Spelling suggestions: "subject:"free growth"" "subject:"tree growth""
61 |
The structure of single- and mixed-species, second-growth stands of Western hemlock and Western redcedarKlinka, Karel, Varga, Pal, Montigny, Louise E. M. de, Chourmouzis, Christine January 2001 (has links)
The structure of a forest stand is characterized by: (a) species composition, (b) age, (c) size (diameter and height), and (d)
spatial (horizontal and vertical) arrangement of the trees. Depending on the species, site, and disturbance history, the
stand structure varies with time, thus providing a snapshot of a particular development stage.
Research on growth and stand structure has shown that the spatial distribution of trees is one of the key determinants of
stand productivity. Forest inventories and ecological surveys carried out in British Columbia (BC) have shown that the
structure of naturally established, unmanaged stands varies from simple (single-species, single-storied, and even-aged) to
complex (multi-species, multi-storied, and uneven-aged). Only a few studies have quantitatively characterized this range
of structural complexity, with nearly all studies focusing on old-growth stands.
BC forest policy requires that harvested areas be regenerated with a mixture of tree species whenever a mixture is suited
to the site. This policy is based upon the assumption that under appropriate conditions, increases in stand productivity,
reliability, and/or biodiversity can be attained in mixed-species stands. This assumption has not yet been tested for forest
ecosystems. One mechanism by which different tree species can reduce crown competition for light is through vertical
separation (the development of multiple canopy strata). Canopy stratification is not easily recognized in mixed-species
stands, particularly when species have similar shade tolerance and height growth patterns, and no quantitative methods
have been developed to detect stratification.
The diameter frequency distribution of two-storied stands have been characterized by inverted J-shaped as well as modal
curves. Although it would be more appropriate to characterize stand structure by height frequency distributions, these
distributions have not been developed. We suggest that (i) a stand is stratified if there are distinct, quantitatifiable modes
in the size distribution; either diameter, height, or crown height, and (ii) height or crown height distributions will be the most
sensitive measures.
To characterize the structure of western hemlock (Tsuga heterophylla (Raf.) Sarg.) (Hw) and western redcedar (Thuja
plicata Donn ex D. Don in Lamb.) (Cw) second-growth stands, and to investigate its influence on tree growth, we (1)
described and compared size (diameter, height, and crown height) frequency distributions in single- and mixed-species
stands, (2) determined whether mixed-species stands develop a stratified canopy, and (3) examined whether interactions
between hemlock and redcedar affect tree growth.
|
62 |
Forest pest management at Virginia Tech and environmental decision making at the Tennessee Valley Authority an internship /Beversdorf, Matthew Arnold. January 2004 (has links)
Thesis (M. En.)--Miami University, Institute of Environmental Sciences, 2004. / Title from first page of PDF document. Includes bibliographical references (p. 32-34).
|
63 |
Eco-Hydrology of a Seasonally Dry Tropical Forest : Tree Growth, Belowground Water Dynamics and Drought-VulnerabilityTarak, Rutuja Chitra January 2016 (has links) (PDF)
Tropical forests are storehouses of more thanhalf of the world‘s biodiversity and play a key role in global carbon, water and energy cycles. However, as a consequence of rapid anthropogenic climate change, biodiversity and climate functions of these forests are under a threat. Climate is changing not only in mean state but its variability is increasing, with extreme events such as droughts, heat waves and storms also rising. Water is fundamental to plants‘ existence, and in the tropics, is a key determinant of plant species‘richness, composition, growth and survival. There is thus an increasing interest in understanding how changing rainfall may cause functional changes in forests or change their species composition. Therefore, the overarching goal of thisdissertation was to understand the impact of water variability on tropical forest tree growth and vulnerability to drought.Forest tree growth along spatial and temporal rainfall gradientsObservational studies that measure whole forest tree growth along spatial or temporal gradients of rainfall are the most common way of formulating forest growth response curves to water availability, when manipulative experiments are cost-prohibitive or impractical (fire or large mammal disturbance). In the tropics, since very few species show anatomically distinct tree rings, estimating tree growth from trunk diameter is the standard practice to obtain growth patterns across species. However, this method—of equating woody growth to diameter change--is susceptible to bias from water-induced stem flexing. In the absence of bias correction, temporal variability in growth is likely to be overestimated and incorrectly attributed to fluctuations in resource availability, especially in forests with high seasonal and inter-annual variability in water. This problem has been largely ignored in the absence of any corrective measure and due to under-appreciation of the magnitude of error. While diameter re-censuses in permanent sampling plots (PSPs) have been most commonly done at 3-5 year scale (using a graduate tape), increasingly they are done at seasonal and annual scales (using band dendrometers) to closely match variation in rainfall, the scales at which hydrostatic bias may be greater in magnitude relative to woody growth. Besides, along a spatial rainfall gradient, inter-annual variability in water may vary, causing systematic differences in the hydrostatic bias for forests along the gradient. Therefore, one broad objective of this thesis was to evaluate the problem of hydrostatic bias in whole forest growth-rainfall relationship at annual and supra-annual scales, for temporal as well as spatial rainfall gradients and propose and test a novel corrective solution.Further, it also examines if growth-diameter relationship vary along the spatial gradient, which it may arise due to differences in light environments and/or disturbance history and species composition.
