• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 15
  • 6
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 93
  • 38
  • 36
  • 31
  • 22
  • 21
  • 20
  • 18
  • 17
  • 17
  • 13
  • 13
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Numerical Study on Hydrodynamic Characteristics of Flood Discharge Tunnel in Zipingpu Water Conservancy Project : Using RANS equations and the VOF model

Hamberg, Micaela, Dahlin, Signe January 2019 (has links)
To avoid the large amount of damage that floods can cause, spillway tunnels are used to control water levels. To ensure the safety of water transportation through spillway tunnels, the behaviour of the water throughout the tunnel is important to know. Physical experiments are time consuming and expensive, hence CFD simulations are a profitable option for investigating the performance of the spillway tunnel. In this project, simulations of water flow in a spillway tunnel were executed. A three dimensional model of the spillway tunnel in Zipingpu Water Conservancy Project was created in the software ANSYS Gambit. A coarse, middle and fine mesh with both hexahedral- and tetrahedral elements were also created for the model in ANSYS Gambit. The meshes were imported to ANSYS Fluent where the simulations, and a convergence analysis were made. The water flow was set to be described by the Reynolds-Averaged Navier-Stokes model, using the pressure solver, k-epsilon model and the VOF model. Physical experiments had previously been performed, and the simulated results were compared to these, in an attempt to find the parameters to replicate the experimental results to the greatest extent possible. The inlet velocity of the tunnel was known and the inlet boundary was set as a velocity inlet. The ceiling of the tunnel was set as a pressure inlet, the floor and walls were set as wall, and the outlet was set as pressure outlet. The simulated results showed similar behavior as the experimental results, but all differed from the experimental results. The grid convergence index, estimating the results' dependency on the mesh was 6.044 %. The flow was analyzed, and where the flow had unfavorable characteristics, such as a high cavitation number, the geometry of the spillway was altered in ANSYS Gambit to investigate if an improved geometry for the spillway tunnel could be found. The water flow in the revised geometry was simulated in ANSYS Fluent, and results showing flow with lower cavitation numbers was found.
72

Numerical Simulation of Three-Dimensional Tsunami Generation by Subaerial Landslides

Kim, Gyeongbo 1978- 14 March 2013 (has links)
Tsunamis are one of the most catastrophic natural events impacting coastal regions often generated by undersea earthquakes. Nevertheless, in enclosed basins, i.e., fjords, reservoirs and lakes, subaerial or submarine landslides can initiate devastating tsunamis with similar consequences. Although a subaerial or submarine landslide that impinges into a large water body can generate a tsunami, subaerial landslides are much more efficient tsunami generators than its counterpart. In this study we aim to integrate laboratory scale experiments of tsunami generation by subaerial landslide with numerical models. The work focuses on the numerical validation of two three-dimensional Navier-Stokes (3D-NS) models, FLOW-3D and our developed model TSUNAMI3D. The models are validated based on previous large scale laboratory experiments performed by a tsunami research team lead by Dr. Hermann Fritz, Georgia Institute of Technology. Three large scale landslide scenarios were selected from the set of laboratory experiments, namely, fjord like, headland and far field coastline. These scenarios showed that complex wave fields can be generated by subaerial landslides. The correct definition and evolution of the wave field are key to accurate modeling the ensuing tsunami and its effect in coastal regions. In this study, comparisons are performed between numerical results and laboratory experiments. Methodology and key parameters for soil rheology are defined for model validations. Results of the models are expected to be under the allowable errors indicated by the National Tsunami Hazard Mitigation Program (NTHMP), National Oceanic and Atmospheric Administration (NOAA) guidelines for validation of tsunami numerical models. The ultimate goal of this research is to obtain better tsunami calculation tools for real-world application of 3-D models for landslide tsunamis, which are necessary for the construction of inundation maps in the Gulf of Mexico and the Caribbean regions.
73

Αριθμητική προσομοίωση τυρβώδους ροής σε ανοικτούς αγωγούς με συστοιχία θινών στον πυθμένα / Numerical simulation of turbulent open channel flow over bottom with multiple dunes

