Spelling suggestions: "subject:"turbochargers"" "subject:"turbocharger’s""
11 |
Modelo matemático para cálculo da rotação do eixo do turbocompressor em um motor Diesel / Mathematical model of turbocharger shaft speed calculation in a diesel engineSilva, Roberto Carlos de Castro 19 August 2018 (has links)
Orientador: Luiz Carlos Sandoval Góes / Dissertação (mestrado profissional) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica / Made available in DSpace on 2018-08-19T02:42:23Z (GMT). No. of bitstreams: 1
Silva_RobertoCarlosdeCastro_M.pdf: 3523448 bytes, checksum: 056edbb15555679526f8d88b82ca288c (MD5)
Previous issue date: 2011 / Resumo: Neste trabalho construiu-se e verificou-se um modelo matemático capaz de realizar o cálculo da rotação do eixo do turbocompressor aplicado a um motor Diesel, para futura implementação de uma função de software no programa da unidade de comando do motor, de forma a permitir a criação de estratégias de proteção contra sobre rotação do eixo do turbocompressor. O modelo foi construído com utilização de modelagem de fenômenos físicos que ocorrem em algumas partes do motor, junto com tabelas obtidas através de testes empíricos do motor. O modelo foi criado de modo a aproveitar os sensores atualmente disponíveis no motor de série, utilizados pelo sistema de injeção eletrônica. O parâmetro de vazão de ar admitido, calculado pela unidade de controle do sistema de injeção também foi aproveitado. Após a criação do modelo, este foi verificado inicialmente simulando-se variações nas entradas (quantidade injetada de combustível e acionamento da válvula EGR) e analisando-se a reação ocorrida na saída do modelo (rotação do eixo do turbocompressor). Foram realizadas medições em um banco de testes para o levantamento do mapa de temperatura do coletor de escape em condição estacionária. Para a verificação do modelo em um caso real, foram coletados dados de diversos parâmetros de funcionamento de um motor diesel instalado em um veículo de testes da MWM International. Os parâmetros de entrada coletados foram inseridos no modelo e o valor de rotação medido confrontado com o valor calculado. Ajustes nos submodelos foram necessários para a estimação dos parâmetros do modelo através da minimização do erro encontrado. O erro encontrado diminuiu sensivelmente, porém ainda se manteve alto para ser considerado como uma informação confiável para a implementação no software da unidade de comando do motor / Abstract: In this work, it was intended to create a model capable to calculate the turbocharger shaft speed of a Diesel engine, for future implementation of an algorithm in the engine's Electronic Control Unit software, as a protection strategy against turbocharger shaft overspeed. The model was built using physical phenomenon modeling from some parts of the engine, among tables obtained by empiric tests of the engine. The model was created in order to use current sensors available in the series production engine, which is used by electronic fuel injection system. The intake air flow parameter, already calculated by ECU, was also used. After the model creation, it was verified simulating input variation (fuel injected quantity and EGR valve command) and analyzing the model output (turbocharger shaft speed). Measurements in bench test were performed in order to create an exhaust manifold temperature map in steady condition. In order to check the model in a real case, several operating parameter data were collected from a Diesel engine installed in a test vehicle from MWM International. The acquired data was inserted in the model and the turbocharger shaft speed was crosschecked against the calculated value. Adjustments in submodels were necessary to parameter estimation through minimizing of error found. The error decreased significantly, however it remained too high to be considered a reliable information for implementation in the controller's software / Mestrado / Eletrônica / Mestre em Engenharia Automobilistica
|
12 |
Simulação dinâmica de planta de condicionamento de gás natural em plataforma offshore / Dynamic simulation of natural gas conditioning plant in offshore platformPimenta, Luciana Bispo 19 August 2018 (has links)
Orientador: Maria Regina Wolf Maciel / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química / Made available in DSpace on 2018-08-19T10:31:27Z (GMT). No. of bitstreams: 1
Pimenta_LucianaBispo_M.pdf: 3231978 bytes, checksum: c2de8436ce07b62fabe1af47e5020ef1 (MD5)
Previous issue date: 2011 / Resumo: O comportamento dinâmico em unidades de produção de óleo é muito importante para a operação e projeto de equipamentos. O desenvolvimento da tecnologia no processamento primário de petróleo é caracterizado pela otimização de peso e espaço nas unidades de produção. Estas restrições têm sido diretrizes para pesquisas em desenvolvimento de equipamentos mais eficientes e compactos, como hidrociclones. Porém, esta capacidade de compactar equipamentos resultou em redução na flexibilidade em operar com oscilações de carga (golfadas). Ao longo dos últimos anos, a maturação de campos produtores e o aumento na produção de água e no uso de gás lift associados à produção de óleo em lâminas d'água cada vez mais profundas têm aumentado a freqüência de golfadas. A simulação dinâmica pode ser utilizada para desenvolver estratégias para controlar situações transientes em plataformas offshore. Este trabalho utilizou a simulação dinâmica de uma planta de condicionamento de gás natural em plataforma offshore feita no simulador de processos HYSYS 7.2, como ferramenta para analisar a planta e propor melhores condições de operação. Neste trabalho duas situações serão analisadas. Na primeira, apenas o gás associado passa pelo sistema de compressão e o gás não associado é encaminhado diretamente para desidratação com TEG (situação 1). Na segunda, haverá uma quebra de pressão do gás proveniente dos poços de gás e este deverá ser encaminhado para o sistema de compressão juntamente com o gás proveniente dos poços de óleo (situação 2). Em um primeiro momento, a planta foi analisada em modelo de estado estacionário e foi avaliado o efeito da quebra de pressão na temperatura da tubulação à jusante das válvulas responsáveis pela quebra (situação 2). Em um segundo momento, a planta foi avaliada no estado dinâmico, onde foi possível analisar o efeito que as oscilações de carga têm no sistema de compressão da