The missing link of Eco-hydrology Differential responses of tree species in terms of growth and survival to variation in water that they can access, the proximate cause is likely shaped through their life-history strategies, the ultimate cause. However, we neither know the depths at which the diverse tree species in a forest draw water from and its dynamics, nor variation in water at those depths vis-à-vis rainfall patterns—for lack of appropriate methods. This has been a key missing link in understanding how water shapes trees‘ life-history strategies, their demographic trade-offs and co-existence, and also our predictive ability to determine species-specific responses to changing rainfall patterns, especially droughts. Since droughts are highly stochastic events and trees‘ responses to their drought ―experiences‖ may be revealed at decadal scales, long-term evaluations are key. Therefore, the second broad objective of this thesis was to develop a framework to determine trees’ water uptake depths, variation in water availability at those depths and trees’ demographic responses over multiple decades. From this, to understand how belowground hydrology shapes drought-vulnerability, demographic trade-offs and coexistence of forest tree species. This thesis titled—Eco-Hydrology of a Seasonally Dry Tropical Forest: Tree Growth, Belowground Water Dynamics and Drought-Vulnerability—is organized as follows: Chapter 1 lays down an introduction to the thesis, followed by a description of the study site and datasets used in the thesis in Chapter 2. This thesis uses a variety of methods and multiple datasets, all of which are from the protected Seasonally Dry Tropical Forests of the Western Ghats in southern India in the Mudumalai and Bandipur National Parks. It is then followed by three data chapters: Chapter 3 describes the seasonal fluctuations in a five year long (1980-1985) tree diameter time series (using dendrometers) of a Seasonally Dry Tropical Forest in Bandipur National Park to illustrate the issue of hydrostatic stem-flexing. It investigates the possibility that band dendrometers may themselves underestimate stem shrinkage at diurnal or seasonal scale. It also evaluates if there could be a best season and time of the day for undertaking forest diameter censuses that can minimize hydrostatic bias. Chapter 4(published in Forest Ecology and Management)measures the hydrostatic bias in a sample of trees in a 50 ha PSP of a Seasonally Dry Tropical Forest in Mudumalai National Park, and proposes a novel way to correct this bias at the whole community level in the 20 year long 4-year interval growth time series. Chapter 5 (in review with Environmental Research Letters) investigates and presents two new confounding factors in growth-rainfall relationships along a spatial rainfall gradient: hydrostatic bias and size-dependency in growth rates. For this it evaluates forest tree growth estimates in seven 1-ha PSPs (~800 trees, 3-year annual time series 9using dendrometers) along a 1000 mm rainfall gradient spanning a mesic savanna-moist forest transition in Mudumalai National Park. Using the period for which seasonal diameter time series was available (2 yrs), it evaluates if the extent of seasonal fluctuations systematically vary along the gradient—most likely due to hydrostatic stem flexing. It also describes the presence of an anomalous size-diameter relationship in the mesic savanna from a large plots (50 ha PSP, diameter records using graduated tape). These observations are then used to draw insights for ―space for time‖ substitution modeling. Chapter 6 (in prep for Nature Plants) analyses belowground water environments of trees over two decades (1992-2012), a period that includes a prolonged and intense drought, in the 50 ha PSP of a Seasonally Dry Tropical Forest in Mudumalai. It uses a locally parametarised dynamic hydrological model in which site rainfall is also a forcing variable. It then develops a novel dynamic growth model and inversely estimates water uptake depths for adult trees of all common species (include ~9000 trees) in the PSP from their above-ground growth patterns over two decades vis-à-vis belowground water availability at multiple depths. It then examines if species‘ water uptake depth obtained thus is a predictor of their drought-driven mortality. Finally, this is used to evaluate the hydrological niche partitioning tree species operate under and how that drives their water uptake strategies, demographic trade-offs, and drought-vulnerability. Summarizes the thesis and suggests future directions
|
64 |
La réponse des forêts tropicales humides aux variations climatiques : évolution de la structure et de la dynamique des peuplements forestiers guyanais / The response of tropical forests to climate variations : evolution of the structure and dynamic of the guianian forest populations.Wagner, Fabien 14 December 2011 (has links)