Φουρνιώτης, Νικόλαος 14 May 2007 (has links)
Η παρούσα Διατριβή Μεταπτυχιακού Διπλώματος Ειδίκευσης, πραγματεύεται την ανάλυση της τυρβώδους ροής σε ανοικτούς αγωγούς στον πυθμένα των οποίων ενυπάρχουν σχηματισμοί μορφής θινών (dunes). Μελετήθηκε η περίπτωση 5 θινών οι οποίες τοποθετήθηκαν στον πυθμένα ενός καναλιού βάθους d θεωρώντας μόνιμη ροή. Για την επίλυση χρησιμοποιήθηκαν οι εξισώσεις RANS, ενώ για το κλείσιμο της τύρβης χρησιμοποιήθηκαν τα μοντέλα μιας εξίσωσης Spalart-Allmaras και δύο εξισώσεων k-ε. Η διαχείριση της ελεύθερης επιφάνειας έγινε με την μέθοδο VOF, ενώ η αριθμητική επίλυση βασίστηκε στην μέθοδο των πεπερασμένων όγκων και πραγματοποιήθηκε με τον εμπορικό κώδικα FLUENT 6.1.2. Για την ροή στον ανοικτό αγωγό, στον πυθμένα του οποίου ενυπήρχαν οι σχηματισμοί, θεωρήθηκε αριθμός Reynolds , κλίση πυθμένα και συντελεστή Manning , ο οποίος αντιστοιχεί σε ισοδύναμο ύψος τραχύτητας τοιχωμάτων . Προκειμένου να επαληθευθεί η ακρίβεια της αριθμητικής μεθόδου, επιλύθηκε η περίπτωση του επίπεδου πυθμένα και τα αποτελέσματα συγκρίθηκαν με γνωστά πειραματικά αποτελέσματα καθώς και αποτελέσματα τα οποία προέκυψαν από την μονοδιάστατη ανάλυση της ροής πάνω από επίπεδο πυθμένα. Τα αποτελέσματα βρέθηκαν σε καλή συμφωνία, κυρίως για την κατανομή της ταχύτητας, ενώ για την τύρβη υπήρχε πολύ καλή συμφωνία κυρίως πλησίον του πυθμένα. Για το πρόβλημα των θινών εξετάσθηκαν: (α) τρεις περιπτώσεις με σταθερό άνοιγμα θίνης προς βάθος ροής και διαφορετικά ύψη θινών , 0.25 και (β) τρεις περιπτώσεις με σταθερή αναλογία ανοίγματος προς ύψος και ύψη θινών όπως στην περίπτωση (α). Η ανάλυση έδειξε ότι το μέσο προφίλ της ελεύθερης επιφάνειας μειώνεται στην διεύθυνση της ροής, ενώ πάνω από κάθε θίνη το πλάτος της ανύψωσης της ελεύθερης επιφάνειας αυξάνει με την αύξηση του ύψους και του ανοίγματος των θινών. Η κατανομή των διατμητικών τάσεων παρουσιάζει κυματοειδή μορφή υπεράνω των θινών και αυξάνει αυξανομένου του ύψους τους και με την μείωση του ανοίγματός τους. Πίσω από κάθε θίνη δημιουργείται θύλακας ανακυκλοφορίας της ροής και ο λόγος της απόστασης του σημείου επανακόλλησης προς το ύψος της θίνης είναι . / The spatial development of the turbulent open channel flow over bottom with five dunes is studied. The steady-state flow is described by the RANS equations utilizing either the or the Spalart-Allmaras turbulence models. The free-surface treatment is based on the VOF formulation, while the numerical solution is based on a finite-volume, unstructured-grid discretization. Lengths are rendered dimensionless by the inflow channel depth, while velocities by the mean inflow velocity. The inflow Reynolds number is , the channel slope is and the Manning coefficient is , which results to a roughness height . In order to verify the numerical methods, the flat bottom case is considered and the numerical predictions are compared to known experimental data. We get very good agreement for the velocity distributions, while for turbulence the results are very good close to the bottom and poor close to the free surface. Then, we consider: (a) three cases with constant dune length and differing dune heights 0.15, 0.25, 0.35, and (b) three cases with constant ratio and dune heights as in (a). The spatial development of the free-surface elevation over the dunes presents a negative mean slope for all cases. Locally over each dune, the amplitude of the free-surface elevation increases with increasing dune height and increasing dune length. The spatial development of the wall shear stress presents a wave-like behavior and its amplitude increases with increasing dune height and decreasing dune length. On every dune crest the streamwise velocity profile is steeper than the universal logarithmic profile similar to the behavior in a favorable pressure gradient boundary layer. The detachment at each dune crest is followed by a recirculation region and reattachment at a distance from the dune trough.
74

