• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 13
  • 9
  • 8
  • 3
  • 3
  • 2
  • Tagged with
  • 148
  • 64
  • 57
  • 51
  • 44
  • 43
  • 29
  • 25
  • 24
  • 23
  • 21
  • 18
  • 18
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Ultracold Rydberg Atoms in Structured and Disordered Environments

Liu, Ivan Chen-Hsiu 14 January 2009 (has links) (PDF)
The properties of a Rydberg atom immersed in an ultracold environment were investigated. Two scenarios were considered, one of which involves the neighbouring ground-state atoms arranged in a spatially structured configuration, while the other involves them distributed randomly in space. To calculate the influence of the multiple ground-state atoms on the Rydberg atom, Fermi-pseudopotential was used, which simplified greatly the numerical effort. In many cases, the few-body interaction can be written down analytically which reveals the symmetry properties of the system. In the structured case, we report the first prediction of the formation of ``Rydberg Borromean trimers''. The few-body interactions and the dynamics of the linear A-B-A trimer, where A is the ground-state atom and B is the Rydberg atom, were investigated in the framework of normal mode analysis. This exotic ultralong-range triatomic bound state exists despite that the Rydberg-ground-state interaction is repulsive. Their lifetimes were estimated using both quantum scattering calculations and semi-classical approximations which are found to be typically sub-microseconds. In the disordered case, the Rydberg-excitation spectra of a frozen-gas were simulated, where the nuclear degrees of freedom can be ignored. The systematic change of the spectral shape with respect to the density of the gas and the excitation of the Rydberg atom were found and studied. Some parts of the spectral shape can be described by simple scaling laws with exponents given by the basic properties of the atomic species such as the polarizability and the zero-energy electron-atom scattering length.
122

Studies of Ultracold Bosons in Optical Lattices using Strong-Coupling Expansions

Gupta, Manjari January 2017 (has links) (PDF)
Cold bosonic atoms trapped in optical lattices formed by standing wave interference patterns of multiple laser beams constitute excellent emulators of models of strongly correlated quantum systems of bosons. In this thesis, we develop and deploy strong-coupling expansion (i.e., an expansion in terms of the ratio of the inter-site hopping amplitude of the bosons to the strength of their interactions) techniques for studying the properties of three different instances of such systems. In the first instance, we have used strong coupling expansion techniques to calculate the density pro le for bosonic atoms trapped in an optical lattice with an overall harmonic trap at finite temperatures and large on site interaction in the presence of super fluid regions. Our results match well with quantum Monte Carlo simulations at finite temperature. We present calculations for the entropy per particle as a function of temperature which can be used to calibrate the temperature in experiments. Our calculations for the scaled density in the vacuum-to-super fluid transition agree well with the experimental data for appropriate temperatures. We also discuss issues connected with the demonstration of universal quantum critical scaling in the experiments. Experimental realizations of “atomtronic" Josephson junctions have recently been created in annular traps in relative rotation with respect to potential barriers that generate the weak links. If these devices are additionally subjected to optical lattice potentials, then they can incorporate strong-coupling Mott physics within the design, which can modify the behaviour and can allow for interesting new configurations of system generated barriers and of super fluid ow patterns. we have examined theoretically the behavior of a Bose super fluid in an optical lattice in the presence of an annular trap and a barrier across the annular region which acts as a Josephson junction. As the fluid is rotated relative to the barrier, it generates circulating super-currents until, at larger speeds of rotation, it develops phase slips which are typically accompanied by vortices. We use a finite temperature strong-coupling expansion about the mean- held solution of the Bose Hubbard model to calculate various properties of the device. In addition, we discuss some of the rich behavior that can result when there are Mott regions within the system. Rubidium-Cesium dipolar molecule formation through Feshbach resonance is an area of great current interest, for, the dipolar molecules, once formed, interact via v long range dipolar forces, leading to possibilities of novel phases. Experimentalists currently make such systems mostly using trial and error, and the resulting efficiencies for molecule formation tend to be low. With a goal to assist cold-atom experimentalists to achieve higher e ciencies of molecule formation, we have estimated the trap parameters for Rb and Cs atoms in a 3D optical lattice required to create single occupancy per site Mott phase for both the species in the same regions of the trap. We thus identify the ne tuning of the external magnetic held near Rb-Cs Feshbach resonance required to achieve highest probability for creating single Rb-Cs Feshbach molecules in the system. We have used the Falicov-Kimball model to describe the relevant system and strong-coupling expansions about the mean- held solution to calculate the density pro les for both species and efficiency for molecule formation, determined by overlapping regions of single occupancy for both Rb and Cs, up to second order in the expansion. We also calculate the entropy per particle which serves as an estimation of the temperature in the experimental system
123

