• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 130
  • 30
  • 14
  • 10
  • 9
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 244
  • 185
  • 182
  • 62
  • 53
  • 46
  • 44
  • 32
  • 28
  • 27
  • 27
  • 23
  • 23
  • 22
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Modelación físico-matemática y simulaciones computacionales para guiar el diseño y fabricación de nanoestructuras plasmónicas optimizadas para aplicaciones energéticas

Castro Palacio, Juan Carlos 25 October 2021 (has links)
[ES] La irradiación de nanopartículas de oro (AuNPs) esféricas en una suspensión coloidal con pulsos láser de nanosegundos puede inducir su metamorfosis, dando lugar a la aparición de esferas con cavidades internas. La concentración del surfactante estabilizador de las partículas, el uso de fluencias de láser moderadas y el tamaño de las partículas, determinan la eficiencia y características del proceso. Las partículas huecas resultantes se obtienen cuando las moléculas del medio circundante (ej., agua, materia orgánica del surfactante) quedan atrapadas durante la irradiación láser. Estas observaciones experimentales sugieren la existencia de un balance sutil entre los procesos de calentamiento y enfriamiento. El primero induce la expansión y paso a un estado amorfo y, el segundo, la subsecuente recristalización manteniendo en su interior el material atrapado. Estas observaciones experimentales han sido explicadas satisfactoriamente con las simulaciones de dinámica molecular clásica desarrolladas en el marco de esta tesis. Específicamente, la dinámica molecular confirma que es necesaria la existencia de moléculas en el interior de las cavidades que se forman dentro de las AuNPs para que se produzca su estabilización. En la segunda parte de esta tesis, se detallan las simulaciones de dinámica molecular clásica y los cálculos de propiedades ópticas de la irradiación de nanopartículas esféricas de oro con pulsos láser de femtosegundos, para predecir los cambios de forma que se producen en las mismas, bajo una exploración de los diferentes parámetros involucrados, es decir, la fluencia y duración del láser, el tamaño de las nanopartículas cristalinas esféricas y la capacidad de enfriamiento del medio circundante. El objetivo fundamental de las simulaciones es brindar una guía para la síntesis de nanopartículas con morfologías determinadas. Los resultados de las simulaciones indican que, para la formación de nanopartículas huecas, las mismas deben ser calentadas hasta una temperatura entre 2500 y 3500 K, seguido por un enfriamiento exponencial rápido, con una constante de tiempo menor de 120 ps. Por lo tanto, se describen las condiciones experimentales para la producción eficiente de nanopartículas huecas, lo que abre un amplio rango de posibilidades de aplicación en áreas fundamentales, tales como el almacenamiento de energía y la catálisis. En la última parte de esta memoria se exponen las simulaciones de dinámica molecular clásica implementadas para profundizar en los experimentos pumpprobe con nanoesferas plasmónicas de oro, desarrollados en la referencia [R.Fuentes-Domínguez et al. Appl. Sci. 2017, 7(8), 819.]. Tras la irradiación láser y consecuente deposición de energía, las partículas vibran, lo que se puede medir mediante la fuerte modulación producida en la sección eficaz de dispersión. La vibración mecánica de las AuNPs esféricas, tras ser irradiadas con láseres ultracortos, las convierte en generadores termoelásticos eficientes de ultrasonido y, por tanto, en excelentes candidatos para transductores luz-sonido en diversas aplicaciones. / [CA] La irradiació de nanopartícules d'or (AuNPs) esfèriques en una suspensiócolloidal amb polsos làser de nanosegons pot induir la seua metamorfosi, donant lloc a l'aparició d'esferes amb cavitats internes. La concentració del surfactante estabilitzador de les partícules, l'ús de fluencias de làser moderades i la grandària de les partícules, determinen l'eficiència i característiques del procés. Les partícules buides resultants s'obtenen quan les molècules del mitjà circumdant (ex., aigua, matèria orgànica del surfactante) queden atrapades durant la irradiació làser. Aquestes observacions experimentals suggereixen l'existència d'un balanç subtil entre els processos de calfament i refredament. El primer indueix l'expansió i passe a un estat amorf i, el segon, la subseqüent recristalización mantenint en el seu interior el material atrapat. Aquestes observacions experimentals han sigut explicades satisfactòriament amb les simulacions de dinàmica molecular clàssica desenvolupades en el marc