CFD simulation of dip-lubricated single-stage gearboxes through coupling of multiphase flow and multiple body dynamics : an initial investigation

Imtiaz, Nasir January 2018 (has links)
Transmissions are an essential part of a vehicle powertrain. An optimally designed powertrain can result in energy savings, reduced environmental impact and increased comfort and reliability. Along with other components of the powertrain, efficiency is also a major concern in the design of transmissions. The churning power losses associated with the motion of gears through the oil represent a significant portion of the total power losses in a transmission and therefore need to be estimated. A lack of reliable empirical models for the prediction of these losses has led to the emergence of CFD (Computational Fluid Dynamics) as a means to (i) predict these losses and (ii) promote a deeper understanding of the physical phenomena responsible for theselosses in order to improve existing models. The commercial CFD solver STAR-CCM+ is used to investigate the oil distribution and the churning power losses inside two gearbox configurations namely an FZG (Technical Institute for the Study of Gears and Drive Mechanisms) gearbox and a planetary gearbox. A comparison of two motion handling techniques in STARCCM+ namely MRF (Moving Reference Frame) and RBM (Rigid Body Motion) models is made in terms of the accuracy of results and the computational requirements using the FZG gearbox. A sensitivity analysis on how the size of gap between the meshing gear teeth affects the flow and the computational requirements is also done using the FZG gearbox. Different modelling alternatives are investigated for the planetary gearbox and the best choices have been determined. The numerical simulations are solved in an unsteady framework where the VOF (Volume Of Fluid) multiphase model is used to track the interface between the immiscible phases. The overset meshing technique has been used to reconfigure the mesh at each time step. The results from the CFD simulations are presented and discussed in terms of the modelling choices made and their effect on the accuracy of the results. The MRF method is a cheaper alternative compared to the RBM model however, the former model does not accurately simulate the transient start-up and instead provides just a regime solution of the unsteady problem. As expected, the accuracy of the results suffers from having a large gap between the meshing gear teeth. The use of compressible ideal gas model for the air phase with a pressure boundary condition gives the optimum performance for the planetary gearbox. The outcomes can be used toeffectively study transmission flows using CFD and thereby improve the design of future transmissions for improved efficiency.
75

Rompimento de barreiras : análise experimental e numérica na previsão de velocidades de propagação de frentes de material hiperconcentrado /

Minussi, Roberta Brondani. January 2007 (has links)
Orientador: Geraldo de Freitas Maciel / Banca: Sérgio Said Mansur / Banca: Jean Paul Vila / Resumo: Denominam-se problemas tipo rompimento de barreira os fenômenos nos quais um fluido é liberado de maneira abrupta. Quando o fluido apresenta natureza hiperconcentrada, a relação entre a tensão de cisalhamento e a taxa de deformação pode se tornar não-linear, passando a apresentar reologia não-Newtoniana. Problemas deste tipo podem ser encontrados em muitos fenômenos tanto na natureza quanto em processos industriais. O estudo de tal problema é, geralmente, conduzido usando simplificações, como a aproximação de águas rasas e a separação do escoamento em regimes dominantemente inerciais ou viscosos. O presente trabalho é composto de duas partes, uma experimental e outra, numérica. No campo experimental, duas soluções controladas são usadas: soluções aquosas de açúcar e de Carbopol 940, esta última com várias concentrações volumétricas. O aparato experimental consiste em um canal retangular de acrílico, contendo uma comporta, a montante da qual, o fluido é retido e, pela ruptura (levantamento da comporta), começa a escoar. O escoamento é estudado através de técnicas avançadas de filmagem. No campo numérico, são realizadas simulações usando o programa CFX, no qual é usado um método de rastreamento de interface, o VOF e sem o emprego das simplificações citadas. Os resultados experimentais são comparados com os numéricos e com resultados da literatura que usam tais simplificações. Na comparação a aproximação de águas rasas, apesar de descrever bem a forma da interface, se distancia dos valores reais da posição da frente de onda. / Abstract: The dam break problem describes a phenomenon in which there is an abrupt release of fluid. When the fluid is hiperconcentrated, the relation between the shear stress and the strain rate can become non-linear, and so present a non-Newtonian rheology. The non-Newtonian dam break problem may be found in many phenomena in nature and industrial process. The study of such a problem is, generally, conducted using simplified hypothesis such as the shallow water approximation and the separation of the flow in inertial and viscous dominated regimes. The present work is composed of two parts, one experimental and other, numerical. In the experimental field, two controlled solutions were used: water solutions of sugar and of Carbopol 940, the last one with a wide range of volume concentrations. These fluids have, respectively, Newtonian and non-Newtonian rheologies. The experimental setup consists of an acrylic rectangular channel, which has a dam and upstream of that the fluid is retained and, by the rupture, it begins to flow. The flow is studied by using advanced filming techniques. In the numerical field, simulations are conducted using the CFX software, which uses an interface tracking method, the VOF, and without the shallow water approximation and the division of the flow. So the experimental, numerical and literature results, that uses such simplifications, are compared and it is showed that the shallow water approximation, however describes very well the shape of the surface, is not accurate in calculate the wave front position. / Mestre
76

