• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 11
  • 9
  • 5
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 66
  • 66
  • 66
  • 33
  • 29
  • 22
  • 20
  • 18
  • 17
  • 16
  • 13
  • 11
  • 11
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Integration testing of object-oriented software

Skelton, Gordon William 08 1900 (has links)
This thesis examines integration testing of object-oriented software. The process of integrating and testing procedural programs is reviewed as foundation for testing object-oriented software. The complexity of object-oriented software is examined. The relationship of integration testing and the software development life cycle is presented. Scenarios are discussed which account for the introduction of defects into the software. The Unified Modeling Language (UML) is chosen for representing pre-implementation and post-implementation models of the software. A demonstration of the technique of using post-implementation models representing the logical and physical views as an aid in integration and system testing of the software is presented. The use of UML diagrams developed from the software is suggested as a technique for integration testing of object-oriented software. The need for automating the data collection and model building is recognized. The technique is integrated into the Revised Spiral Model for Object-Oriented Software Development developed by du Plessis and van der Walt. / Computing / D.Phil. (Computer Science)
62

Domain Specific Modeling Support for ArCon / Stöd för domänspecifik modellering med ArCon

Azari, Leila January 2013 (has links)
One important phase in software development process is to create a design model of the system which follows all the architectural rules. Often the architectural rules are defined by the system architect and the system model is designed by the system designer. The architect defines the rules in a text file where no standard or pattern is followed. Therefore, there is always the risk of violating the architectural rules by the designer. So manual reviews on the system model should be done by the architect to ensure the system model is valid.In order to remove this manual checking which can be erroneous and time consuming ArCon (Architecture Conformance Checker) was developed by Combitech AB. ArCon is a tool which lets the architect define the architectural rules in the format of UML (Unified Modeling Language) models where the elements of the model have different meaning than the standard UML. ArCon can read this model and extract architectural rules from it and check the system model against those rules and then print all the rule violations.ArCon is an open source tool i.e. free for everyone to download and use. Currently, it supports Papyrus as the UML modeling tool. Papyrus is integrated to Eclipse platform and is a general purpose modeling tool. It supports users with all types of UML diagrams and elements.The idea for this thesis work was to implement a new feature for ArCon in order to facilitate the design process for system designers. The feature should provide the system designers only those types of elements which they are permitted to add to a specific fraction of the system model. The list of permitted element types should be extracted from the architecture model where all the architectural rules are defined in advance. This new support in ArCon was named Domain Specific Modeling (DSM) support.To evaluate the effect of DSM support on the system designers performance a few test sessions, called usability tests, were performed. The participants in the test sessions were a representative sample of software designers. After analyzing the data collected from the test sessions, the pros and cons of the new support were discovered. Furthermore, a few new ideas for enhancing DSM support were generated.
63

Aplikace objektových metod v návrhu informačního systému platební instituce / Application of object-oriented methodology when designing an information system of the payment institution

Justová, Markéta January 2015 (has links)
The aim of the Diploma thesis is to evaluate the selected object-oriented (OO) methodology as it was defined by its author, on the basis of defined criteria, whether it is applicable in practice when designing an information system, with a main focus on analysis of the new core banking system supporting key processes of payment institution and Forex broker. Diploma thesis describes selected OO methodologies and notations used in the analysis and design of information systems. Further, it focuses on the evaluation of the real usage of selected method (Unified Process) in the environment of payment institution. It confronts the theoretical definition of a selected OO methodology with its application during the analysis of IS through practical demonstrations created within the case study.
64

Publikace dat ze sítě meteostanic ve formátu DATEX II / Implementation of Datex II standard for road transport weather stations

Partika, Marek January 2016 (has links)
Master’s thesis deals with implementation of a European standard DATEX II. This standard specifies the data format for information transmission in road transport. The road traffic is flowing streams of current information. For the work was selected network of meteorological stations, which will publish the measured data, ie weather conditions of road transport. Measured data will be available to consumers in the format DATEX II. Implementation will be operational in its entirety meteorological station from design to the actual web service that will produce data information for consumers.
65