Horloges à réseau optique au strontium : comparaisons d'horloges pour des applications en physique fondamentale et échelles de temps / Strontium optical lattice clocks : clock comparisons for timescales and fundamental physics applications

Bilicki, Sławomir 10 November 2017 (has links)
Cette thèse est consacrée aux progrès récents des horloges à réseau optique au strontium du LNE-SYRTE, Observatoire de Paris. L'incertitude systématique et la stabilité des horloges optiques sont 2 ordres de grandeur meilleures que les horloges atomiques micro-ondes au cesium qui réalisent la seconde SI, bénéficiant maintenent a des applications en physique fondamentale, astronomie et géosciences. Dans un futur proche, une redéfinition de la seconde SI est attendue, quand les horloges optiques se seront révélées aussi fiables et reproductibles que les horloges a micro-ondes. La thèse présente trois étapes décisives dans cette direction. Nous présentons un fonctionnemment operation quasi-continu de nos horloges Sr pendant plusieurs semaines. Des comparaisons de fréquences locales et à distance avec diverses références de fréquence micro-ondes et optiques montrent que les horloges optiques sont reproductibles par des laboratoires independants. Nous avons démontré un premier réseau tout optique entre des horloges optiques à l'échelle continentale. Les horloges au Sr ont été utilisées pour préparer 5 rapports de calibration du Temps Atomique International (TAI) qui ont été validés par le BIPM comme première contribution au TAI par des horloges optiques. Certains de ces résultats ont été utilisés pour borner l'amplitude d'une possible violation de l'invariance de Lorentz analysant les comparaisons d'horloges distantes. Enfin, nous avons effectué une caractérisation complète des déplacements de fréquence associés aux sources laser à semiconducteur utilisées pour le piégeage des atomes dans l'optique d'applications pour des horloges transportables et spatiales. / This thesis describes the latest progresses regarding the Sr optical lattice clocks at LNE-SYRTE, Observatoire de Paris. Nowadays, the systematic uncertainty and stability of optical clocks are 2 orders of magnitude better than cesium microwave fountains currently realizing the SI second, with applications in fundamental physics, astronomy and geoscience. In the near future, a re-definition of the SI second is expected, once optical clocks are proven to be as reliable and reproducible as their microwave counterparts. The thesis presents three decisive steps in this direction. First, we demonstrate nearly continuous Sr clocks over several weeks. Second, local and remote frequency comparisons against various microwave and optical frequency standards show that OLCs are reproducible over time, and by independent laboratories. We notably demonstrated the first all-optical agreement between optical clocks at continental scale. Third, the Sr clocks were used to calibrate the Temps Atomique International (TAI). The five calibration reports, which we produced, were validated by the BIPM, as the first contribution to TAI with optical clocks. In addition, some of these results were used to improve bounds on a putative violation of the Lorentz invariance by testing the stability of the frequency ratio between remote clocks. Finally, we conducted a full characterization of the frequency shifts associated with semi-conductor laser sources for the trapping light, including optical measurements and frequency shifts measurements, with applications for transportable and space clocks.
124

Formation of molecules in ultra-cold atomic gazes via quasi-resonant fields / Formation de molécules dans des gaz atomiques ultra-froids par des champs quasi-résonnants