planta, bem como nas trocas térmicas. Este segundo estudo foi avaliado para as situações 1 e 2. Para o estudo em estado estacionário, foi possível observar que a especificação de temperatura mínima de projeto para a tubulação à jusante das válvulas que efetuam a quebra de pressão não é alcançada, porém, existe uma faixa de ?P ideal para cada válvula a fim de evitar a formação de gelo na parte externa da tubulação. Para o estudo dinâmico foi possível avaliar os efeitos que as oscilações de carga trazem para o sistema de compressão e em que situação (1 ou 2) a planta opera com maior estabilidade. Verificou-se que o trocador da saída do sistema de compressão opera com certa instabilidade na situação 1 devido à baixa vazão de gás a ser resfriado e na situação 2 esta instabilidade é reduzida. As conclusões deste estudo mostram a importância da simulação dinâmica como ferramenta de decisão para o engenheiro de processamento de gás na operação da planta / Abstract: Dynamic behavior in oil production units is vital for equipments project and operation. Technology development in offshore primary processing has traditionally been characterized by optimizing weight and space in their production units. Such restrictions have been the guidelines for researches in developing more efficient and compact equipments, such as hydro cyclones. However, this compactness has resulted, invariably, in reduced capacity to deal with load oscillations, typical in offshore units. Along the last years the maturation of production fields, and the increase of water production and gas lift use, associated to the oil production in larger and larger water depths have been increasing slugs intensity. Dynamic simulation can be used to develop better strategies to control transient situations in offshore units. This study use a dynamic simulation of a natural gas offshore conditioning plant as a tool to analyze the plant and to propose better operational conditions. The process simulator to do dynamic simulation was HYSYS 7.2. In this work two situations were analyzed. In the first one, only the gas from oil wells pass through the gas compression system and the gas from gas wells are forwarded directly to dehydration with TEG (situation 1). In the second situation, there will be a pressure drop of the gas from gas wells and this gas should be forwarded to the compression system along with gas from oil wells (situation 2). At first, the plant was analyzed in steady state model and the effect of pressure drop in pipe temperature downstream of the valves responsible for pressure drop was evaluated (situation 2). In a second stage the plant was evaluated in dynamic state where it was possible to analyze the effect of load oscillations in the compression system, as well as in the heat exchange. This second study was evaluated for situations 1 and 2. For the static study, the specification of minimum project temperature for the pipeline downstream of the valves that perform the pressure drop is not achieved but there is an ideal range pressure drop for each valve to prevent ice formation outside the pipe. In the dynamic study was evaluated the effects of load oscillations in compression system and in what situation (1 or 2) the plant operates with greater stability. It was found that the heat exchange of the output of the compression system operates with instability in the situation 1 due to the low flow of gas to be cooled, and in the situation 2 this instability is reduced. The conclusions of this study show the importance of dynamic simulation as a decision tool for the engineer in the gas processing plant operation / Mestrado / Desenvolvimento de Processos Químicos / Mestre em Engenharia Química
|
13 |
Optimal Control of Heat Transfer Rates in TurbochargersJohansson, Max January 2018 (has links)
The turbocharger is an important component of competitive environmentally friendly vehicles. Mathematical models are needed for controlling turbochargers in modern vehicles. The models are parameterized using data, gathered from turbocharger testing ingas stands (a flow bench for turbocharger, where the engine is replaced with a combustion chamber, so that the exhaust gases going to the turbocharger can be controlled with high accuracy). Collecting the necessary time averaged data is a time-consuming process. It can take more than 24 hours per turbocharger. To achieve a sufficient level of accuracy in the measurements, it is required to let the turbocharger system reach steady state after a change of operating point. The turbocharger material temperatures are especially slow to reach steady state. A hypothesis is that modern methods in control theory, such as numeric optimal control, can drastically reduce the wait time when changing operating point. The purpose of this thesis is to provide a method of time optimal testing of turbo chargers. Models for the turbine, bearing house and compressor are parameterized. Well known models for heat transfer is used to describe the heat flows to and from exhaust gas and charge air, and turbocharger material, as well as internal energy flows between the turbocharger components. The models, mechanical and thermodynamic, are joined to form a complete turbocharger model, which is validated against measured step responses. Numeric optimal control is used to calculate optimal trajectories for the turbo charger input signals, so that steady state is reached as quickly as possible, fora given operating point. Direct collocation is a method where the optimal control problem is discretized, and a non-linear program solver is used. The results show that the wait time between operating points can be reduced by a factor of 23. When optimal trajectories between operating points can be found, the possibility of further gains, if finding an optimal sequence of trajectories, are investigated. The problem is equivalent to the open traveling salesman, a well studied problem, where no optimal solution can be guaranteed. A near optimal solution is found using a genetic algorithm. The developed method requires a turbocharger model to calculate input trajectories. The testing is done to acquire data, so that a model can be created, which is a catch-22 situation. It can be avoided by using system identification techniques. When the gas stand is warming up, the necessary model parameters are estimated, using no prior knowledge of the turbocharger.