L'importance des forêts tropicales dans le cycle du carbone à l'échelle planétaire est majeure, tant en terme de stock qu’en terme de flux de CO2. Plusieurs études mettent en évidence des changements au sein des forêts tropicales au cours des 20 dernières années, notamment des changements de la dynamique forestière et une augmentation de la biomasse aérienne. Les déterminants de ces variations sont aujourd’hui discutés et nous proposons ici d’apporter une contribution à ce débat. Les données utilisées dans ce travail proviennent du dispositif de suivi forestier à long terme de Paracou, Guyane Française, mis en place en 1984 et qui recouvre plus de 120 ha de forêt tropicale humide. Les données météorologiques proviennent de la tour à flux du dispositif, Guyaflux. Les mesures de diamètre proviennent de la base Guyafor pour les données annuelles et bisannuelles, et des mesures de 260 arbres à proximité de la tour à flux pour les mesures diamétriques intra-annuelles.Cette thèse se divise en deux grandes parties. La première concerne l’analyse de la biomasse du dispositif de suivi forestier de Paracou en Guyane et l’implication des changements de structure de cette forêt sur le bilan de carbone. Cette partie est constituée de deux points. (i) Quelles échelles temporelles et spatiales sont pertinentes pour analyser les composantes de structure (biomasse, aire basale et nombre de tiges) et de dynamique (croissance, recrutement et mortalité) des forêts tropicales afin de minimiser les effets d’échantillonnage ? Nous avons établi une méthodologie permettant de relier les intervalles de temps et la surface de mesure aux coefficients de variation de chacune des variables de structure et de dynamique de la forêt. (ii) Quels processus démographiques sont prépondérants dans l’explication des variations de biomasse et comment se redistribue la biomasse accumulée dans le système ? L’augmentation de la biomasse observée sur le dispositif de Paracou serait liée à la rareté des évènements de mortalité des gros arbres qui portent une part très importante de la biomasse.La deuxième partie de la thèse concerne l’analyse de l’effet du climat à moyen terme, inter et intra-annuel, et les effets directs du climat dans les changements de dynamique de la forêt. Cette partie se divise en 3 points. (i) Comment quantifier le stress hydrique en forêt tropicale humide ? Nous avons réalisé un modèle journalier de réserve en eau du sol pour les arbres en forêt tropicale. (ii) Quelles variables sont explicatives de la croissance des arbres en forêt guyanaise ? Nous avons montré que l’eau dans le sol est le facteur le plus explicatif du déterminisme climatique parmi un panel de variables climatiques. (iii) Quels traits fonctionnels sont prédicteurs de la réponse des arbres aux variations climatique ? Nous avons déterminé que des traits spécifiques, densité du bois et la hauteur maximale, ainsi que le diamètre de l'arbre au moment de la mesure, modulent la croissance des arbres en réponse au climat. / At a global scale tropical forest play a major role in term of carbon stock as well as in term of CO2 fluxes. Several studies have highlighted changes in tropical forest functioning during the last 20 years including a faster turnover and an increase of above ground biomass. The drivers of these changes are discussed and throughout this thesis we propose to contribute to this debate. We use the data from the Paracou experimental site in French Guiana established in 1984 on 120 hectares of moist tropical forest. Meteorological data come from the flux tower of the site, Guyaflux. We use annual and bisannual diameter measurements from the Guyafor database, and intra-annual diameter increments from the measurements of 260 trees near the flux tower.This thesis has two main parts. In the first part we present the biomass analysis of the Paracou permanent plots and the impact of structural changes in this forest on the carbon budget. The first part is constituted by two points. (i) Which temporal and spatial scale used to analyze the structure (biomass, basal area and stem density) and dynamics (tree growth, recruitment and mortality)components of tropical forest in order to minimized sample bias ? We establish a simple method to rely measurement interval between census and surface of measurement to the coefficient of variation of forests structure and dynamic components (ii) Which demographic process are involved in the explanation of biomass variation and how the biomass is distributed in the system ? The observed increase of biomass at Paracou could be link to the rarity of big trees mortality events. These big trees represent the larger part of the biomass. In the second part, we present the analysis of intra and inter-annual climate variation effects on forest dynamic changes. This part is divided in two points. (i) How to model drought stress in moist tropical forest ? We built a daily water balance model for tropical trees. (ii) Which climate variables explain the tree growth in guianian forests? We shown that soil water availability is the determinant factor of tree growth among a panel of climate variables. (iii) Which functional traits are involved in the tropical tree growth responses to climate? In this analysis, we determined that wood specific gravity, maximum tree height and tree diameter modulate the tree growth response to climate variations.