Sokhoyan, Ruzan 07 June 2010 (has links)
Nous étudions la dynamique non linéaire en champ moyen de la formation de molécules diatomiques par photo-association ou magnéto-association d’atomes ultra froids pour un système entièrement atomique dans l’état initial. Nous montrons que dans la limite d’une forte interaction non linéaire entre un système atome-molécule ultra froid et un champ électromagnétique quasi résonnant, le processus de formation du condensat moléculaire peut évoluer suivant deux scénarios en fonction des caractéristiques du champ : régime faiblement oscillatoire ou régime fortement oscillatoire. Dans le cas du régime faiblement oscillatoire, le nombre de molécules augmente sans oscillations prononcées des populations atomiques et moléculaires alors que de fortes oscillations de Rabi apparaissent dans le second cas. Nous présentons des solutions analytiques décrivant la dynamique temporelle du système dans ces deux cas. Nous étudions ensuite l’influence de la diffusion élastique entre particules sur la dynamique de formation cohérente de molécules sous l’action d’un champ extérieur représenté par le modèle de Landau-Zener. Nous déterminons une solution approchée qui décrit bien toute la dynamique temporelle de formation moléculaire dans ce cas général. / We study the nonlinear mean-field dynamics of diatomic molecule formation at coherent photo- and magneto-association of ultracold atoms focusing on the case when the system is initially in the all-atomic state. We show that in the limit of strongly nonlinear interaction between an ultra-cold atomic-molecular system and a quasi-resonant electromagnetic field, the molecule formation process, depending on the characteristics of the associating field, may evolve according two different scenarios, namely, weak- and strong-oscillatory regimes. In the first case the number of molecules increases without pronounced oscillations of atom-molecule populations, while in the second case high-amplitude Rabi-type oscillations arise. Assuming an arbitrary external field configuration, we construct analytical solutions to describe the system’s temporal dynamics in the both interaction regimes. Further, we investigate the influence of inter-particle elastic scattering on the dynamics of coherent molecule formation subject to an external field configuration of the resonance-crossing Landau-Zener model. We derive an approximate solution which for the first time describes the whole temporal dynamics of the molecule formation in this general case.
125

Thermodynamics and magnetism of antiferromagnetic spinor Bose-Einstein condensates / Thermodynamique et Thermodynamique et magnétisme dans des condensats de Bose-Einstein de spin 1 avec interactions antiferromagnétiques

Frapolli, Camille 29 March 2017 (has links)
Dans ce manuscrit, nous présentons une étude expérimentale d'un gaz de Bose de spin 1 avec des interactions antiferromagnétiques avec des atomes de sodium ultra-froids dans l'état hyperfin F=1. Les trois composantes Zeeman sont piégées simultanément dans des pièges dipolaires optiques. Nous obtenons un condensat de Bose-Einstein spineur par refroidissement évaporatif et nous étudions ses propriétés magnétiques. Il y a deux types d’interactions dans le système: des interactions de contact qui ne changent pas les populations des composantes Zeeman et des interactions d'échange de spin qui les modifient. Une compétition entre l'énergie Zeeman et l'énergie d'échange impose l'ordre magnétique dans le système.Nous étudions dans un premier temps les phases magnétiques de condensats de Bose-Einstein spineurs a température quasi nulle. L'état fondamental comporte deux phases qui sont observées en variant le champ magnétique (donc l'énergie Zeeman quadratique) et la magnétisation de l'échantillon. Dans la phase antiferromagnétique, le spin de l'échantillon est simplement selon l'axe du champ magnétique. Dans la phase polaire, une composante transverse apparait pour minimiser l'énergie Zeeman. Pour une magnétisation nulle, le condensat spineur forme un nématique de spin. Cet état, nommé par analogie avec la phase nématique dans les cristaux liquides, est caractérisée par des fluctuations de spin orthogonales à un axe particulier, mais sans préférer une des deux direction sur cet axe. Dans chacune des deux phases, l'ordre nématique se manifeste par un minimisation de la longueur du spin transverse en imposant une valeur particulière ($pi$) de la phase relative des composantes Zeeman ${theta = phi_{+1} + phi_{-1} - 2 phi_{0}}$. Nous mesurons la longueur du spin transverse en analysant le bruit de spin après une rotation.Dans un second temps, nous étudions la thermodynamique d'un gaz de Bose de spin 1 près de la température critique pour la condensation de Bose-Einstein. Nous mesurons plusieurs scénarios de condensation séquentiels en fonction de la magnétisation et du champ magnétique. La température critique mesurée révèle que les interactions ont un effet important quand la condensation d'une composante se fait en présence d'un condensat dans une autre composante. Nous utilisons une théorie d'Hartree-Fock simplifiée, en négligeant les interactions d’échange de spin. Nous constatons que les résultats expérimentaux sont en bon accord. Cependant, pour de bas champs magnétiques, le diagramme de phase thermodynamique est largement modifié par les interactions d'échange de spin, ce qui pose de nouvelles questions sur leur rôle a température finie. / In this manuscript, we present an experimental study of a Spin 1 Bose gas with antiferromagnetic interactions with ultracold sodium atoms in the F=1 manifold. The three Zeeman components are trapped simultaneously in optical dipole traps. By performing evaporative cooling, we obtain quasi-pure spinor Bose-Einstein condensates of which we study the magnetic properties. There are two types of interactions between the constituents of the system: Contact interactions that do not change the Zeeman populations and spin-exchange contact interactions that do. A competition between Zeeman energy and the spin-exchange energy sets the magnetic ordering in the system.We first study the magnetic phases of spinor Bose-Einstein condensates near zero temperature. The ground state present two phases that are observed by varying the magnetic field (hence the quadratic Zeeman energy) and the magnetization of the sample. In the antiferromagnetic phase, the spin of the sample is purely along the direction of the magnetic field. In the broken-axisymmetry phase, a transverse component appears in order to minimize the Zeeman energy. For zero magnetization, the spinor condensate forms a spin nematic. This state, named in analogy with the liquid crystal nematic phase, is characterized by spin fluctuations orthogonal to a particular axis, with no preferred direction along that axis. In both phases, spin nematic order manifests as a minimization of the transverse spin length that is realized by enforcing a particular value ($pi$) of the relative phase of the Zeeman components $theta = phi_{+1} + phi_{-1} - 2 phi_0$. We measure the transverse spin length by analyzing spin noise after a spin rotation.Second, we study the thermodynamics of an antiferromagnetic spin 1 Bose gas next to the critical temperature for Bose-Einstein condensation. We measure several sequential condensation scenarii depending on the magnetization and the magnetic field. The measured critical temperatures reveal a large effect of interactions when one of the Zeeman component condenses in presence of a condensate in another component. We use a simplified Hartree-Fock theory, neglecting the spin exchange interactions and note a good agreement with our data. However, for low magnetic fields, the thermodynamic phase diagram is strongly modified which raises new open questions about the role of spin exchange interactions at finite temperatures.
126