d'aquesta tesi. Específicament, la dinàmica molecular confirma que és necessària l'existència de molècules a l'interior de les cavitats que es formen dins de les AuNPs perquè es produïsca la seua estabilització. En la segona part d'aquesta tesi, es detallen les simulacions de dinàmica molecular clàssica i els càlculs de propietats òptiques de la irradiació de nanopartícules esfèriques d'or amb polsos làser de femtosegundos, per a predir els canvis de manera que es produeixen en aquestes, sota una exploració dels diferents paràmetres involucrats, és a dir, la fluencia i duració del làser, la grandària de les nanopartícules cristal·lines esfèriques i la capacitat de refredament del mitjà circumdant. L'objectiu fonamental de les simulacions és brindar una guia per a la síntesi de nanopartícules amb morfologies determinades. Els resultats de les simulacions indiquen que, per a la formació de nanopartícules buides, les mateixes han de ser calfades fins a una temperatura entre 2500 i 3500 K, seguit per un refredament exponencial ràpid, amb una constant de temps menor de 120 pg. Per tant, es descriuen les condicions experimentals per a la producció eficient de nanopartícules buides, la qual cosa obri un ampli rang de possibilitats d'aplicació en àrees fonamentals, tals com l'emmagatzematge d'energia i la catàlisi. En l'última part d'aquesta memòria s'exposen les simulacions de dinàmica molecular clàssica implementades per a aprofundir en els experiments pumpprobe amb nanoesferas plasmónicas d'or, desenvolupats en la referència [R. Fuentes-Domínguez et al. Appl. Sci. 2017, 7(8), 819.]. Després de la irradiació làser i conseqüent deposició d'energia, les partícules vibren, la qual cosa es pot mesurar mitjançant la forta modulació produïda en la secció eficaç de dispersió. La vibració mecànica de les AuNPs esfèriques, després de ser irradiades amb làsers ultracortos, les converteix en generadors termoelásticos eficients d'ultrasò i, per tant, en excel·lents candidats per a transductors llum-so en diverses aplicacions. / [EN] The irradiation of gold nanoparticles (AuNPs) in a colloid with nanosecond laser pulses can give rise to the formation of cavities. The concentration of the surfactant used to stabilize the particles, the laser fluency, and the size of the nanoparticles, determine the efficiency and features of the process. The resulting hollow particles are obtained when the right balance between the heating and cooling processes is given. The first process induces an expansion and the melting of the particle, while the second, leads to the recrystallization, keeping the extraneous matter trapped in the inside. These experimental observations have been satisfactorily explained by the molecular dynamics simulations carried out in this thesis. Specifically, the simulations have confirmed that it is necessary the existence of trapped molecules in the inside of the cavities to stabilize the cavities. In the second part of this thesis, the molecular dynamics simulations and calculation of optical properties when gold nanoparticles (in a colloid) are irradiated with femtosecond laser pulses. The simulations allowed to predict the the shape changes under different conditions for the laser fluency and duration, the size of the nanoparticles and the cooling rate, which is driven by the properties of the solvent and the surfactant. These simulations provide a guidance for the synthesis of nanoparticles with specific morphological features. The results show that the nanospheres should be heated up to 2500 y 3500 K, followed by a fast cooling (time constant of 120 ps). Therefore, the experimental conditions for the efficient production of hollow nanoparticles are described what opens a broad range of possibilities for applications in areas such as energy storage and catalysis. MD simulations are carried out in the last part of this thesis to gain insights into the pump-probe experiments using AuNPs in reference [R. Fuentes-Domínguez et al. Appl. Sci. 2017, 7(8), 819.]. Upon femtosecond laser irradiation and deposition of energy, the nanospheres vibrate which can be measured by means of the scattering cross section. This fact becomes the AuNPs in ideal thermoelastic ultrasound generators and therefore in excellent candidates for light-sound transducers in different applications. / Castro Palacio, JC. (2021). Modelación físico-matemática y simulaciones computacionales para guiar el diseño y fabricación de nanoestructuras plasmónicas optimizadas para aplicaciones energéticas [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/175557 / TESIS
202