|
14 |
Análise de um modelo termohidrodinâmico para mancais axiais / Analysis of a thermohydrodynamic model for thrust bearingsVieira, Leonardo Carpinetti, 1987- 26 August 2018 (has links)
Orientador: Kátia Lucchesi Cavalca Dedini / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica / Made available in DSpace on 2018-08-26T15:33:06Z (GMT). No. of bitstreams: 1
Vieira_LeonardoCarpinetti_D.pdf: 8387504 bytes, checksum: c4ddda686a98c9562fec4c86ff5f3a1c (MD5)
Previous issue date: 2014 / Resumo: Este trabalho possui como principal objetivo analisar a influência da variação da temperatura e, consequentemente, da viscosidade do fluido lubrificante sobre o comportamento de mancais axiais lubrificados de geometria fixa. Foi implementado numericamente, para isto, um modelo termohidrodinâmico (THD) baseado na resolução da Equação de Reynolds generalizada e da Equação de Energia através do Método dos Volumes Finitos (MVF), permitindo a obtenção da distribuição de pressão e da distribuição de temperatura ao longo do filme de óleo presente entre o mancal estacionário e o colar do eixo em movimento. Os resultados de capacidade de carga axial do mancal e o seu comportamento dinâmico, cuja análise é feita através dos coeficientes equivalentes de rigidez e amortecimento do lubrificante, são comparados com os resultados obtidos através de um modelo exclusivamente hidrodinâmico (HD), isotérmico e isoviscoso, previamente desenvolvido, buscando-se compreender o grau de influência da variação da temperatura na análise de mancais deste tipo. A influência de uma gama de parâmetros geométricos envolvidos, tais como comprimento angular da rampa e do segmento e inclinação da rampa, também é analisada, com o objetivo de se definir parâmetros geométricos ótimos do mancal que resultam em uma maior capacidade de carga axial. A influência de parâmetros de operação, tais como velocidade de rotação e espessura mínima de fluido, também é analisada. Resultados experimentais obtidos através de uma bancada de testes montada com um turbocompressor são utilizados para se validar os resultados do modelo implementado numericamente e analisar o comportamento de um sistema real capaz de funcionar a velocidades de rotação muito altas e sujeito a esforços axiais abruptos e elevados / Abstract: The main aim of this work is to analyse the influence of the temperature variation and, as consequence, the viscosity variation of the lubricant fluid on the behaviour of lubricated fixed-geometry thrust bearings. For this purpose, a thermohydrodynamic (THD) model, based on the solution of the Generalized Reynolds¿ Equation and of the Energy Equation by use of a Finite Volume Method, was developed, enabling the calculation of both pressure and temperature distribution along the fluid film present between the stationary bearing and the rotating collar. The results of axial load capacity of the bearing and its dynamic behaviour, characterised by the equivalent stiffness and damping coefficients, are compared to the results obtained by a previously developed purely hydrodynamic (HD), isothermal and isoviscous model, with the objective of understanding the influence of the temperature variation on the analysis of this type of bearings. The influence of several geometric parameters, such as pad length, ramp length and slope of the ramp, is also analysed, with the objective of defining the optimum values that lead to a higher load capacity. Also, the influence of operating parameters as speed and minimum film thickness on the behaviour of the system is studied. Experimental results, obtained at a test rig mounted with a small turbocharger are used to validate the simulated results and analyse the behaviour of a real system, capable of supporting high speeds of rotation and severe and abrupt external loads / Doutorado / Mecanica dos Sólidos e Projeto Mecanico / Mestre em Engenharia Mecânica
|
15 |
An EXPERIMENTAL and COMPUTATIONAL STUDY of INLET FLOW FIELD in TURBOCHARGER COMPRESSORSBanerjee, Deb Kumar January 2022 (has links)
No description available.
|
16 |
Contribution to the Experimental Characterization and 1-D Modelling of Turbochargers for IC EnginesReyes Belmonte, Miguel Ángel 07 January 2014 (has links)
At the end of the 19th Century, the invention of the Internal Combustion Engine
(ICE) marked the beginning of our current lifestyle. Soon after the first ICE
patent, the importance of increasing air pressure upstream the engine cylinders was
revealed. At the beginning of the 20th Century turbo-machinery developments (which
had started time before), met the ICE what represented the beginning of turbocharged
engines. Since that time, the working principle has not fundamentally changed. Nevertheless,
stringent emissions standards and oil depletion have motivated engine developments;
among them, turbocharging coupled with downsized engines has emerged
as the most feasible way to increase specific power while reducing fuel consumption.
Turbocharging has been traditionally a complex problem due to the high rotational
speeds, high temperature differences between working fluids (exhaust gases,
compressed air, lubricating oil and cooling liquid) and pulsating flow conditions. To
improve current computational models, a new procedure for turbochargers characterization
and modelling has been presented in this Thesis. That model divides turbocharger
modelling complex problem into several sub-models for each of the nonrecurring
phenomenon; i.e. heat transfer phenomena, friction losses and acoustic
non-linear models for compressor and turbine. A series of ad-hoc experiments have
been designed to aid identifying and isolating each phenomenon from the others. Each
chapter of this Thesis has been dedicated to analyse that complex problem proposing
different sub-models.
First of all, an exhaustive literature review of the existing turbocharger models
has been performed. Then a turbocharger 1-D internal Heat Transfer Model (HTM)
has been developed. Later geometrical models for compressor and turbine have been
proposed to account for acoustic effects. A physically based methodology to extrapolate
turbine performance maps has been developed too. That model improves
turbocharged engine prediction since turbine instantaneous behaviour moves far from
the narrow operative range provided in manufacturer maps. Once each separated
model has been developed and validated, a series of tests considering all phenomena
combined have been performed. Those tests have been designed to check model
accuracy under likely operative conditions.