Web applications using the Google Web Toolkit / Webanwendungen unter Verwendung des Google Web Toolkits

von Wenckstern, Michael 04 June 2013 (has links) (PDF)
This diploma thesis describes how to create or convert traditional Java programs to desktop-like rich internet applications with the Google Web Toolkit. The Google Web Toolkit is an open source development environment, which translates Java code to browser and device independent HTML and JavaScript. Most of the GWT framework parts, including the Java to JavaScript compiler as well as important security issues of websites will be introduced. The famous Agricola board game will be implemented in the Model-View-Presenter pattern to show that complex user interfaces can be created with the Google Web Toolkit. The Google Web Toolkit framework will be compared with the JavaServer Faces one to find out which toolkit is the right one for the next web project. / Diese Diplomarbeit beschreibt die Erzeugung desktopähnlicher Anwendungen mit dem Google Web Toolkit und die Umwandlung klassischer Java-Programme in diese. Das Google Web Toolkit ist eine Open-Source-Entwicklungsumgebung, die Java-Code in browserunabhängiges als auch in geräteübergreifendes HTML und JavaScript übersetzt. Vorgestellt wird der Großteil des GWT Frameworks inklusive des Java zu JavaScript-Compilers sowie wichtige Sicherheitsaspekte von Internetseiten. Um zu zeigen, dass auch komplizierte graphische Oberflächen mit dem Google Web Toolkit erzeugt werden können, wird das bekannte Brettspiel Agricola mittels Model-View-Presenter Designmuster implementiert. Zur Ermittlung der richtigen Technologie für das nächste Webprojekt findet ein Vergleich zwischen dem Google Web Toolkit und JavaServer Faces statt.
66