Diode-Pumped High-Energy Laser Amplifiers for Ultrashort Laser Pulses The PENELOPE Laser System

Löser, Markus 16 November 2017 (has links)
The ultrashort chirped pulse amplification (CPA) laser technology opens the path to high intensities of 10^21 W/cm² and above in the laser focus. Such intensities allow laser-matter interaction in the relativistic intensity regime. Direct diode-pumped ultrashort solid-state lasers combine high-energy, high-power and efficient amplification together, which are the main advantages compared to flashlamp-pumped high-energy laser systems based on titanium-doped sapphire. Development within recent years in the field of laser diodes makes them more and more attractive in terms of total costs, compactness and lifetime. This work is dedicated to the Petawatt, ENergy-Efficient Laser for Optical Plasma Experiments (PENELOPE) project, a fully and directly diode-pumped laser system under development at the Helmholtz–Zentrum Dresden – Rossendorf (HZDR), aiming at 150 fs long pulses with energies of up to 150 J at repetition rates of up to 1 Hz. The focus of this thesis lies on the spectral and width manipulation of the front-end amplifiers, trivalent ytterbium-doped calcium fluoride (Yb3+:CaF2) as gain material as well as the pump source for the final two main amplifiers of the PENELOPE laser system. Here, all crucial design parameters were investigated and a further successful scaling of the laser system to its target values was shown. Gain narrowing is the dominant process for spectral bandwidth reduction during the amplification at the high-gain front-end amplifiers. Active or passive spectral gain control filter can be used to counteract this effect. A pulse duration of 121 fs was achieved by using a passive spectral attenuation inside a regenerative amplifier, which corresponds to an improvement by a factor of almost 2 compared to the start of this work. A proof-of-concept experiment showed the capability of the pre-shaping approach. A spectral bandwidth of 20nm was transferred through the first multipass amplifier at a total gain of 300. Finally, the predicted output spectrum calculated by a numerical model of the final amplifier stages was in a good agreement with the experimental results. The spectroscopic properties of Yb3+:CaF2 matches the constraints for ultrashort laser pulse amplification and direct diode pumping. Pumping close to the zero phonon line at 976nm is preferable compared to 940nm as the pump intensity saturation is significantly lower. A broad gain cross section of up to 50nm is achievable for typical inversion levels. Furthermore, moderate cryogenic temperatures (above 200K) can be used to improve the amplification performance of Yb3+:CaF2. The optical quality of the doped crystals currently available on the market is sufficient to build amplifiers in the hundred joule range. The designed pump source for the last two amplifiers is based on two side pumping in a double pass configuration. However, this concept requires the necessity of brightness conservation for the installed laser diodes. Therefore, a fully relay imaging setup (4f optical system) along the optical path from the stacks to the gain material including the global beam homogenization was developed in a novel approach. Beside these major parts the amplifier architecture and relay imaging telescopes as well as temporal intensity contrast (TIC) was investigated. An all reflective concept for the relay imaging amplifiers and telescopes was selected, which results in several advantages especially an achromatic behavior and low B-Integral. The TIC of the front-end was improved, as the pre- and postpulses due to the plane-parallel active-mirror was eliminated by wedging the gain medium.
203

Laserstrukturierung von Mikroprägewerkzeugen und Abformung beugungsoptisch wirksamer Gitterstrukturen