The main contributions of this Thesis are the development of a 1-D heat transfer
model to account for internal heat fluxes of automotive turbochargers; the development
of a physically-based turbine extrapolation methodology; the several tests
campaigns that have been necessary to study each phenomenon isolated from others
and the integration of experiments and models in a comprehensive characterization
procedure designed to provide 1-D predictive turbocharger models for ICE calculation. / Reyes Belmonte, MÁ. (2013). Contribution to the Experimental Characterization and 1-D Modelling of Turbochargers for IC Engines [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/34777
|
17 |
Experimental study of oil coking problem and contribution to the modelling of heat transfer in turbochargersRodriguez Usaquén, Yuly Tatiana 22 February 2019 (has links)
[ES] The automotive industry represents one of the most important sectors in the world. Given its socio-economic influence, research is aimed at reducing fuel consumption and emissions. Turbochargers provide several benefits including increased power for a given engine size, improved fuel economy and reduced emissions. The turbocharger is an important piece for the new generation of engines that must comply with the Euro 6 or in the U.S. Tier 3 vehicle emissions and fuel standard program. As more effort is made to increase efficiencies and reduce emissions, the complexity of the system increases. The high rotational speeds, pulsating flow conditions and high temperature differences between working fluids (exhaust gases, compressed air, lubricating oil, coolant fluids) make the turbo-charging a challenging task. Numerical simulation opens a range of possibilities to study the performance, efficiency and design of components in the turbocharger, but requires continued accuracy refinements.
In this thesis, a great effort has been made to improve the overall understanding of the different physical phenomena that occur inside the turbocharger. Both, experimental and modelling efforts have been made to understand the thermal behaviour of the turbocharger under engine start/stop conditions. After state-of-the-art review of thermal studies and heat transfer simulation codes, this work presents an extensive experimental testing campaign that includes a thermal characterization of the turbocharger in stationary and transient conditions. Subsequently, several turbochargers were measured to assess the consequences that degraded oils can generate in the bearing system during endurance tests of oil-coking.
To minimize the possibilities of coke formation, some theoretical studies were done. First, a 1D turbocharger model was used in GT-PowerTM for a detailed study of the temperature rise in the central housing during an engine hot-stop. The simulated cooling strategies aims to find an optimal in terms of minimizing extra energy consumption per K housing temperature reduction. After, a 2D radial model is proposed as improvement of an existing one-dimensional model developed at CMT - Universitat Politècnica de València. Aiming for a low computational cost, the radial model was developed to be compatible with fast one-dimensional engine simulations. Later, a detailed solution of heat fluxes was made by means of CFD using a 3D design of the turbocharger's central housing.
The 3D model improved the results when temperature of the bearings/shaft is required. Additionally, thermal properties within the turbocharger can be obtained and therefore a reduction of the experimental tasks in the thermohydraulic test bench. Both 2D and 3D models were validated using experimental data, demonstrating predictive accuracy improvements on the results of previous models. / [CA] La industria automotriz representa uno de los sectores más importantes del mundo. Dada su influencia socioeconómica, la investigación está destinada a reducir el consumo de combustible y las emisiones.
Los turbocompresores ofrecen varios beneficios, entre ellos, mayor potencia para un tamaño de motor determinado, mejor economía de combustible y reducción de emisiones. El turbocompresor es una pieza importante para la nueva generación de motores que deben cumplir con la normativa Euro 6 o en el programa estándar de emisiones y combustible de los EE. UU. Tier 3. A medida que se hacen más esfuerzos para aumentar la eficiencia y reducir las emisiones, la complejidad del sistema aumenta. Las altas velocidades de rotación, las condiciones de flujo pulsante y las altas diferencias de temperatura entre los fluidos de trabajo (gases de escape, aire comprimido, aceite lubricante, fluidos refrigerantes) hacen que la turbocarga sea una tarea desafiante. La simulación numérica abre un rango de posibilidades para estudiar el rendimiento, la eficiencia y el diseño de los componentes en el turbocompresor, pero requiere continuos refinamientos de precisión.
En esta tesis, se ha hecho un gran esfuerzo para mejorar la comprensión global de los diferentes fenómenos físicos que ocurren al interior del turbocompresor. Se han hecho esfuerzos experimentales y de modelado para comprender el comportamiento térmico del turbocompresor en condiciones de arranque/parada del motor. Luego de una revisión de los estudios térmicos y de los códigos de simulación de transferencia de calor, éste trabajo presenta una extensa campaña de pruebas experimentales que incluye una caracterización térmica del turbocompresor en condiciones estacionarias y transitorias. Posteriormente, se midieron varios turbocompresores para evaluar las consecuencias que los aceites degradados pueden generar en el sistema de rodamientos durante pruebas de resistencia de coque de aceite.
Para minimizar las posibilidades de formación de coque, se realizaron algunos estudios teóricos. En primer lugar, se usó un modelo de turbocompresor 1D en GT-PowerTM para un estudio detallado del aumento de temperatura de la carcasa central del turbocompresor durante un paro en caliente del motor. Las estrategias de enfriamiento simuladas apuntan a encontrar un óptimo en términos de minimizae el consumo de energía extra por reducción de la temperatura de la carcasa en Kelvin. Posteriormente, se propone un modelo radial 2D como mejora de un modelo unidimensional existente desarrollado en la CMT - Universitat Politècnica de València. Con el objetivo de conseguir un bajo costo computacional, el modelo radial 2D se desarrolló para ser compatible con simulaciones unidimensionales rápidas de motor. Después, se realizó una solución detallada de los flujos de calor mediante CFD utilizando un diseño 3D de la carcasa central del turbocompresor.