Interféromètres atomiques piégés : du régime dilué au régime dense / Trapped atom interferometers : from low to high density regime

Solaro, Cyrille 03 November 2016 (has links)
Le travail présenté dans ce manuscrit porte sur l'avancement de l'expérience FORCA-G (FORce de CAsimir et Gravitation à courte distance) dont le but est la mesure par interférométrie atomique de forces à courte distance entre un atome, piégé dans un réseau optique vertical, et une surface. Réalisée à l'aide de transitions Raman stimulées, la séparation spatiale et cohérente des paquets d'onde atomique sur des puits adjacents du réseau permet de mesurer, après recombinaison, la différence d'énergie entre ces puits, liée à l'incrément d'énergie potentielle de pesanteur : la fréquence de Bloch nB. Pour de faibles densités atomiques, il est démontré une sensibilité court terme à 1 s de dn/nB = 1,8.10-6 à l'état de l'art des capteurs de forces à atomes piégés. La mise en place d'un système de refroidissement évaporatif, afin d'augmenter le nombre d'atomes par puits, permet désormais d'explorer des régimes de fortes densités atomiques où les interactions ne peuvent être négligées. Pour des densités de 1011-1012 at/cm3, il est montré qu'un phénomène d'auto-synchronisation des spins entre en compétition avec le mécanisme d'écho de spin. L'impact de ce phénomène sur le contraste et la fréquence mesurée est étudié dans un interféromètre où les deux paquets d'onde occupent le même puits. Des premières mesures sont ensuite effectuées dans le régime où les paquets d'onde sont séparés. Elles montrent un comportement différent qui reste à modéliser. Enfin, il est montré que le protocole de mesure permet de s'affranchir des biais collisionnels : les interactions atomiques limitent la sensibilité du capteur de force sans limiter son exactitude. / This thesis presents the recent progress on the FORCA-G (FORce de CAsimir et Gravitation à courte distance) experiment which aims at measuring short range forces between an atom, trapped in a vertical optical lattice, and a mirror. Stimulated Raman transitions are used to induce coherent transport between adjacent lattice sites to perform atom interferometry in order to measure with very high sensitivity, shifts in the Bloch frequency nu_B, which is the potential increment between two lattice sites. For low atomic densities, we demonstrate a local force sensor with state-of-the art relative sensitivity on the Bloch frequency of deltanu/nu_B= 1.8x10-6 at 1 s. The recent use of evaporative cooling, in order to increase the number of atoms per well, allows to work the experiment with much denser atomic clouds where atom interactions cannot be neglected. At densities of 1011-1012 at/cm3, it is shown that a spin self-rephasing mechanism competes with the spin-echo technique. The impact of the former mechanism onto the contrast and the measured frequency is studied in an interferometer where the two partial wave packets perfectly overlap. First measurements are then performed in a regime where the two partial wave packets are spatially separated. They show a different behaviour that remains to be modelled. Finally, it is shown that the measurement protocol allows to greatly reduce collisional shifts: atom interactions limit the sensitivity of the local force sensor without limiting its accuracy.
127