Engel, Andy 28 July 2020 (has links)
In dieser Arbeit werden Ergebnisse der Untersuchungen zur Laserstrukturierung von Prägewerkezeugen sowie zur Abformung von Gitterstrukturen mit Gitterperioden von kleiner gleich 2 µm in verschiedene Folien und Werkstoffverbunde präsentiert und diskutiert. Die hierfür entwickelte Kombination von Laserprozessen wird erläutert. Des Weiteren sind die auf Basis der experimentellen Untersuchungen ermittelten Parameterräume aufgezeigt und in Bezug zu theoretischen Beschreibungsmodellen gesetzt. Limitationen und Potentiale der einzelnen Teilprozesse werden dargelegt. Unter Anwendung der beschriebenen Strukturierungs- und Prozessparameter ist die Erstellung funktional einsetzbarer Prägewerkzeuge möglich. Für die Strukturübertragung konnte die Abformbarkeit der in die Oberflächen der Prägewerkzeuge eingebrachten beugungsoptisch wirksamen Gitterstrukturen mit Gitterperioden von kleiner gleich 2 µm bei Kontaktzeiten im Millisekundenbereich nachgewiesen werden.
204

Ultrashort Light Sources from High Intensity Laser-Matter Interaction

Köhler, Christian 21 May 2012 (has links)
The thesis deals with the development and characterization of new light sources, which are mandatory for applications in atomic and molecular spectroscopy, medical and biological imaging or industrial production. For that purpose, the employment of interactions of high intensity ultra-short laser pulses with gaseous media offers a rich variety of physical effects which can be exploited. The effects are characterized by a nonlinear dependency on the present light fields. Therefore, accurate modeling of the nonlinearities of the gas is crucial. In general, the nonlinearities are due to the electronic response of the gas atoms to the light field and one distinguishes between the response of bound and ionized electrons. The first part investigates laser pulse self compression, where the consideration of a purely bound electron response is sufficient. We apply an exotic setup with an negative Kerr nonlinearity in order to avoid spatial collapse of the beam on the cost of dealing with an highly dispersive nonlinearity. Analytical analysis and numerical simulations prove the possibility of laser pulse compression in such setups and reveals a new compression scheme, where the usually disturbing dispersion of the nonlinaerity is responsible for compression. Dealing with tera-Hertz generation by focusing an ionizing two-color laser pulse into gas, the second part exploits a medium nonlinearity caused by ionized electrons. We reveal in a mixed analytical and numerical analysis the underlying physical mechanism for THz generation: ionized electrons build up a current, which radiates. Thereby, the the two-color nature of the input laser is crucial for the emitted radiation to be in the tera-Hertz range. Combining this physical model with a pulse propagation equation allows us to achieve remarkable agreement with experimental measurements. Finally, the third part deals with nonlinearities from bound as well from ionized electrons on a fundamental level. We advance beyond phenomenological models for responses of bound and ionized electrons and quantum mechanically model the interaction of an ultra-short laser pulse with a gas. Already the simplest case of one dimensional hydrogen reveals basic features. For low intensities, the Kerr nonlinearity excellently describes the response of bound electrons. For increasing intensity, ionization becomes important and the response from ionized electrons is the governing one for high intensities. This quantum mechanical correct modeling allows us to explain saturation and change of sing of the nonlinear refractive index and to deduce suited approximate models for optical nonlinearities.
205

Contribution à la caractérisation des impulsions ultra-courtes à l’aide de sources laser rapidement accordables / Contribution to the characterization of ultrashort pulses using high-speed optical swept sources