El modelo 3D mejora los resultados cuando se requiere la temperatura de los cojinetes/eje. Además, con ésta campaña de CFD se pueden obtener propiedades térmicas dentro del turbocompresor y, por lo tanto, una reducción de las tareas experimentales en el banco de pruebas termohidráulico. Ambos modelos 2D y 3D fueron validados utilizando datos experimentales, demostrando mejoras de precisión de predicción sobre los resultados de modelos anteriores. / [EN] La indústria automotriu representa un dels sectors més importants del món. Donada la seua influència socioeconòmica, la investigació està destinada a reduir el consum de combustible i les emissions. Els turbocompressors oferixen diversos beneficis, entre ells, major potència per a una grandària de motor determinat, millor economia de combustible i reducció d'emissions. El turbocompressor és una peça important per a la nova generació de motors que han de complir amb la normativa Euro 6 o en el programa estàndard d'emissions i combustible dels EE. UU. Tier 3. A mesura que es fan més esforços per a augmentar l'eficiència i reduir les emissions, la complexitat del sistema augmenta. Les altes velocitats de rotació, les condicions de flux polsen-te i les altes diferències de temperatura entre els fluids de treball (gasos de fuga, aire comprimit, oli lubricant, fluids refrigerants) fan que la turbocarga siga una tasca desafiador. La simulació numèrica obri un rang de possibilitats per a estudiar el rendiment, l'eficiència i el disseny dels components en el turbocompressor, però requerix continus refinaments de precisión.
En aquesta tesi, s'ha fet un gran esforç per a millorar la comprensió global dels diferents fenòmens físics que ocorren a l'interior del turbocompressor. S'han fet esforços experimentals i de modelatge per a comprendre el comportament tèrmic del turbocompressor en condicions d'arranque/parada del motor. Després d'una revisió dels estudis tèrmics i dels codis de simulació de transferència de calor, este treball presenta una extensa campanya de proves experimentals que inclou una caracterització tèrmica del turbocompressor en condicions estacionàries i transitòries. Posteriorment, es van mesurar uns quants turbocompressors per a avaluar les conseqüències que els olis degradats poden generar en el sistema de rodaments durant proves de resistència de coc d'aceite.
Per a minimitzar les possibilitats de formació de coc, es van realitzar alguns estudis teòrics. En primer lloc, es va usar un model de turbocompressor 1D en GT- Power \textsuperscript{TM} per a un estudi detallat de l'augment de temperatura de la carcassa central del turbocompressor durant una desocupació en calent del motor. Les estratègies de refredament simulades apunten a trobar un òptim en termes de minimizae el consum d'energia extra per reducció de la temperatura de la carcassa en Kelvin. Posteriorment, es proposa un model radial 2D com a millora d'un model unidimensional existent desenrotllat en la CMT - Universitat Politècnica de València. Amb l'objectiu d'aconseguir un baix cost computacional, el model radial 2D es va desenrotllar per a ser compatible amb simulacions unidimensionals ràpides de motor. Después, es va realitzar una solució detallada dels fluxos de calor per mitjà de CFD utilitzant un disseny 3D de la carcassa central del turbocompressor. El model 3D millora els resultats quan es requerix la temperatura dels cojinetes/eje. A més, amb esta campanya de CFD es poden obtindre propietats tèrmiques dins del turbocompressor i, per tant, una reducció de les tasques experimentals en el banc de proves termohidráulico. Ambdós models 2D i 3D van ser validats utilitzant dades experimentals, demostrant millores de precisió de predicció sobre els resultats de models anteriores. / Rodriguez Usaquén, YT. (2019). Experimental study of oil coking problem and contribution to the modelling of heat transfer in turbochargers [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/117314
|
18 |
Numerical Study of a Radial Turbine of Variable Geometry at Off-Design Conditions Reaching Choked FlowEchavarría Olaya, Juan David 04 September 2023 (has links)
[ES] En los turbocompresores con turbina de geometría variable (VGT por sus siglas en inglés) los vanos del estator se mueven a una posición cerrada para generar una contrapresión durante el modo de frenado del motor. De este modo, se generan ondas de choque en el estator. Además, en otras aplicaciones donde se utilizan turbinas radiales como en ciclos reversos de Brayton para refrigeración, ciclos orgánicos Rankine, y en las turbinas para la unidad de potencia auxiliar, dependiendo de las condiciones de operación, pueden aparecer condiciones sónicas y ondas de choque. El presente trabajo se centra en el estudio del comportamiento del flujo a través de una turbina de geometría variable de un turbocompresor comercial en condiciones fuera de diseño alcanzando condiciones de choque. Se ha realizado un análisis detallado del patrón de flujo dentro de la turbine usando simulaciones CFD, identificando y cuantificando los fenómenos más importantes bajo diferentes condiciones de operación. Se han llevado a cabo simulaciones estacionarias usando Reynolds Averaged Navier Stokes (RANS) y no estacionarias (unsteady RANS) para obtener las características del flujo en el estator y en el rotor, además de obtener el mapa de la turbina. Los resultados CFD muestran que la región del dominio computacional donde aparecen las condiciones sónicas depende de la posición de los vanos del estator y la relación de presiones. Cuando los vanos del estator están en una posición cerrada (10% VGT), el fluido se acelera y, dependiendo de la relación de presiones, la presión estática en el lado de succión disminuye hasta cierto punto donde un incremento repentino revela la presencia de una onda de choque, la cual se expande por el espacio sin vanos. La intensidad de la onda de choque bajo la relación de presiones más altas varia con la velocidad de giro. Para analizar la interacción entre el rotor y el estator se llevaron a cabo simulaciones numéricas con los vanos del estator en una posición cerrada, 10% VGT, y en una posición más abierta, 30% VGT. El número de choques que una partícula del fluido experimenta aguas arriba del rotor está correlacionado con las pérdidas por choque del