Experimentação numérica de bolhas em ascensão

Barbi, Franco 29 July 2016 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Fundação de Amparo a Pesquisa do Estado de Minas Gerais / Petrobrás / Em estudos de escoamentos do tipo colunas de bolhas o uso de ferramentas computacionais desempenham um importante papel por permitir que, através de experimentos virtuais, a comunidade científica agregue mais conhecimento sobre as forças que atuam nesse tipo de escoamento. Considerando a confiabilidade dos resultados, torna-se possível o aperfeiçoamento de modelos constitutivos de forças fluidodinâmicas como de arrasto, sustentação e massa virtual. O código AMR3D trabalha com malhas de refinamento localizado bloco-estruturadas que se adaptam dinamicamente às características de um dado escoamento. Utiliza-se um método de projeção para o acoplamento pressão-velocidade e o método do Volume de Fluido (VOF) para a representação das fases e interfaces do escoamento bifásico. As equações do balanço da quantidade de movimento linear são discretizadas no tempo por um esquema semi-implícito de segunda ordem (IMEX). A presente tese contribuiu com o código com a implementação de um novo critério de refinamento que captura as estruturas turbilhonares do escoamento e com um algoritmo para identificação de bolhas para que seja possível a realização de operações sobre uma mesma bolha em meio à uma população. O código é verificado e validado com problemas da literatura. Resultados de simulações de bolhas ascendentes isoladas em meio quiescente são apresentados e comparados com o diagrama de Grace indicando boa concordância. Análises de forças de resistência fluidodinâmicas atuantes nas bolhas foram apresentadas e coeficientes de arrasto, sustentação e massa virtual calculados. Através de comparações com correlações da literatura, foi possível observar concordância dos resultados. Simulações da interação entre duas bolhas de volumes conhecidos são realizadas e comparações são realizadas com resultados da literatura. Em um dos casos, o algorítimo de identificação é verificado ao rastrear consistentemente os volumes e centroides das bolhas. Simulações com população de bolhas foram apresentadas e, através do algoritmo de identificação, estima-se a força de resistência fluidodinâmica total que age em uma bolha em meio à população. Conclui-se que, com base nos resultados, que o código AMR3D, com as implementações realizadas neste trabalho, possui potencial para a investigação de escoamentos borbulhantes. / In bubble dynamics studies computational tools plays an important role as it allows, through virtual experimentations, the increase of knowledge about forces that act in this kind of flow. Considering results reliability, it is common to observe constitutive force models improvement, as in drag, lift and virtual mass correlations. The AMR3D code, developed in the Fluid Mechanics Laboratory - MFlab, uses locally block-structured meshes that dynamically adapts itself to characteristics of a given flow. A projection method is used for the pressure-velocity coupling, and the Volume of Fluid - VOF method for the phases representation, including interface dynamics. The equations of linear momentum balance are discretized with a second order semi-implicit scheme (IMEX). The present thesis contributes to the code with the implementation of a new refinement criteria that captures the main structures of the flow, and an identification algorithm that allows users to perform operations on a single bubble between a swarm of bubbles. The present code is verified and validated against well known literature problems. Results of isolated ascending bubbles in a quiescent media are presented and compared with Grace’s diagram, showing good agreement. Fluid-dynamic forces are computed and analyzed, as well as fluid-dynamics forces coefficients for drag, lift and virtual mass, showing good agreement with literature. Simulations of a pair of bubbles interacting were presented and comparisons were realized against results of literature, showing good proximity. In one of the cases, the bubble identification algorithm was tested as it calculates bubbles known volumes and centroid positions consistently. Bubble swarm simulations were presented, and the identification algorithm were also applied to track a bubble as it ascend though the domain to expose the fluid-dynamics forces acting on it. With the presented results, one can conclude that the AMR3D code has a potential for investigative approaches in bubbly flows. / Tese (Doutorado)
77

