• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 6
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 45
  • 26
  • 16
  • 14
  • 13
  • 13
  • 13
  • 13
  • 11
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Machine Learning for Stellar Spectra : Anomaly Detection in stellar spectra using Unsupervised Random ForestSpectral Analysis using Variational Autoencoders

Paranjape, Mihir January 2021 (has links)
This thesis was carried out in two parts. The stellar spectral data was used from the Gaia-ESO survey. The data used was fromthe public archive as well as data received from Dr. Recio-Blanco at Observatoire Cote D'Azure. 1) I performed anomaly detection using unsupervised random forests, by applying the concept of weirdness scores to identify outliers. 2) Using spectral data along with physical parameters of objects in the galactic bulge of the Gaia-ESO survey, I built a variational autoencoder neural network to reconstruct stellar spectra and explore latent features learning physical parameters by themselves.
12

VConstruct: a computationally efficient method for reconstructing satellite derived Chlorophyll-a data

Ehrler, Matthew 31 August 2021 (has links)
The annual phytoplankton bloom is an important marine event. Its annual variability can be easily recognized by ocean-color satellite sensors through the increase in surface Chlorophyll-a concentration, a key indicator to quantitatively characterize all phytoplankton groups. However, a common problem is that the satellites used to gather the data are obstructed by clouds and other artifacts. This means that time series data from satellites can suffer from spatial data loss. There are a number of algorithms that are able to reconstruct the missing parts of these images to varying degrees of accuracy, with Data INterpolating Empirical Orthogonal Functions (DINEOF) being the most popular. However, DINEOF has a high computational cost, taking both significant time and memory to generate reconstructions. We propose a machine learning approach to reconstruction of Chlorophyll-a data using a Variational Autoencoder (VAE). Our method is 3-5x times faster (50-200x if the method has already been run once in the area). Our method uses less memory and increasing the size of the data being reconstructed causes computational cost to grow at a significantly better rate than DINEOF. We show that our method's accuracy is within a margin of error but slightly less accurate than DINEOF, as found by our own experiments and similar experiments from other studies. Lastly, we discuss other potential benefits of our method that could be investigated in future work, including generating data under certain conditions or anomaly detection. / Graduate
13

Aspects of Modern Queueing Theory

Ruixin Wang (12873017) 15 June 2022 (has links)
<p>Queueing systems are everywhere: in transportation networks, service centers, communication systems, clinics, manufacturing systems, etc. In this dissertation, we contribute to the theory of queueing in two aspects. In the first part, we dilate the interplay between retrials and strategic arrival behavior in single-class queueing networks. Specifically, we study a variation of the ‘Network Concert Queueing Game,’ wherein a fixed but large number of strategic users arrive at a network of queues where they can be routed to other queues in the network following a fixed routing matrix, or potentially fedback to the end of the queue they arrive at. Working in a non-atomic setting, we prove the existence of Nash equilibrium arrival and routing profiles in three simple, but non-trivial, network topologies/architectures. In two of them, we also prove the uniqueness of the equilibrium. Our results prove that Nash equilibrium decisions on when to arrive and which queue to join in a network are substantially impacted by routing, inducing ‘herding’ behavior under certain conditions on the network architecture. Our theory raises important design implications for capacity-sharing in systems with strategic users, such as ride-sharing and crowdsourcing platforms.</p> <p><br></p> <p>In the second part, we develop a new method of data-driven model calibration or estimation for queueing models. Statistical and theoretical analyses of traffic traces show that the doubly stochastic Poisson processes are appropriate models of high intensity traffic arriving at an array of service systems. On the other hand, the statistical estimation of the underlying latent stochastic intensity process driving the traffic model involves a rather complicated nonlinear filtering problem. In this thesis we use deep neural networks to ‘parameterize’ the path measures induced by the stochastic intensity process, and solve this nonlinear filtering problem by maximizing a tight surrogate objective called the evidence lower bound (ELBO). This framework is flexible in the sense that we can also estimate other stochastic processes (e.g., the queue length process) and their related parameters (e.g., the service time distribution). We demonstrate the effectiveness of our results through extensive simulations. We also provide approximation guarantees for the estimation/calibration problem. Working with the Markov chain induced by the Euler-Maruyama discretization of the latent diffusion, we show that (1) there exists a sequence of approximate data generating distributions that converges to the “ground truth” distribution in total variation distance; (2) the variational gap is strictly positive for the optimal solution to the ELBO. Extending to the non-Markov setting, we identify the variational gap minimizing approximate posterior for an arbitrary (known) posterior and further, prove a lower bound on the optimal ELBO. Recent theoretical results on optimizing the ELBO for related (but ultimately different) models show that when the data generating distribution equals the ground truth distribution and the variational gap is zero, the probability measures that achieve these conditions also maximize the ELBO. Our results show that this may not be true in all problem settings.</p>
14

Improvement and Implementation of Gumbel-Softmax VAE

Fangshi, Zhou 10 August 2022 (has links)
No description available.
15

Unsupervised Video Summarization Using Adversarial Graph-Based Attention Network

Gunuganti, Jeshmitha 05 June 2023 (has links)
No description available.
16

End-to-End Autonomous Driving with Deep Reinforcement Learning in Simulation Environments