|
65 |
Performance of farm trees in farming systems in Mubende district, UgandaKrombholz, Max Lukas 15 October 2018 (has links)
The research of this thesis will focus on the performance of farm forestry trees in Mubende district, Uganda. In order to this, the research will help to fill the existing knowledge gap on the performance of farm forestry trees of east Africa specially Uganda. The conducted tree species are Markhamia lutea, Ficus natalensis, Mangifera indica, Artocarpus heterophyllus, Anitaris toxicaria, Persea americana, Albizia coriaria and Spathodea campanulata. The selection of the trees was mainly driven through the availability of age information. The trees were measured in height, age, DBH, length of commercial stem, diameter at specific height and visual observations e.g. occurrence and stem quality. To compare the performance of the conducted tree species a regression analysis with eight different functions was carried out for each tree species. The results are reproducible Stand- Height-Curves, height curves, DBH curves and curves for the single tree volume. The decision on the best curve was made on their biological plausibility and their statistical calculations. Additionally, the farmers of the trees were interviewed about their tree species for e.g. purposes of the tree, value of the wood and their own impressions on the growth of the tree species. The recommendation for the best applicable function is the Petterson function for the Stand-Height- Curve and the function of Richards for the height-, DBH- and single tree volume curve. Still these functions shouldn’t be used without comparison to other functions, especially because the used functions were developed for tree stand conditions and not specially for agroforestry conditions were the tree growth is in general higher.
Additionally, an upscaling and prediction of the monetary tree values is made on the basis of the single tree volume curves and the interview results. The prediction of the farmers possible income through the cultivation of trees is made for Markhamia lutea, Ficus natalensis, Anitaris toxicaria and Albizia coriaria and assumes that 100 trees are planted on one hectare. Albizia coriaria 3.630 € achieves the highest possible extra income for the farmer followed by Ficus natalensis with 1.300 €, Anitaris toxicaria with 910€ and Markhamia lutea with 880 €.
This thesis gives an example on the performance and possible monetary value of tree species in Mubende district, Uganda.
Further investigation is needed to fill the knowledge gap in the performance of east African tree species and their values completely.