fluido. Cerca de los vanos del estator, las pérdidas de presión son altas, hacia el centro del espacio sin vanos las pérdidas disminuyen y cerca del rotor empiezan a incrementar. La interacción entre el rotor y el estator crea ondas de choque cuya intensidad depende de la posición del borde de ataque del rotor y de la velocidad de giro. A la velocidad de giro más alta, ocurren fluctuaciones en la carga cerca del borde de ataque, las cuales pueden comprometer la integridad de la pala. Cuando la turbina tiene los vanos del estator abiertos (80% VGT) y opera a la relación de presión más alta seleccionada, las condiciones de choque aparecen en el plano del borde de fuga del rotor. Además, el desarrollo del área chocada depende de la velocidad de giro y de las fugas en la punta del álabe. Así, se investigó los efectos de las fugas en la punta del alabe sobre el flujo principal bajo condiciones sónicas disminuyendo e incrementando el intersticio entre la punta del álabe y la carcasa hasta un 50% en base a la geometría dada por el fabricante. El flujo a través de este espacio se acelera para posteriormente mezclarse con el flujo principal y generar un vórtice. Los efectos del vórtice sobre el flujo en el plano ubicado en el borde de fuga del rotor cuando el intersticio varía son más significativos a altas velocidades que a bajas velocidades. El vórtice permanece más cerca del lado de succión a altas velocidades generando una región subsónica que incrementa con la altura del intersticio. Las fugas en la punta del álabe no afectan al flujo principal cerca del cubo cuando la turbina opera a altas y bajas velocidades. / [CA] En turbocompressors amb turbina de geometria variable (VGT per les seues sigles en anglès), les paletes de l'estàtor es mouen a una posició tancada per generar una contrapressió durant el mode de frenada del motor. D'aquesta forma, es generen unes ones de xoc en l'estàtor. A més, en altres aplicacions on s'utilitzen turbines radials com els cicles inversos de Brayton per a refrigeració, cicles orgànics de Rankine o en turbines per a la unitat de potencia auxiliar, depenent de les condicions d'operació poden aparéixer condicions sòniques i d'ones de xoc. El present treball es centra en l'estudi del comportament del flux en una turbina radial de geometria variable d'un turbocompressor comercial en condicions fora de disseny, arribant a condicions de xoc. S'ha realitzat un anàlisi detallat del patró de flux dins d'aquestes turbines utilitzant simulacions CFD, identificant i quantificant els fenòmens més importants a diferents condicions d'operació. S'han realitzat simulacions estacionàries utilitzant Reynolds Averaged Navier Stokes (RANS) i no estacionàries (Unsteady-RANS) per a obtenir les característiques del flux en l'estàtor i en el rotor, a més d'obtenir el mapa de la turbina. Els resultats CFD mostren que la regió del domini computacional on apareixen les condicions sòniques depenen de la posició de les paletes de l'estàtor i de la relació de pressions. Quan les paletes de l'estàtor estan en una posició tancada (10% VGT), el flux s'accelera i, depenent de la relació de pressions, la pressió estàtica en el costat de succió disminueix fins a cert punt on un increment brusc denota la presència d'una ona de xoc que s'expandix per l'espai sense paletes. L'intensitat de la ona de xoc a relacions de pressions elevades varia amb la velocitat de rotació. Per analitzar l'interacció entre rotor i estàtor es van realitzar simulacions numèriques amb les paletes de l'estàtor en una posició tancada, 10% VGT, i en una posició més oberta, 30% VGT. El nombre de xocs que una partícula del fluid experimenta aigües amunt del rotor està correlacionat amb les pèrdues per xoc del fluid. Prop de les paletes de l'estàtor, les pèrdues de pressión són elevades, cap al centre de l'espai sense paletes les pèrdues disminueixen i prop del rotor comencen a incrementarse. L'interacción entre rotor i estàtor crea ones de xoc amb una intensitat que depèn de la posició de la vora d'atac del rotor i de la velocitat de rotació. A la velocitat de rotació més elevada, prop de de la vora d'atac ocorren fluctuacions en la càrrega que poden comprometre la integritat de la pala. Quan la turbina té les paletes de l'estàtor obertes (80% VGT) i opera a la relació de pressió més elevada de les seleccionades, les condicions de xoc apareixen en el pla de la vora de fuga del rotor. A més, el desenvolupament de l'àrea xocada depèn de la velocitat de rotació i de les fugues en la punta de les paletes. Així, s'ha investigat els efectes de les fugues en la punta de les paletes sobre el flux principal sota condicions sòniques, disminuint i incrementant l'interstici entre la punta de la paleta i la carcasa fins un 50\% en base a la geometria donada pel fabricant. El flux en aquest espai s'accelera per a posteriorment mesclar-se amb el flux principal i generar un vòrtex. Els efectes del vòrtex sobre el flux en el pla ubicat a la vora de fuga del rotor quan l'interstici varia són més significatives a velocitats altes que a velocitats baixes. El vòrtex roman més prop del costat de succió a velocitats elevades generant una regió subsònica que incrementa amb l'altura de l'interstici. Les fugues en la punta de les paletes no afecten al flux principal prop del cub quan la turbina opera tant a altes com baixes velocitats. / [EN] In turbochargers with variable geometry turbine (VGT), the stator vanes move to a closed position to drive high exhaust back pressure during the engine braking mode. Thus, shock waves are generated at the stator. Furthermore, depending on the operational conditions in the use of radial turbines in other applications like reverse Brayton cycle for refrigeration, Organic Rankine Cycles, and gas turbine auxiliary power unit (GTAPU), sonic flow and shock waves can appear. The current work focuses on studying the flow behavior of a commercial turbocharger turbine of variable geometry at off-design conditions reaching choked flow. A detailed examination of the flow patterns within the turbine has been carried out using CFD simulations, identifying and quantifying the most important phenomena under different operational points. Reynolds Averaged Navier Stokes (RANS) and unsteady RANS simulations have been performed to obtain the flow structures in stator and