Korti, Mokhtar 18 November 2018 (has links)
Les sources laser accordables se distinguent par leur capacité à changer leur longueur d’onde d’émission de façon continue dans le temps. Elles sont utilisées dans de nombreuses applications comme les télécommunications, la spectroscopie et la tomographie optique cohérente. Elles sont caractérisées principalement par une faible largeur de raie instantanée, une grande fréquence de balayage et une large plage d’accord. Les avantages des sources accordables ouvrent la voie vers d’autres types d’applications comme la caractérisation des impulsions ultra-courtes par exemple. Généralement, ces impulsions sont caractérisées via des méthodes non linéaires, lentes et trop compliquées à mettre en place. Nous avons donc proposé une nouvelle approche basée sur les sources accordables pour la caractérisation des impulsions ultra-courtes. En utilisant un laser à semi-conducteur accordable linéairement, type SG-DBR (Sampled-Grating Distributed Bragg Reflector), nous pouvons balayer en une seule mesure tout le spectre optique des impulsions sous test. Le signal de battement entre la source accordable et le laser pulsé permet de mesurer l’amplitude et la phase spectrales des différents modes ce qui nous donne accès à la forme temporelle de l’impulsion. L’avantage de notre approche est que tout le processus de caractérisation se fait en une seule mesure très rapide. En effet, la grande fréquence de balayage du laser accordable permet d’avoir des temps de mesure très faibles (< 10 μs), ce qui offre la possibilité d’avoir des mesures en temps réel. De plus, grâce à la large plage d’accord, cette technique est complétement indépendante de l’impulsion sous test, elle ne nécessite aucune connaissance au préalable des différentes propriétés de cette dernière telles que la fréquence de répétition, le nombre de modes ou la fréquence de chaque mode / Optical swept sources are distinguished by the ability to change their output wavelength in a continuous manner over time. They are used in many applications such as telecommunications, spectroscopy and optical coherence tomography. They are mainly characterized by a narrow instantaneous linewidth, a high sweep rate and a wide tuning range. The advantages of swept sources open the way to other types of applications such as the characterization of ultrashort pulses for example. Generally, these pulses are characterized using nonlinear methods which are slow and too complicated. We have proposed a novel approach based on swept sources for the characterization of ultrashort pulses. By using a linearly wavelength-swept semiconductor laser like SG-DBR (Sampled-Grating Distributed Bragg Reflector), we can scan the entire optical spectrum of the pulses under test in a single measurement. The beat signal between the swept source and the pulsed laser is then used to measure the spectral amplitude and phase of all modes which gives access to the temporal shape of the pulse. The main advantage of our approach is that the entire characterization process is done in a single fast measurement. Indeed, the high sweep rate of the swept source offers the possibility of having real time measurements. In addition, thanks to the wide tuning range, this technique is completely independent of the pulse under test, it requires no prior knowledge of the various properties of the pulse such as the repetition frequency, the number of modes or the frequency of each mode
206

Examination of Surface Morphology and Sub-Surface Crystallographic Changes of Si, Cu, GaP and Ge After Ultrashort Laser Pulse Irradiation

Crawford, Travis H. R. 10 1900 (has links)
This thesis reports the effects of ultrashort laser pulse irradiation of various materials. The morphology after irradiation was examined using several microscopy techniques. Emphasis was placed on the identification of crystallographic changes and the analysis of laser-induced periodic surface structures. Grooves were machined in silicon by translating the target under the focused laser beam. The resulting depths were measured as a function of pulse energy, translation speed, and number of consecutive passes, for 800 and 400nm wavelength irradiation. The wall morphology and a corrugation along the bottom of the grooves were characterized. Various polarization configurations relative to the translation direction were compared. Such characterizations are relevant for the practical application of femtosecond laser micromachining. Silicon and gallium phosphide exhibited periodic structures after irradiation using photon energies less than the bandgap energy, with periods as small as ~20% of the irradiation wavelength. The significantly sub-wavelength periodic structures had a shallow profile on silicon, appearing as fine lines or grids of protrusions and depressions. On gallium phosphide, the surface evolved into planar-like structures with a large aspect ratio, possessing crystalline centers coated with amorphous material. These investigations, along with additional experiments, would help identify the precise physical origins of the short-period structures. On silicon and germanium, the target crystal orientation was shown to affect the formation of certain morphological features. For multiple-pulse irradiation, the (100) and (111) surface orientations exhibited significantly different tendencies for large conical structure formation. A thin layer of defected material coated the conical structures, with some defects present within the periodic structures. The different crystalline orientations did not affect periodic structuring. Cross-sectional transmission electron microscopy of silicon after irradiation by single pulses revealed amorphous material and dislocations in the bulk for sufficiently high pulse fluences. On a sample consisting of a metal layer on thermally-grown oxide on silicon, a range of pulse fluences was found which removed the metal layer without observed thinning of the oxide layer. Within this fluence range, above a particular fluence substantial defects were formed in the underlying silicon. Although ultrashort pulse irradiation of materials is frequently considered to be 'damage-free', attention should be paid to sub-surface modifications not evident from surface imaging. For the drilling of holes in copper foils, the pulse duration did not strongly affect the final morphology for durations under several picoseconds. A photodiode below the foil during drilling recorded transmitted light, indicating the number of pulses required for penetration under a variety of conditions, and characterizing hole evolution during drilling. Periodic surface structuring on the walls of holes depended on the irradiation atmosphere, pulse duration, and laser polarization. These measurements provide insight into the physical processes of material modification, and for the selection of irradiation parameters in practical applications. / Thesis / Doctor of Philosophy (PhD)
207