Web applications using the Google Web Toolkit

von Wenckstern, Michael 05 June 2013 (has links)
This diploma thesis describes how to create or convert traditional Java programs to desktop-like rich internet applications with the Google Web Toolkit. The Google Web Toolkit is an open source development environment, which translates Java code to browser and device independent HTML and JavaScript. Most of the GWT framework parts, including the Java to JavaScript compiler as well as important security issues of websites will be introduced. The famous Agricola board game will be implemented in the Model-View-Presenter pattern to show that complex user interfaces can be created with the Google Web Toolkit. The Google Web Toolkit framework will be compared with the JavaServer Faces one to find out which toolkit is the right one for the next web project.:I Abstract II Contents III Acronyms and Glossary III.I Acronyms III.II Glossary IV Credits 1 Introduction 2 Basics 2.1 Development of the World Wide Web 2.2 Hypertext Markup Language 2.3 Cascading Style Sheets 2.4 JavaScript 2.5 Hypertext Markup Language Document Object Model 2.6 Asynchronous JavaScript and XML 3 GWT toolbox and compiler 3.1 GWT in action 3.2 A short overview of the toolkit 3.3 GWT compiler and JSNI 3.3.1 Overview of GWT compiler and JSNI 3.3.2 Deferred binding and bootstrapping process 3.3.3 GWT compiler steps and optimizations 3.4 Java Runtime Environment Emulation 3.5 Widgets and Panels 3.5.1 Overview of GWT Widgets 3.5.2 Event handlers in GWT Widgets 3.5.3 Manipulating browser’s DOM with GWT DOM class 3.5.4 GWT Designer and view optimization using UiBinder 3.6 Remote Procedure Calls 3.6.1 Comparison of Remote Procedure Calls with Remote Method Invocations 3.6.2 GWT’s RPC service and serializable whitelist 3.7 History Management 3.8 Client Bundle 3.8.1 Using ImageResources in the ClientBundle interface 3.8.2 Using CssResources in the ClientBundle interface 4 Model-View-Presenter Architecture 4.1 Comparison of MVP and MVC 4.2 GWT Model-View-Presenter pattern example: Agricola board game 4.3 Extending the Agricola web application with mobile views 4.4 Introducing activities in the Agricola Model-View-Presenter pattern enabling browser history 5 Comparison of the two web frameworks: GWT and JSF 5.1 Definitions of comparison fields 5.2 Comparison in category 1: Nearly completely static sites with a little bit of dynamic content, e.g. news update 5.3 Comparison in category 2: Doing a survey in both technologies 5.4 Comparison in category 3: Creating a forum to show data 5.5 Comparison in category 4: Writing a chat application 5.6 Comparison in category 5: Writing the speed game Snake 5.7 Summary 6 Security 6.1 Download Tomcat 6.2 Dynamic Web Application Project with GWT and Tomcat 6.3 Establish HTTPS connections in Tomcat 6.3.1 Create a pem certificate 6.3.2 Convert pem certificate into a key store object 6.3.3 Configure Tomcat’s XML files to enable HTPPS 6.4 Establish a database connection in Tomcat 6.4.1 Create TomcatGWT user and schema, and add the table countries 6.4.2 Configure Tomcat’s XML files to get access to the database connection 6.4.3 PreparedStatements avoid MySQL injections 6.5 Login mechanism in Tomcat 6.6 SafeHtml 7 Presenting a complex software application written in GWT 8 Conclusions 8.1 Summary 8.2 Future work A Appendix A 1 Configure the Google Web Toolkit framework in Eclipse A 1.1 Install the Java Developer Kit A 1.2 Download Eclipse A 1.3 Install the GWT plugin in Eclipse A 1.4 Create first GWT Java Project A 2 Figures A 3 Listings A 3.1 Source code of the Agricola board game A 3.2 Source code of GWT and JSF comparison A 4 Tables R Lists and References R 1 Lists R 1.1 List of Tables R 1.2 List of Figures R 1.3 List of Listings R 2 References R 2.1 Books R 2.2 Online resources / Diese Diplomarbeit beschreibt die Erzeugung desktopähnlicher Anwendungen mit dem Google Web Toolkit und die Umwandlung klassischer Java-Programme in diese. Das Google Web Toolkit ist eine Open-Source-Entwicklungsumgebung, die Java-Code in browserunabhängiges als auch in geräteübergreifendes HTML und JavaScript übersetzt. Vorgestellt wird der Großteil des GWT Frameworks inklusive des Java zu JavaScript-Compilers sowie wichtige Sicherheitsaspekte von Internetseiten. Um zu zeigen, dass auch komplizierte graphische Oberflächen mit dem Google Web Toolkit erzeugt werden können, wird das bekannte Brettspiel Agricola mittels Model-View-Presenter Designmuster implementiert. Zur Ermittlung der richtigen Technologie für das nächste Webprojekt findet ein Vergleich zwischen dem Google Web Toolkit und JavaServer Faces statt.:I Abstract II Contents III Acronyms and Glossary III.I Acronyms III.II Glossary IV Credits 1 Introduction 2 Basics 2.1 Development of the World Wide Web 2.2 Hypertext Markup Language 2.3 Cascading Style Sheets 2.4 JavaScript 2.5 Hypertext Markup Language Document Object Model 2.6 Asynchronous JavaScript and XML 3 GWT toolbox and compiler 3.1 GWT in action 3.2 A short overview of the toolkit 3.3 GWT compiler and JSNI 3.3.1 Overview of GWT compiler and JSNI 3.3.2 Deferred binding and bootstrapping process 3.3.3 GWT compiler steps and optimizations 3.4 Java Runtime Environment Emulation 3.5 Widgets and Panels 3.5.1 Overview of GWT Widgets 3.5.2 Event handlers in GWT Widgets 3.5.3 Manipulating browser’s DOM with GWT DOM class 3.5.4 GWT Designer and view optimization using UiBinder 3.6 Remote Procedure Calls 3.6.1 Comparison of Remote Procedure Calls with Remote Method Invocations 3.6.2 GWT’s RPC service and serializable whitelist 3.7 History Management 3.8 Client Bundle 3.8.1 Using ImageResources in the ClientBundle interface 3.8.2 Using CssResources in the ClientBundle interface 4 Model-View-Presenter Architecture 4.1 Comparison of MVP and MVC 4.2 GWT Model-View-Presenter pattern example: Agricola board game 4.3 Extending the Agricola web application with mobile views 4.4 Introducing activities in the Agricola Model-View-Presenter pattern enabling browser history 5 Comparison of the two web frameworks: GWT and JSF 5.1 Definitions of comparison fields 5.2 Comparison in category 1: Nearly completely static sites with a little bit of dynamic content, e.g. news update 5.3 Comparison in category 2: Doing a survey in both technologies 5.4 Comparison in category 3: Creating a forum to show data 5.5 Comparison in category 4: Writing a chat application 5.6 Comparison in category 5: Writing the speed game Snake 5.7 Summary 6 Security 6.1 Download Tomcat 6.2 Dynamic Web Application Project with GWT and Tomcat 6.3 Establish HTTPS connections in Tomcat 6.3.1 Create a pem certificate 6.3.2 Convert pem certificate into a key store object 6.3.3 Configure Tomcat’s XML files to enable HTPPS 6.4 Establish a database connection in Tomcat 6.4.1 Create TomcatGWT user and schema, and add the table countries 6.4.2 Configure Tomcat’s XML files to get access to the database connection 6.4.3 PreparedStatements avoid MySQL injections 6.5 Login mechanism in Tomcat 6.6 SafeHtml 7 Presenting a complex software application written in GWT 8 Conclusions 8.1 Summary 8.2 Future work A Appendix A 1 Configure the Google Web Toolkit framework in Eclipse A 1.1 Install the Java Developer Kit A 1.2 Download Eclipse A 1.3 Install the GWT plugin in Eclipse A 1.4 Create first GWT Java Project A 2 Figures A 3 Listings A 3.1 Source code of the Agricola board game A 3.2 Source code of GWT and JSF comparison A 4 Tables R Lists and References R 1 Lists R 1.1 List of Tables R 1.2 List of Figures R 1.3 List of Listings R 2 References R 2.1 Books R 2.2 Online resources

Page generated in 0.1805 seconds