rotor as well as the turbine map. The CFD results show that the region of the computational domain where the sonic conditions appear depends on the stator vanes position and the pressure ratio. When the stator vanes are in the closed position (10% VGT) the flow through the stator accelerates and, depending on pressure ratio, the static pressure on the suction side decreases until a certain point where a sudden increase reveals the presence of a shock wave that expands through the vaneless space. The intensity of the shock wave at higher pressure ratio varies with the rotational speed. To analyze the rotor-stator interaction, numerical simulations were carried out with the stator vanes at the closed position, 10% VGT, and at wider position, 30% VGT. The number of shocks a fluid particle experiences upstream of the rotor is correlated with the fluid shock losses. Close to the stator vanes, the pressure losses are high; toward the center of the vaneless space, they start to decrease, and close to the rotor they start to increase. The rotor-stator interaction creates shock waves, whose intensity depends on the position of the rotor leading edge and the blade speed. At higher rotational speed, load fluctuation occurs close to the leading edge, which may compromise the blade's integrity. When the turbine has the stator vanes open (80% VGT) and operates at the selected higher pressure ratio, the choking condition appears in a plane at the rotor trailing edge. Furthermore, the development of the choked area depends on the rotational speed and tip leakage. Thus, the effect of the tip leakage flow on the main flow under sonic conditions was investigated decreasing and increasing the tip gap up to 50% of the original geometry given by the manufacturer. The flow through the gap accelerates and then mixes with the main flow, generating a vortex. The effects of the vortex on the flow at the rotor trailing edge plane when the tip gap varies are more significant at higher speed than at lower speed. The vortex stays closer to the tip suction side at higher speed, generating a subsonic region that increases with the tip gap height. At higher and lower rotational speeds, the tip leakage flow does not affect the main flow close to the hub. / I would like to acknowledge the financial support received
through the "Subprograma de Formación de Profesorado Universitario (FPU)".
Ministerio de Universidades. FPU18/02628 and by the "FPI Subprograma 2".
Universitat Politècnica de València. PAID-10-18. / Echavarría Olaya, JD. (2023). Numerical Study of a Radial Turbine of Variable Geometry at Off-Design Conditions Reaching Choked Flow [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/196861
|
19 |
Design For Six Sigma / Design For Six SigmaGreplová, Kristýna January 2012 (has links)
The aim of the master’s thesis is analysis of practical application limits of waste-gate TwinScroll turbocharger located in BMW X6 M vehicle by using DFSS (Design For Six Sigma) tools. The goal is to create a special measurement device for a measurement of waste gate leakage with chance of testing all sorts of characteristics having impact on key parameters of turbocharger.
|
20 |
Modelling and analysis methodology of SI IC engines turbocharged by VGTGómez Vilanova, Alejandro 01 April 2022 (has links)
[ES] Se espera que la nueva generación de motores de encendido provocado represente la mayor parte del mercado en el contexto de la propulsión de vehículos con o sin hibridación. Sin embargo, la tecnología actual todavía tiene desafíos críticos por delante para cumplir con los nuevos estándares de emisiones de CO2 y contaminantes. Consecuentemente están surgiendo nuevas tecnologías para mejorar la eficiencia de los motores y que estos cumplan con las nuevas normativas anti-contaminación. Entre otras, una de las tendencias más seguidas en la actualidad es la reducción de tamaño de los motores, concepto conocido como "downsizing", bajo la técnica de la turbosobrealimentación. Las nuevas tecnologías de turbocompresores, como las turbinas de geometría variable (TGV), se empiezan a considerar para su aplicación en las exigentes condiciones de funcionamiento de los nuevos motores de encendido provocado.
En este trabajo, a partir de datos experimentales obtenidos en la sala de ensayos del motor, se propone una metodología de calibración del modelo completo de motor 1-D: se realiza un análisis teórico dirigido a asegurar el control total sobre cualquier aspecto de la simulación. En otras palabras, el modelo de motor 1-D se ajustó completamente con respecto a los datos experimentales del motor.
Además, se demuestra la necesidad del postprocesamiento y validación de datos experimentales relacionados con mapas de turbocompresores, ya que se requiere desacoplar fenómenos como la transferencia de calor y las pérdidas por fricción de los denominados mapas experimentales de turbocompresores. De acuerdo con esto, se presenta una metodología para la obtención de mapas de turbocompresores, basada en una campaña experimental dividida en varias tipologias de ensayos y seguida de la etapa de modelado. La etapa de modelado se lleva a cabo utilizando modelos de turbocompresores integrales ya desarrollados o disponibles en la literatura. Adicionalmente se aborda la mejora en la precisión de las simulaciones cuando se comparan mapas de turbocompresores postprocesados con mapas puramente experimentales.
Aprovechando el modelo de motor 1-D altamente validado y físicamente representativo así como los mapas validados del turbocompresor, se discute cómo las incertidumbres experimentales o las variables "fuera de control" pueden afectar los resultados experimentales. Se propone una metodología para superar este punto desde la perspectiva del modelado. Lo anterior permite realizar comparativas que en las se analiza exclusivamente el impacto de diferentes tecnologías de turbina o unidades de turbinas. Además, tomando como base el modelo ya desarrollado, es posible explorar diferentes cálculos de optimización, estrategias de control y proporcionar comparaciones de tecnología de turbinas en plenas cargas y cargas parciales de motor en un amplio rango de revoluciones. También se aborda el impacto de la altitud y se evalúan los transitorios de carga para dos tecnologías de turbinas analizadas: VGT y WG.