Semiklassische Dynamik ultrakalter Bose-Gase

Simon, Lena 31 January 2013 (has links)
Die Dynamik anfänglich aus dem Gleichgewicht gebrachter wechselwirkender Quantenvielteilchensysteme wirft aktuell noch spannende Fragen auf. In Bezug auf die Thermalisierung ist z.B. nach wie vor ungeklärt, in welcher Form sie überhaupt stattfindet und in welchen Observablen bzw. auf welcher Zeitskala sie zu beobachten ist. Eine ideale Grundlage zur Erforschung von Relaxationsdynamiken in wechselwirkenden Vielteilchensystemen bieten ultrakalte Quantengase aufgrund ihrer guten Kontrollier- und Variierbarkeit. Ein allgemeiner theoretischer Rahmen, auf dessen Basis solche Prozesse zu untersuchen sind, steht jedoch infolge der großen Anzahl der beteiligten Freiheitsgrade bisher nicht zur Verfügung. Für ultrakalte bosonische Gase stellt die Gross-Pitaevskii-Gleichung eines der wichtigsten theoretischen Werkzeuge dar, eine klassische Feldgleichung für die Kondensatwellenfunktion in Molekularfeldnäherung. Die ihr zugrunde liegende Näherung erlaubt jedoch keine nicht-trivialen Aussagen über den vollen N-Teilchenzustand, dessen Kenntnis für die Untersuchung einer möglichen Relaxationsdynamik unabdingbar ist. Um der theoretischen Beschreibung des vollen bosonischen Feldes einen Schritt näher zu kommen, untersucht die vorliegende Arbeit die Anwendung semiklassischer Methoden auf ultrakalte Bosegase. Diese sind in der Regel dann sehr genau, wenn die beteiligten Wirkungen groß gegenüber dem Planckschen Wirkungsquantum sind. Für bosonische Felder wird dieser Grenzfall durch die Bedingung einer großen Teilchenzahl ersetzt. Die immense Anzahl an Teilchen in den hier behandelten Vielteilchensystemen macht die Anwendung semiklassischer Methoden auf diesem Gebiet also vielversprechend. Als zentrales Modellsystem wird ein anfänglich aus dem Gleichgewicht gebrachtes ultrakaltes bosonisches Doppelmuldensystem betrachtet, das eine hochinteressante Dynamik aufweist, die auf das Wechselspiel der Tunneldynamik einerseits und der Wechselwirkung der Teilchen untereinander andererseits zurückzuführen ist. Als Referenz lassen sich aufgrund der speziellen Fallengeometrie im Rahmen der Zwei-Moden-Näherung die Ergebnisse einer numerisch exakten Untersuchung heranziehen. Durch den Einsatz der namhaften WKB-Quantisierung und des besonders aus der Molekülphysik bekannten Reflexionsprinzips wird hier ein geschlossener analytischer Ausdruck für die sogenannte Populationsdifferenz im Doppelminimum hergeleitet, der ausschließlich von den wenigen relevanten Systemparametern abhängt. Diese mächtige Formel erlaubt es nun zum ersten Mal, in quantitativer Weise die charakteristische Sequenz aus Oszillationen, Kollapsen und Revivals in Abhängigkeit der vorausgesetzten Parameter zu untersuchen. Nach dieser ersten erfolgreichen Anwendung semiklassischer Methoden im Modellsystem wird über die reduzierte Dynamik der Populationsdifferenz hinausgegangen. Mithilfe des semiklassischen Herman-Kluk-Propagators lässt sich selbst der volle N-Teilchenzustand untersuchen. Da es letztlich um die Beschreibung ultrakalter Bosonen in beliebigen Potentialen gehen soll, wird zunächst der Herman-Kluk-Propagator für eine Feldtheorie vorgestellt. Im Doppelmuldensystem zeigt sich dann in der Anwendung die semiklassische Propagation in der Lage, für alle untersuchten Parameterregime gute Übereinstimmung mit den numerisch exakten Ergebnissen zu liefern. Zusätzlich findet ein Abgleich der Resultate mit der Truncated Wigner Approximation statt, auf die im Forschungsgebiet ultrakalter Bosonen häufig zurück gegriffen wird. Diese beschreibt die Zeitentwicklung einer Wignerverteilung unter Aussparung der Quanteninterferenzen. In der vorliegenden Arbeit wird gezeigt, dass die Herman-Kluk-Propagation unter Berücksichtigung der Phasen weit über die Truncated Wigner Approximation hinausgeht: Sie gibt alle wichtigen Charakteristika der Dynamik im Doppelmuldensystem wieder. Um die Semiklassik auf ihre Aussagefähigkeit in Bezug auf eine noch komplexere Dynamik zu untersuchen, wird zum Abschluss das Drei-Topf-System betrachtet, das zusätzlich chaotische Regionen im Phasenraum aufweist. Auch hier zeigt sich, dass die semiklassische Berücksichtigung der Phasen die