Keywords: performance, tree growth, utilization, Uganda, East-Africa
|
66 |
Effects of Five Different Intensities of Stand Establishment on Wildlife Habitat Quality and Tree Growth in Loblolly Pine (Pinus Taeda) Plantations in Southern MississippiJones, Phillip Daniel 03 May 2008 (has links)
I evaluated effects of 5 intensive pine plantation establishment regimes during years 1 – 5 post-establishment on vegetation communities, loblolly pine (Pinus taeda) growth, nutritional carrying capacity for white-tailed deer (Odocoileus virginianus), habitat values for northern bobwhite (Colinus virginianus), and projected financial viability in the Lower Coastal Plain of Mississippi. Treatments were combinations of mechanical site preparation (MSP), chemical site preparation (CSP), and herbaceous weed control (HWC) designed to reflect the range of operational intensities on industrial forest lands in the southeastern U.S. Results should inform plantation management decisions throughout the region. Pine growth increased with greater treatment intensity. At age 5, trees in the most intensively managed treatment were 1.5 m taller than those in the least intensive treatment. Mechanical site preparation improved growth by alleviating soil physical problems. Growth and yield projections indicated that increased fiber yield may not justify investment in more intensive regimes; financial analysis favored the least expensive treatment, though all regimes produced potential internal rates of return > 9% when managed to financial maturity. Use of MSP with banded HWC yielded abundant low-quality deer forage sufficient for body maintenance; nutritional needs for lactating does were better served by CSP with banded HWC. Broadcast HWC reduced biomass of high-quality forbs. In this region of limited soil nutrients and abundant low-quality forages, the optimal combination of maintenance-level and lactation-level nutrition was provided by CSP or CSP and MSP combined with banded HWC. I evaluated vegetation communities for nesting, loafing, brood-rearing, and fall and winter food suitability for northern bobwhite. No treatment provided brood-rearing habitat due to combined lack of bare ground and forb coverage. Fall and winter feeding, nesting, and loafing cover were best produced by MSP and CSP combined with banded HWC. However, lack of brood-rearing cover may reduce or eliminate usable space in all treatments. Differences between vegetation communities were caused by use of CSP, which eliminated many residual woody and vine species, and by differences in broadcast versus banded HWC. Herbicide use decreased plant diversity and species richness, and impacted successional trajectory. Community differences persisted through year 5.
|
67 |
<b>Native Woody Diversity, Composition and Tree Growth Responses to Invasive Plant Treatment in Non-Industrial Private Forests</b>Gabriela Marie Krochmal (19175110) 19 July 2024 (has links)
<p dir="ltr">To reduce the establishment and spread of invasive plant species, the Environmental Quality Incentive Program (EQIP) was created in 1996 to provide financial and technical assistance to private landowners to aid in conservation practices and address environmental concerns. From 2014-2022, approximately $90 million dollars was obligated to the EQIP for completed contracts of over 240,000 hectares in Indiana. However, to date, there has been no examination of whether participation in conversation cost sharing programs has resulted in the recovery of native tree diversity, growth, and reproduction following the treatment of invasive plants. Furthermore, there is a gap in our understanding of the effectiveness of EQIP and its success in achieving and maintaining management goals. This thesis quantifies the composition, diversity, regeneration density and growth of tree species in response to invasive plant treatments at sites that participated in the EQIP. In particular, I investigated how the species composition of woody seedlings (stems < 2 cm dbh) and woody saplings (2 – 5 cm dbh) differed across EQIP-treated and untreated reference plots. I then examined how native species richness and diversity values differed between EQIP-treated and untreated plots. Lastly, I used dendroecological methods to determine how treatment of invasive shrubs affected overstory tree growth. Across the state, I found that native species richness of seedlings and saplings was greater in EQIP-treated plots then within reference plots. Reference plots were associated with invasive species such as <i>Lonicera maackii</i> (Amur honeysuckle), <i>Rosa multiflora</i> (multiflora rose), <i>Elaeagnus umbellata</i> (autumn olive) and <i>L. japonica</i> (Japanese honeysuckle), while EQIP-treated plots were associated with native tree species, such as <i>Carya ovata</i> (shagbark hickory),<i> Ulmus americana </i>(American elm), <i>Fraxinus americana</i> (white ash), <i>Liriodendron tulipifera</i> (yellow-poplar), <i>Quercus alba</i> (white oak), <i>Q. velutina</i> (black oak), and shrubs, such as <i>Rubus allegheniensis</i> (Allegheny blackberry) and <i>Lindera benzoin</i> (spicebush). I observed that trees generally had greater basal area increment growth following invasive shrub treatments; therefore, the reduction of invasive shrub dominance on EQIP-enrolled lands has led to a small, but significant, increase in overstory tree growth. I observed high within-group variability in growth for EQIP-treated and reference plots, likely due to differing management strategies across privately owned forests. Overall, my results demonstrate that participation in the EQIP has positively benefited species richness, and native species composition, and tree growth.</p>
|
68 |
Relationships between soil chemical properties and forest structure, productivity and floristic diversity along an altitudinal transect of moist tropical forest in Amazonia, Ecuador. / Beziehungen zwischen bodenchemischen Eigenschaften und Waldstruktur, Produktivität und floristischer Diversität tropischer Regenwälder Amazoniens entlang eines Höhengradienten in Ecuador.Unger, Malte Arne 30 April 2010 (has links)
No description available.
|
Page generated in 0.0564 seconds