Como conclusión, se demuestra que la tecnología VGT muestra menos limitaciones en condiciones de trabajo extremas, como en la curva de plena carga, donde la tecnología WG representa una limitación en términos de máxima potencia. Las diferencias a plena carga se vuelven aún más evidentes en condiciones de trabajo en altitud. Cuando se trata de cargas parciales, las diferencias en el consumo de combustible son menores, pero potencialmente beneficiosas para los VGT. / [CA] S'espera que la nova generació de motors d'encesa per espurna representi la major part del mercat en el context de la propulsió de vehicles amb o sense hibridació. No obstant això, la tecnologia actual encara té reptes crítics per davant per complir amb els nous estàndards d'emissions de CO2 i contaminants. Conseqüentment estan sorgint noves tecnologies per millorar l'eficiència dels motors i que aquests compleixin amb les noves normatives anti-contaminació. Entre d'altres, una de les tendències més seguides en l'actualitat és la reducció de grandària dels motors, concepte conegut com "downsizing", sota la tècnica de la turbosobrealimentación. Les noves tecnologies de turbocompressors, com les VGT, es comencen a considerar per la seva aplicació en les exigents condicions de funcionament dels nous motors d'encesa per espurna.
En aquest treball, a partir de dades experimentals obtingudes a la sala d'assajos de l'motor, es proposa una metodologia de calibratge del model complet de motor 1-D: es realitza una anàlisi teòrica dirigit a assegurar el control total sobre qualsevol aspecte de la simulació. En altres paraules, el model de motor 1-D es va ajustar completament respecte a les dades experimentals del motor.
A més, es demostra la necessitat del posprocesamiento i validació de dades experimentals relacionats amb mapes de turbocompressors, ja que es requereix desacoblar fenòmens com la transferència de calor i les pèrdues per fricció dels denominats mapes experimentals de turbocompressors. D'acord amb això, es presenta una metodologia per a l'obtenció de mapes de turbocompressors, basada en una campanya experimental dividida en diverses tipologies d'assajos i seguida de l'etapa de modelatge. L'etapa de modelatge es porta a terme utilitzant models de turbocompressors integrals ja desenvolupats disponibles a la literatura. A més a s'aborda la millora en la precisió de les simulacions quan es comparen mapes de turbocompressors postprocessats amb mapes purament experimentals.
Aprofitant el model de motor 1-D validat i físicament representatiu així com els mapes validats del turbocompressor, es discuteix com les incerteses experimentals o les variables "fora de control" poden afectar els resultats experimentals. Es proposa una metodologia per superar aquest punt des de la perspectiva de la modelització. L'anterior permet realitzar exclusivament la comparació de tecnologies / unitats de turbines. A més, prenent com a base el model ja desenvolupat, és possible explorar diferents càlculs d'optimització, estratègies de control i proporcionar comparacions de tecnologia de turbines a càrregues completes i parcials del motor en un ampli rang de revolucions del motor. També s'aborda l'impacte de l'altitud i s'avaluen els transitoris de càrrega per a dues tecnologies de turbines analitzades: VGT i WG.
com a conclusió, es demostra que la tecnologia VGT mostra menys limitacions en condicions de treball extremes, com en la corba de plena càrrega, on la tecnologia WG representa una limitació en termes de màxima potència. Les diferències a plena càrrega es tornen encara més evidents en condicions de treball en altitud. Quan es tracta de càrregues parcials, les diferències en el consum de combustible són menors, però potencialment beneficioses per als VGT. / [EN] The new generation of spark ignition (SI) engines is expected to represent most of the future market share in the context of power-train with or without hybridization. Nevertheless, the current technology has still critical challenges in front to meet incoming CO2 and pollutant emissions standards. Consequently, new technologies are emerging to improve engine efficiency and meet new pollutant regulations. Among others, one of the most followed trends is engine size reduction, known as downsizing, based on the turbocharging technique. New turbocharger technologies, such as variable geometry turbines (VGT), are evaluated for their application under the demanding operating conditions of SI engines.
In this work, from experimental data obtained in an engine test cell, a 1-D complete engine model calibration methodology was conducted: a theoretical analysis aimed at ensuring full control on any aspect of the simulation. In other words, the 1-D engine model was fully fitted with respect to the experimental engine data.
Furthermore, it is evidenced the requirement of post-processing and validating the experimental data dealing with turbocharger maps, since phenomena such as heat transfer and friction losses are required to be decoupled from the so-called experimental turbocharger maps. Accordingly, a methodology for turbocharger maps obtention is presented, based on an experimental campaign divided into several test typologies and followed by the modelling stage. The modelling stage is carried out making usage of already developed integral turbocharger models available in the literature. Additionally, the improvement in the accuracy of the simulations when post-processed turbocharger maps are compared against purely experimental maps is addressed.
Taking advantage of the highly validated and physically representative 1-D gas-dynamics engine model and turbocharger validated maps, it is discussed how experimental uncertainties or "out-of-control" variables may impact the experimental results. A methodology is proposed to overcome this point from the modelling perspective. The previous allows performing exclusively turbine technologies/units comparison. In addition, taking as a basis the already developed model, it is possible to explore different optimization calculations, control strategies and provide turbine technology comparisons at engine full and partial loads in a wide range of engine speed. Also, the altitude impact is addressed and load transients are evaluated for two analysed turbine technologies: VGT and WG.
In all, it was found that VGT technology shows fewer limitations in extreme working conditions, such as full load curve, where the WG technology represents a limitation in terms of the maximum power output. Full load differences become even more evident in altitude working conditions. When it comes to partial loads, differences in fuel consumption are minor but potentially beneficial for VGTs. / Gómez Vilanova, A. (2022). Modelling and analysis methodology of SI IC engines turbocharged by VGT [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/181929
|
Page generated in 0.0593 seconds