Truncated Wigner Approximation in den Schatten stellt. Allerdings ergeben sich durch die Instabilität der Trajektorien für stark chaotische Regime numerische Probleme, die es in der Zukunft zu lösen gilt. / The dynamics of initially non equilibrium interacting quantum many body systems is an ongoing and interesting field of research. It is still an open question in which form relaxation occurs in such systems, and in which observables and on which timescales a possible thermalization might appear. A perfect playground for the investigations of relaxation dynamics in interacting many body schemes is provided by ultracold quantum gases, which are easily to be controlled and varied in experiments. However, a general theoretical framework for the investigation of such processes is still missing, due to the huge amount of involved degrees of freedom. One of the main theoretical tools in the field of ultracold bosonic gases represents the famous Gross-Pitaevskii equation, a field equation for the Bose-Einstein condensate wave function in terms of a mean-field approximation. However, the underlying approximation prevents the possibility to draw non-trivial conclusions about the full N-particle state, the information of which is necessary for the analysis of relaxation processes. To gain the theoretical description of the full bosonic field, the present thesis deals with the application of semiclassical methods to ultracold boson gases. Those techniques become in general exact, as long as the involved actions are large compared to Planck's constant. For many body systems it turns out that semiclassics are expected to give good results also for the condition of high particle numbers, which is precisely fulfilled in these schemes, making the semiclassical approaches promising. As an essential model system an initially out of equilibrium ultracold bosonic double-well system is investigated. This configuration provides highly interesting dynamics due to the interplay of the tunneling dynamics on the one hand and the interaction amongst the particles on the other. The special trap geometry makes exact numerical calculations in the framework of the two-mode approximation available, which serve in the following as reference data. By applying the common semiclassical WKB approximation and the reflection principle known from molecule physics, a closed analytical expression for the so-called population imbalance of the bosons in the double-well is derived, depending only on the few relevant system parameters. This mighty formula allows for the first time the quantitative investigation of the characteristic sequence consisting of oscillations, collapse and revivals in dependence on the parameters of the system. Since the semiclassical approaches succeeded for the double-well model so far the so-called Herman-Kluk propagator is adopted, to go beyond the reduced dynamics of the population imbalance. The propagator provides the possibility to treat the full N-particle state theoretically and is introduced for the most general case of a bosonic quantum field. Its application to the double-well system yields for all investigated parameter regimes very good agreement with the numerical exact results. Furthermore the outcomes are compared to the Truncated Wigner approximation, which is frequently used in the research field of ultracold bosons. This approach pictures the time evolution of a Wigner distribution, without taking into account the quantum interferences. In the present thesis it is shown that the Herman-Kluk propagation goes clearly beyond the truncated Wigner approach by considering in addition the quantum phases: The propagator is able to reproduce all of the distinctive features of the double-well dynamics. In order to test the performance of semiclassical methods in matters of even more complex systems, the ultracold bosonic triple-well model is finally considered, which exhibits unlike the double-well scheme chaotic regions in phase space. It turns out that the semiclassical propagation outplays again the truncated Wigner approximation. On the other hand the instability of the highly chaotic trajectories causes numerical problems, which have to be solved in the future.
128