Ultrafast Soft X-Ray Absorption Spectroscopy of Molecular Systems in the Water Window with Table-Top High-order Harmonic Sources

Kleine, Carlo 09 November 2023 (has links)
Mit der Erfindung des Lasers wurden kohärente Lichtquellen allgemein verfügbar. Technische Fortschritte bei Pulsleistung und Pulsdauer ermöglichen linearer und nichtlinearer Wechselwirkungen von Licht und Materie auf ultrakurzen Zeitskalen zu untersuchen. Die Erzeugung von hohen Harmonischen is heutzutage viel verwended um den lichtblitze im extremen Ultraviolett mit bis zu attosekunden pulsedauern zu erzeugen. Diese Methode wurde kürzlich für Spektroskopie mit weicher Röntgenstrahlung erweitert. In dieser wird ein ein Anregungs-Abfrage Aufbau vorgestellt, in dem Höhere Harmonische im weichen Röntgenspektralbereich erzeugt und als ultrakurze Abfrage-Pulse genutzt werden. Ein neu entworfenes Röntgenabsorptionsspektrometer ermöglicht die bisher beste Auflösung und den besten detektierten Fluss an der K-Kante von Stickstoff. Der Aufbau wird genutzt, um die Ionisationsdynamik von diatomarem Stickstoff auf Femtosekunden-Zeitskalen und die anschließende Pikosekunden-Plasmadynamik zu untersuchen. Im Bereich des "Air Lasing", in dem das Lasern von Stickstoff-Ionen, die durch Starkfeld-Ionisation entstehen, untersucht wird, werden neue Erkenntnisse gewonnen. Der geringe Absorptionsquerschnitt von Wasser zwischen den K-Kanten von Kohlenstoff und Sauerstoff, bekannt als Wasserfenster, ermöglicht die Untersuchung von Molekülen und Ionen in wässriger Lösung. Es werden die ersten in eine laser labor gemessenen stationären weichen Röntgenspektren für Ionen und molekulare Systeme in wässriger Lösung vorgestellt. Darüber hinaus wird der Ansatz auch für transiente Absorptionsspektren angewendet. Zusätzliche Daten von Strahlzeiten an Großgeräten ermöglichen einen Vergleich der Methoden. Schließlich werden Ergebnisse von BESSY II zur Untersuchung der Struktur und lokale Umgebung von Protonen in Wasser vorgestellt. Die K-Kanten-Spektroskopie von Protonen-Wasser-Komplexen in Acetonitril vorgestellt erlaubt es die elektronische Struktur der beteiligten Moleküle besser zu verstehen. / The invention of the laser made coherent light sources widely available. Technical advances in pulse power und pulse duration allow the study of linear and nonlinear interactions of light and matter and ultrashort time scales. The highest nonlinear frequency up-converting process, High-order harmonics generation, is today the standard for up to attosecond short table-top sources. This method has been recently applied for ultrafast spectroscopy in the soft x-ray water window. In this thesis, a table-top high-order harmonics setup is presented and used for pump-probe spectroscopy in the water window. A home-built soft x-ray absorption spectrometer enables the so far best resolution and detected flux at nitrogen K-edge. The setup is utilized to study ionization dynamics of diatomic nitrogen on femtosecond time scales and the subsequent picosecond plasma dynamics. In the realm of air lasing, where lasing in nitrogen ions formed by strong field ionization is studied new insides are provided, narrowing down possible theoretical interpretations. The low absorption cross section of water between the carbon and oxygen K-edges known as the water window, enables to investigate molecules and ions in aqueous solution. The first steady-state soft x-ray spectra are presented for ions and molecular systems in aqueous solution recorded with a table-top laser based setup. Furthermore, the approach is also applied for transient absorption spectra. Additional data from beamtimes at large scale facilities allow for a comparison of the approaches. Finally, spectroscopic results taken at BESSY II are presented. The structure and local environment of excess protons in water is studied for more than two centuries and are still controversially discussed. Investigating proton-water complexes in acetonitrile with oxygen K-edge spectroscopy allows for a local probing of electronic orbital interactions and electric field effects on the electronic structure of the participating water molecules.
208