Microgravity Flow Transients in the Context of On-Board Propellant Gauging

Aatresh, K January 2014 (has links) (PDF)
It is well known that surface tension of a liquid has a decisive role in flow dynamics and the eventual equilibrium state, especially in confined flows under low gravity conditions and also in free surface flows. One such instance of a combination of these two cases where surface tension plays an important role is in the microgravity environment of a spacecraft propellant tank. In this specific case both propellant acquisition and residual propellant estimation are critical to the mission objectives particularly in the end-of-life phase. While there have been a few studies pertaining to the equilibrium state in given geometric configurations, the transient flow leading to final state from an initial arbitrary distribution of propellant is rarely described. The present study is aimed at analysing the dynamic behaviour of the liquids under reduced gravity through numerical simulation and also addresses the specific case of propellant flow transient in a cone-in-a-sphere type of tank configuration proposed by Lal and Raghunandan which is likely to result in both improved acquisition and life time estimation of spacecraft. While addressing this specific problem, the present work aims to study the transient nature of such surface tension driven flows in a general form as applicable to other similar problems also. Volume of Fluid (VOF) method for multiphase model in ANSYS FLUENT was adapted with suitable changes for generating numerical solutions to this problem. Simulations were run for three different cone angles of 17o, 21o & 28o with a flat liquid surface for full scale models to measure the rise height and time of rise. Two scaled models of ½ and 1/10th of the original dimensions with the same liquid configuration of the 28o cone angle case were simulated to see if the time scales involved would come down for experimental feasibility. A third simulation of the 1/10th scale model was run with the liquid spread in the tank to imitate the general conditions found in the propellant tank in microgravity. To understand the behaviour of liquids in the microgravity state to changing physical parameters, a set of simulations was run using liquid phases as water and hydrazine with different physical parameters of temperature and surface tension. The theory put forward by Lal and Raghunandan was found to stand firm. In the case of the cone angle of 28o it was observed that in the final equilibrium state the liquid collected towards the apex of the cone with the larger volume fraction of liquid accumulating inside the cone. An addition of a cylindrical section at the bottom of the cone seems to help although not uniformly for all case. The equilibrium settling times for all the three cone angle cases were in the order of 300 to 600 seconds for simulations on a spherical tank of diameter two metres which was close to the actual tank dimension used on spacecraft. Scaled down simulations of 1/10th and ½ the tank geometry with both flat liquid surfaces and spread out liquid volumes showed that the smaller models had equilibrium settling times which were considerably lower (in the order of tens of seconds) than the full scale models. Although smaller, these time scales are larger than the maximum time scales available in drop tower tests which provide a maximum free fall time of around 9 to 10 seconds. Validation of the proposed configuration by flying an aircraft in a parabolic flight path is a possibility that could be explored for the scaled down models since the zero-g duration for these flights is on an average between 15-20 seconds.
78

Intégration et validation expérimentale de la méthode VOF dans les calculs aérodynamiques automobiles: application au cas de l'entrainement d'eau dans les circuits de climatisation / Integration and experimentale validation of the VOF method in automotive aerodynamics computations: application to water entrainment into the HVAC system.

