’objectif de cette thèse est l’analyse fine de leur spectre asymptotique (la partie du spectre discret qui détermine le comportement asymptotique en temps des problèmes de Cauchy associés). L’étude spectrale de ces modèles partiellement élastiques met en jeu des propriétés spectrales d’opérateurs bornés non compacts et symétrisables. La première partie de la thèse est alors consacrée à la théorie spectrale des opérateurs symétrisables non compacts sur les espaces de Hilbert. Nous donnons une série de résultats d’analyse fonctionnelle sur ces opérateurs. En particulier nous donnons une méthode qui permet d’obtenir toutes les valeurs propres réelles situées à l’extérieur du disque spectral essentiel (i.e le plus petit disque fermé contenant le spectre essentiel) ainsi que des caractérisations variationnelles de ces valeurs propres. La deuxième partie de cette thèse porte sur l’analyse spectrale des modèles cinétiques partiellement élastiques isotropes et homogène en espace (i.e les sections efficaces ne dépendent que du module des vitesses). Nous montrons entre autre que le spectre asymptotique est formé au plus de valeurs propres isolées de multiplicité algébrique finie. Nous montrons aussi que ce spectre ponctuel est réel. Nous démontrons que le nombre des valeurs propres réelles de l’opérateur de transport partiellement élastique augmente indéfiniment avec la taille du domaine spatial. Nous démontrons aussi que toutes ces valeurs propres tendent vers la borne spectrale de l’opérateur partiellement élastique homogène en espace quand la taille du domaine tend vers l’infini. Nous étudions aussi des modèles anisotropes pour lesquels nous étendons la plupart des résultats obtenus pour les modèles isotropes / This thesis is devoted to spectral theory of party elastic neutron transport equations introduced in 1974 by physicists E. LARSEN W and PF ZWEIFEL. The collision operator is then the sum of an inelastic part (corresponding to classical neutron transport models) and an elastic part that induces new spectral phenomena to be studied. The objective of this thesis is the analysis of their asymptotic spectrum (the part of the discrete spectrum that determines the time asymptotic behavior of the associated Cauchy problems). The spectral study of these partly elastic models involves spectral properties of bounded non-compact and symmetrizable operators. Thus the first part of the thesis deals with spectral theory of non compact symmetrizable operators on Hilbert spaces. We give a series of functional analytic results on these operators. In particular we give a method which provides us with all the real eigenvalues located outside the essential spectral disc and provide variational characterizations of these eigenvalues. The second part of the thesis focuses on spectral analysis of partly elastic isotropic and space homogeneous kinetic models (i.e. the cross sections depend only on speed modulus). Among other things, we show that the asymptotic spectrum consists at most of isolated eigenvalues with finite algebraic multiplicity. We also show that this point spectrum is real. Further we show that the number of real eigenvalues of the partly elastic transport operator increases indefinitely with the size of the spatial domain. We show also that all these eigenvalues tend to the spectral bound of the space homogeneous partly elastic operator when the size of domain tends to infinity. Most of these results are also extended to anisotropic models.
|
70 |
Active Tuning of Thermal Conductivity in Single layer Graphene Phononic crystals using Engineered Pore Geometry and StrainRadhakrishna Korlam (11820830) 19 December 2021 (has links)
Understanding thermal transport across length scales lays the foundation to developing high-performance electronic devices. Although many experiments and models of the past few decades have explored the physics of heat transfer at nanoscale, there are still open questions regarding the impact of periodic nanostructuring and coherent phonon effects, as well as the interaction of strain and thermal transport. Thermomechanical effects, as well as strains applied in flexible electronic devices, impact the thermal transport. In the simplest kinetic theory models, thermal conductivity is proportional to the phonon group velocity, heat capacity, and scattering times. Periodic porous nanostructures impact the phonon dispersion relationship (group velocity) and the boundaries of the pores increase the scattering times. Strain, on the other hand, affects the crystal structure of the lattice and slightly increases the thermal conductivity of the material under compression. Intriguingly, applying strain combined with the periodic porous structures is expected to influence both the dispersion relation and scattering rates and yield the ability to tune thermal transport actively. But often these interrelated effects are simplified in models.<br><br>This work evaluates the combination of structure and strain on thermal conductivity by revisiting some of the essential methods used to predict thermal transport for a single layer of graphene with a periodic porous lattice structure with and without applied strain. First, we use the highest fidelity method of Non-Equilibrium Molecular Dynamics (NEMD) simulations to estimate the thermal conductivity which considers the impact of the lattice structure, strain state, and phononic band structure together. Next, the impact of the geometry of the slots within the lattice is interrogated with Boltzmann Transport Equation (BTE) models under a Relaxation Time Approximation. A Monte Carlo based Boltzmann Transport Equation (BTE) solver is also used to estimate the thermal conductivity of phononic crystals with varying pore geometry. Dispersion relations calculated from continuum mechanics are used as input here. This method which utilizes a simplified pore geometry only partially accounts for the effects of scattering on the pore boundaries. Finally, a continuum level model is also used to predict the thermal conductivity and its variations under applied strain. As acoustic phonon branches tend to carry the most heat within the lattice, these continuum models and other simple kinetic theories only consider their group velocities to estimate their impact on phonon thermal conductivity. As such, they do not take into account the details of phonon transport across all wavelengths.<br><br>By comparing the results from these different methods, each of which has different assumptions and simplifications, the current work aims to understand the effects of changes to the dispersion relationship based on strain and the periodic nanostructures on the thermal conductivity. We evaluate the accuracy of the kinetic theory, ray tracing, and BTE models in comparison to the MD results to offer a perspective of the reliability of each method of thermal conductivity estimation. In addition, the effect of strain on each phononic crystal with different pore geometry is also predicted in terms of change to their in-plane thermal anisotropy values. To summarize, this deeper understanding of the nanoscale thermal transport and the interrelated effects of geometry, strain, and phonon band structure on thermal conductivity can aid in developing lattices specifically designed to achieve the required dynamic thermal response for future nano-scale thermoelectric applications.
|
Page generated in 0.1086 seconds