Study of ultrashort laser-pulse induced ripples formed at the interface of silicon-dioxide on silicon

Liu, Bing 04 1900 (has links)
<p>In this thesis, the ripple formation at the interface of SiO2 and Si were studied in a systematic fashion by irradiating the SiO2-Si samples with ultrashort laser pulses under a broad variety of experimental conditions. They consist of di↵erent irradiating laser wavelengths, incident laser energies, translation speeds, translation directions, spot sizes of the laser beam, as well as oxide thicknesses. The ripples produced by laser irradiation are examined using various microscopy techniques in order to characterize their surface morphology, detailed structures, crystalline properties, and so on. For the experiments carried out at ! = 800 nm, the ripples formed on the SiO2-Si sample with an oxide thickness of 216 nm were first observed under optical microscopy and SEM. After removing the oxide layer with HF solution, the surface features of the ripples on the Si substrate were investigated using SEM and AFM techniques. Subsequently, by means of TEM and EDX analysis, the material composition and crystallinity of the ripples were determined. It is concluded that the ripples are composed of nano-crystalline silicon. In addition to the 216 nm oxide thickness, other oxide samples with di↵erent oxide thicknesses, such as 24, 112, 117, 158 and 1013 nm, were also processed under laser irradiation. The ripple formation as a function of the laser energy, the translation direction and the spot size is discussed in detail. Furthermore, the ripples created at the SiO2-Si interface are compared with</p> <p>the LIPSS created on pure silicon samples that were processed under similar laser irradiation conditions. The spatial periodicities of the ripples were evaluated to be in the range of between 510 nm and 700 nm, which vary with the oxide thickness and other laser parameters. For the experiments using the ! = 400 nm laser pulses, it is found that ripples can also be formed at the SiO2-Si interface, which have spatial periodicities in the range of between 310 nm and 350 nm depending on the oxide thickness. The ripple formation at this 400 nm wavelength as a function of the laser energy, the translation speed, and translation direction is considered as well. For the case of ! = 400 nm irradiation, a comparison is also made between the interface ripples on the SiO2-Si samples and the LIPSS on a pure Si sample. Through FIB-TEM and EDX analysis, it confirmed that the ripples were produced in the substrate while the oxide layer maintained its structural integrity. In addition, the ripples are composed of nano-crystalline silicon whose crystallite sizes are on the order of a few nanometers. Apart from irradiating oxide samples with femtosecond laser pulses, which applies to the two cases of ! = 800 and 400 nm mentioned above, oxide samples with an oxide thickness of 112 nm were irradiated with picosecond laser pulses at ! = 800 nm whose pulse durations are 1 ps and 5 ps, respectively. However, no regular ripples can be produced at the SiO2-Si interface while maintaining the complete integrity of the oxide layer.</p> / Master of Applied Science (MASc)
209