Relaxationsprozesse in stark gekoppelten ultrakalten Plasmen

Bannasch, Georg 01 March 2013 (has links)
Typischerweise sind Plasmen extrem heiß - diese hohen Energien sind nötig, um die Ionisationsschwelle der Atome zu überwinden und damit einen stabilen Plasmazustand zu gewährleisten. Folglich werden die physikalischen Eigenschaften dieser Plasmen für gewöhnlich durch die thermischen Energie der Plasmateilchen bestimmt, während Korrelationen zwischen den Ladungen eine untergeordnete Rolle spielen. Durch die rasanten Fortschritte auf dem Gebiet der ultrakalten Gase ist es jedoch ebenso möglich, Plasmen bei extrem tiefen Temperaturen zu erzeugen, indem lasergekühlte Atome photoionisiert werden. In diesen ultrakalten Plasmen (UKP) lassen sich aufgrund der niedrigen Temperaturen bereits deutliche Auswirkungen von Korrelationen beobachten, die zu gänzlich anderer Dynamik führen können als aus dem Bereich der heißen schwach gekoppelten Plasmen bekannt. Ähnliche Prozesse werden auch in dichten Plasmen beobachtet, in denen durch extrem kurzen Teilchenabstände die Wechselwirkungsenergie auch bei Temperaturen von über 10000 Kelvin die kinetische Energie dominiert. Dichte Plasmen spielen eine wichtige Rolle für technische Anwendungen wie die Trägheitsfusion. Im Gegensatz zu diesen dichten Plasmen realisieren UKP starke Korrelationen jedoch bei sehr viel geringen Dichten von ρ ∼ 10^9 cm^{−3} . Die daraus resultierende langsame Dynamik ist experimentell wesentlich besser zugänglich und macht diese System deshalb besonders interessant, um Korrelationseffekte in stark gekoppelten Plasmen zu studieren. Diese Arbeit beschäftigt sich mit Effekten von starken Korrelationen auf verschiedene Relaxationsprozesse, die insbesondere, aber nicht ausschließlich in UKP eine bedeutende Rolle spielen. Neben dem fundamentalen Interesse an diesen Prozessen gilt ein Augenmerk auch möglichen experimentellen Tests der getroffenen Vorhersagen. Da die Theorie der schwach gekoppelten Plasmen Korrelationen größtenteils vernachlässigt, ist sie im Regime der UKP nur eingeschränkt anwendbar. Zur Berücksichtigung der starken Korrelationen werden in dieser Arbeit umfangreiche molekulardynamischen Simulationen eingesetzt, die teilweise mit quantenmechanischen Beschreibungen kombiniert werden, um den in UKP relevanten atomphysikalischen Aspekten gerecht zu werden. Im Rahmen dieser Rechnungen wird zunächst die seit langem ungeklärte Frage der Atombildung bei tiefen Temperaturen beantwortet. Dieser Prozess ist für UKP besonders relevanten, da die Rekombination die Lebensdauer des Plasmas bestimmt. Die konventionelle Theorie für Rekombination basiert auf der Annahme von von isolierten Drei-Körper-Stößen. Die daraus resultierende Rate divergiert mit abnehmender Temperatur und verliert daher ihre Gültigkeit im ultrakalten Bereich. In dieser Arbeit wird die Beschreibung der Rekombination mit Hilfe aufwendiger Vielteilchen-Simulationen auf den stark gekoppelte Bereich ausgebaut. Hierbei zeigt sich, dass die Rekombinationsrate im Bereich tiefer Temperaturen auf einen konstanten Wert konvergiert, so dass das Problem der divergierenden Rate gelöst werden kann. Ein weiteres, seit langem kontrovers diskutiertes Problem, stellt die Relaxation aufgrund von elastischen Stößen in stark gekoppelten Plasmen dar. Auch hier gilt, dass die konventionelle Theorie für heiße Plasmen, die auf Landau und Spitzer zurückgeht, aufgrund der Vernachlässigung von Korrelationen im Regime starker Kopplung unzureichend wird. Bisher waren keine experimentellen Ergebnisse verfügbar, um die verschiedenen Vorschläge zur Erweiterung der Landau-Spitzer-Beschreibung auf den stark gekoppelten Bereich zu beurteilen. In enger Zusammenarbeit mit der Gruppe von Prof. T. C. Killian (Rice University, Houston, USA) können im Rahmen dieser Arbeit nun erstmals Relaxationsraten in stark gekoppelten Plasmen gemessen werden. Dazu wird mittels eines Pump-Probe-Verfahren die Relaxation der ionischen Geschwindigkeitsverteilung in UKP beobachtet. In dieser Arbeit konnte eine Methode zur Interpretation der experimentellen Daten entwickelt und durch semiklassische Simulationen der Parameterbereich enorm erweitert werden. Unsere Ergebnisse zeigen, dass die Landau-Spitzer-Theorie bereits bei geringen Kopplungsstärken deutliche Defizite aufweist und liefern erstmalig Vorhersagen im stark gekoppelten Bereich. Bei der Untersuchung der ionischen Relaxation wird deutlich, dass insbesondere experimentelle Ergebnisse bei hohen Kopplungsstärken von Interesse sind. Derzeit sind typische UKP-Experimente jedoch auf mäßige Kopplungsstärken limitiert. Ursache hierfür ist, dass das Plasma in einem Zustand weit entfernt vom Gleichgewicht erzeugt wird. Bei der Relaxation ins Gleichgewicht kommt es zu einer Ausbildung von Korrelationen und damit zu einer Umwandlung von potentieller in kinetische Energie. In dieser Arbeit wird deshalb ein neues Plasmaherstellungsverfahren vorgeschlagen, das für die Ionen dieses „Korrrelationsheizen“ stark unterdrücken kann. Durch eine kollektive Anregung kalter Atome in Rydberg-Zustände werden vor der Photoionsation der Atome Korrelationen im atomaren Gas induziert. Es wird gezeigt, dass diese Korrelationen durch eine selektive Ionisation der Rydberg-Atome mit Hilfe von Mikrowellen an das Plasma weitergegeben werden können. Dadurch verringert sich das Korrelationsheizen und eröffnet neue Perspektiven für Untersuchungen ultrakalter Plasmen tief im stark gekoppelten Regime.
129