Berger, Rémi 26 October 2010 (has links)
Cette étude porte sur l'utilisation conjointe (appelée ” couplage ”) de modèle de turbulence à grandes échelles LES (Large Eddy Simulation) et du modèle multiphasique VOF (Volume of Fluid). Cette utilisation conjointe est nécessaire dans de nombreuses applications industrielles comme celles de l'automobile où l'on recherche par exemple à évaluer les prestations diphasiques de l'auvent liées au phénomène d'entraînement et d'ingestion d'une nappe d'eau par le HVAC (système d'air conditionné). Cependant, l'utilisation conjointe de ces méthodes nécessite un traitement particulier de la turbulence proche de la surface liquide afin de reproduire convenablement la quantité de mouvement transmise depuis la phase gazeuse, motrice, jusque dans la phase liquide.<p><p>Basée sur une approche numérique et expérimentale, notre étude est articulée autour de trois axes. Tout d'abord, le développement de techniques de mesures spécifiques pour l'étude expérimentale de notre problématique: le LeDaR pour mesurer les déformées d'une interface et la PIV d'interface afin d'accéder aux champs de vitesse et de turbulence dans chacune des deux phases. Le second axe est la constitution d'une base de données expérimentales sur une configuration de type jet impactant sur une surface liquide représentative des phénomènes rencontrés dans l'auvent. Enfin, le troisième axe de travail est l'évaluation des modèles existants dans le code Ansys Fluent et à partir de cette analyse le développement et la validation de modèles de couplage LES-VOF.<p><p>L'évaluation des modèles développés a permis de valider une stratégie de calcul adaptée aux simulations de l'entraînement d'une surface d'eau par un écoulement d'air turbulent. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
79

Drop impact splashing and air entrapment

Thoraval, Marie-Jean 03 1900 (has links)
Drop impact is a canonical problem in fluid mechanics, with numerous applications in industrial as well as natural phenomena. The extremely simple initial configuration of the experiment can produce a very large variety of fast and complex dynamics. Scientific progress was made in parallel with major improvements in imaging and computational technologies. Most recently, high-speed imaging video cameras have opened the exploration of new phenomena occurring at the micro-second scale, and parallel computing allowed realistic direct numerical simulations of drop impacts. We combine these tools to bring a new understanding of two fundamental aspects of drop impacts: splashing and air entrapment. The early dynamics of a drop impacting on a liquid pool at high velocity produces an ejecta sheet, emerging horizontally in the neck between the drop and the pool. We show how the interaction of this thin liquid sheet with the air, the drop or the pool, can produce micro-droplets and bubble rings. Then we detail how the breakup of the air film stretched between the drop and the pool for lower impact velocities can produce a myriad of micro-bubbles.
80

Air-pocket transport in conjunction with bottom-outlet conduits for dams

Liu, Ting January 2011 (has links)
Undesired air entrainment in bottom outlet conduits of dams may cause pressure transients, leading to conduit vibrations, blowback, discharge pulsation and even cavitation, and jeopardize the operational safety. Due to design limitations or construction costs, it is impossible to create an air free environment in a pressurized pipe. Therefore, it is essential to understand the air transport in enclosed pipes in order to provide guidance in bottom outlet design and operation. The commonly used criterion of the air-pocket movement in pipe flow is the water flow velocity for starting moving an air pocket, the so-called critical velocity. In this thesis, the classical Volume of Fluid (VOF) model combined with the k-ε turbulence model is adopted for the computation of the critical velocity of a 150-mm pipe. The computed critical velocities are compared with the experimental results. The governing parameters investigated in this study include pipe slope and diameter, wall shear stress and air-pocket volume. Meanwhile, the carrying capacity (air-pocket velocity/ flow velocity) at all pipe slopes are analyzed. The simulation results of air pockets with different volumes in the bottom outlet conduit of Letten Dam in Sweden are presented in this study. Moreover, experimental study was conducted to measure the critical velocity for a 240-mm Plexiglas pipe. The results are in agreement with the experiments performed by HR Wallingford (HRW) in 2003 in terms of the effects of pipe slope and air-pocket volume; however, the critical Froude pipe number is slightly smaller in this study. In rough pipes, a larger critical velocity is required compared with that in the smooth pipe. The removal mechanism in the rough pipe involves the successive loss of air caused by turbulence. This explains that the air-pocket size, with the dimensionless air-pocket volume n &lt; 0.015, has little impact on the critical velocity for the rough pipe. In addition, roughness has little impact on the air-pocket velocity when it moves upstream in the downward inclined pipe. The trapped air bubbles most likely remain permanently in the rough pipe. / QC 20120110

Page generated in 0.0269 seconds