Yb:tungstate waveguide lasers

Bain, Fiona Mair January 2010 (has links)
Lasers find a wide range of applications in many areas including photo-biology, photo-chemistry, materials processing, imaging and telecommunications. However, the practical use of such sources is often limited by the bulky nature of existing systems. By fabricating channel waveguides in solid-state laser-gain materials more compact laser systems can be designed and fabricated, providing user-friendly sources. Other advantages inherent in the use of waveguide gain media include the maintenance of high intensities over extended interaction lengths, reducing laser thresholds. This thesis presents the development of Yb:tungstate lasers operating around 1μm in waveguide geometries. An Yb:KY(WO₄)₂ planar waveguide laser grown by liquid phase epitaxy is demonstrated with output powers up to 190 mW and 76 % slope efficiency. This is similar to the performance from bulk lasers but in a very compact design. Excellent thresholds of only 40 mW absorbed pump power are realised. The propagation loss is found to be less than 0.1 dBcm⁻¹ and Q-switched operation is also demonstrated. Channel waveguides are fabricated in Yb:KGd(WO₄)₂ and Yb:KY(WO₄)₂ using ultrafast laser inscription. Several of these waveguides lase in compact monolithic cavities. A maximum output power of 18.6 mW is observed, with a propagation loss of ~2 dBcm⁻¹. By using a variety of writing conditions the optimum writing pulse energy is identified. Micro-spectroscopy experiments are performed to enable a fuller understanding of the induced crystal modification. Observations include frequency shifts of Raman lines which are attributed to densification of WO₂W bonds in the crystal. Yb:tungstate lasers can generate ultrashort pulses and some preliminary work is done to investigate the use of quantum dot devices as saturable absorbers. These are shown to have reduced saturation fluence compared to quantum well devices, making them particularly suitable for future integration with Yb:tungstate waveguides for the creation of ultrafast, compact and high repetition rate lasers.
210

Role of nuclear rotation in H[subscript]2[superscript]+ dissociation by ultra short laser pulses

Anis, Fatima January 1900 (has links)
Doctor of Philosophy / Department of Physics / Brett D. Esry / The nuclear rotational period of the simplest molecule H[subscript]2[superscript]+ is about 550 fs, which is more than 35 times longer than its vibrational period of 15 fs. The rotational time scale is also much longer than widely available ultra short laser pulses which have 10 fs or less duration. The large difference in rotational period and ultra short laser pulse duration raises questions about the importance of nuclear rotation in theoretical studies of H[subscript]2[superscript]+ dissociation by these pulses. In most studies, reduced-dimensionality calculations are performed by freezing the molecular axis in one direction, referred to as the aligned model. We have systematically compared the aligned model with our full-dimensionality results for total dissociation probability and field-free dynamics of the dissociating fragments. The agreement between the two is only qualitative even for ultra short 10 fs pulses. Post-pulse dynamics of the bound wave function show rotational revivals. Significant alignment of H[subscript]2[superscript]+ occurs at these revivals. Our theoretical formulation to solve the time-dependent Schrodinger equation is an important step forward to make quantitative comparison between theory and experiment. We accurately calculate observables such as kinetic energy, angular, and momentum distributions. Reduced-dimensionality calculations cannot predict momentum distributions. Our theoretical approach presents the first momentum distribution of H[subscript]2[superscript]+ dissociation by few cycle laser pulses. These observables can be directly compared to the experiment. After taking into account averaging steps over the experimental conditions, we find remarkable agreement between the theory and experiment. Thus, our theoretical formulation can make predictions. In H[subscript]2[superscript]+ dissociation by pulses less than 10 fs, an asymmetry in the momentum distribution occurs by the interference of different pathways contributing to the same energy. The asymmetry, however, becomes negligible after averaging over experimental conditions. In a proposed pump-probe scheme, we predict an order of magnitude enhancement in the asymmetry and are optimistic that it can be observed.

Page generated in 0.0583 seconds