Ultracold Rydberg Atoms in Structured and Disordered Environments

Liu, Ivan Chen-Hsiu 03 November 2008 (has links)
The properties of a Rydberg atom immersed in an ultracold environment were investigated. Two scenarios were considered, one of which involves the neighbouring ground-state atoms arranged in a spatially structured configuration, while the other involves them distributed randomly in space. To calculate the influence of the multiple ground-state atoms on the Rydberg atom, Fermi-pseudopotential was used, which simplified greatly the numerical effort. In many cases, the few-body interaction can be written down analytically which reveals the symmetry properties of the system. In the structured case, we report the first prediction of the formation of ``Rydberg Borromean trimers''. The few-body interactions and the dynamics of the linear A-B-A trimer, where A is the ground-state atom and B is the Rydberg atom, were investigated in the framework of normal mode analysis. This exotic ultralong-range triatomic bound state exists despite that the Rydberg-ground-state interaction is repulsive. Their lifetimes were estimated using both quantum scattering calculations and semi-classical approximations which are found to be typically sub-microseconds. In the disordered case, the Rydberg-excitation spectra of a frozen-gas were simulated, where the nuclear degrees of freedom can be ignored. The systematic change of the spectral shape with respect to the density of the gas and the excitation of the Rydberg atom were found and studied. Some parts of the spectral shape can be described by simple scaling laws with exponents given by the basic properties of the atomic species such as the polarizability and the zero-energy electron-atom scattering length.
130

Dynamics of Interacting Ultracold Atoms and Emergent Quantum States

Changyuan Lyu (10306484) 07 May 2021 (has links)
<p>The development of ultracold atom physics enables people to study fundamental questions in quantum mechanics within this highly-tunable platform. This dissertation focuses on several topics of the dynamical evolution of quantum systems.</p><p>Chapter 2 and 3 talk about Loschmidt echo, a simple quantity that reveals many hidden properties of a system’s time evolution. Chapter 2 looks for vanishing Loschmidt echo in the complex plane of time and the corresponding dynamical quantum phase transitions (DQPT) in the thermodynamic limit. For a two-site Bose-Hubbard model consisting of weakly interacting particles, DQPTs reside at the time scale inversely proportional to the interaction, where highly entangled pair condensates also show up. Chapter 3 discusses the revival of Loschmidt echo in a discrete time crystal, a Floquet system whose discrete temporal transition symmetry is spontaneously broken. We propose a new design and demonstrate its robustness against the fluctuations in the driving field. It can also be used in precision measurement to go beyond the Heisenberg limit. Experimental schemes are presented.</p><p>Out-of-time-order correlator (OTOC) is a more complicated variant of Loschmidt echo. Experimentally it requires reversing the time evolution. In Chapter 4, by exploiting the SU(1,1) symmetry of a weakly interacting BEC and connecting its quantum dynamics to a hyperbolic space, we obtain a geometric framework that enables experimentalists to manipulate the evolution with great freedom. Backward evolution is then realized effectively to measure OTOC of such SU(1,1) systems.</p><p>Chapter 5 discusses the decoherence of a spin impurity immersed in a spinor BEC. Our calculations show that by looking at the dynamics of the impurity’s reduced density matrix, the phase of the spinor BEC can be detected.</p>

Page generated in 0.0496 seconds