Wang, Bingyu 10 April 2024 (has links)
In the rapidly evolving field of autonomous driving, the integration of Deep Reinforcement Learning (DRL) promises significant advancements towards achieving reliable and efficient vehicular systems. This study presents a comprehensive examination of DRL’s application within a simulated autonomous driving context, with a focus on the nuanced impact of representation learning parameters on the performance of end-to-end models. An overview of the theoretical underpinnings of machine learning, deep learning, and reinforcement learning is provided, laying the groundwork for their application in autonomous driving scenarios. The methodology outlines a detailed framework for training autonomous vehicles in the Duckietown simulation environment, employing both non-end-to-end and end-to-end models to investigate the effectiveness of various reinforcement learning algorithms and representation learning techniques. At the heart of this research are extensive simulation experiments designed to evaluate the Proximal Policy Optimization (PPO) algorithm’s effectiveness within the established framework. The study delves into reward structures and the impact of representation learning parameters on the performance of end-to-end models. A critical comparison of the models in the validation chapter highlights the significant role of representation learning parameters in the outcomes of DRL-based autonomous driving systems. The findings reveal that meticulous adjustment of representation learning parameters markedly influences the end-to-end training process. Notably, image segmentation techniques significantly enhance feature recognizability and model performance.:Contents List of Figures List of Tables List of Abbreviations List of Symbols 1 Introduction 1.1 Autonomous Driving Overview 1.2 Problem Description 1.3 Research Structure 2 Research Background 2.1 Theoretical Basis 2.1.1 Machine Learning 2.1.2 Deep Learning 2.1.3 Reinforcement Learning 2.2 Related Work 3 Methodology 3.1 Problem Definition 3.2 Simulation Platform 3.3 Observation Space 3.3.1 Observation Space of Non-end-to-end model 3.3.2 Observation Space of end-to-end model 3.4 Action Space 3.5 Reward Shaping 3.5.1 speed penalty 3.5.2 position reward 3.6 Map and training dataset 3.6.1 Map Design 3.6.2 Training Dataset 3.7 Variational Autoencoder Structure 3.7.1 Mathematical fundation for VAE 3.8 Reinforcement Learning Framework 3.8.1 Actor-Critic Method 3.8.2 Policy Gradient 3.8.3 Trust Region Policy Optimization 3.8.4 Proximal Policy Optimization 4 Simulation Experiments 4.1 Experimental Setup 4.2 Representation Learning Model 4.3 End-to-end Model 5 Result 6 Validation and Evaluation 6.1 Validation of End-to-end Model 6.2 Evaluation of End-to-end Model 6.2.1 Comparison with Baselines 6.2.2 Comparison with Different Representation Learning Model 7 Conclusion and Future Work 7.1 Summary 7.2 Future Research
17

Advancing Learned Lossy Image Compression through Knowledge Distillation and Contextual Clustering

Yichi Zhang (19960344) 29 October 2024 (has links)
<p dir="ltr">In recent decades, the rapid growth of internet traffic, particularly driven by high-definition images/videos has highlighted the critical need for effective image compression to reduce bit rates and enable efficient data transmission. Learned lossy image compression (LIC), which uses end-to-end deep neural networks, has emerged as a highly promising method, even outperforming traditional methods such as the intra-coding of the versatile video coding (VVC) standard. This thesis contributes to the field of LIC in two ways. First, we present a theoretical bound-guided knowledge distillation technique, which utilizes estimated bound information rate-distortion (R-D) functions to guide the training of LIC models. Implemented with a modified hierarchical variational autoencoder (VAE), this method demonstrates superior rate-distortion performance with reduced computational complexity. Next, we introduce a token mixer neural architecture, referred to as <i>contextual clustering</i>, which serves as an alternative to conventional convolutional layers or self-attention mechanisms in transformer architectures. Contextual clustering groups pixels based on their cosine similarity and uses linear layers to aggregate features within each cluster. By integrating with current LIC methods, we not only improve coding performance but also reduce computational load. </p>
18

Enhancing Long-Term Human Motion Forecasting using Quantization-based Modelling. : Integrating Attention and Correlation for 3D Motion Prediction / Förbättring av långsiktig prognostisering av mänsklig rörelse genom kvantisering-baserad modellering. : Integrering av uppmärksamhet och korrelation för 3D-rörelseförutsägelse.

González Gudiño, Luis January 2023 (has links)
This thesis focuses on addressing the limitations of existing human motion prediction models by extending the prediction horizon to very long-term forecasts. The objective is to develop a model that achieves one of the best stable prediction horizons in the field, providing accurate predictions without significant error increase over time. Through the utilization of quantization based models our research successfully achieves the desired objective with the proposed aligned version of Mean Per Joint Position Error. The first of the two proposed models, an attention-based Vector Quantized Variational AutoEncoder, demonstrates good performance in predicting beyond conventional time boundaries, maintaining low error rates as the prediction horizon extends. While slight discrepancies in joint positions are observed, the model effectively captures the underlying patterns and dynamics of human motion, which remains highly applicable in real-world scenarios. Furthermore, our investigation into a correlation-based Vector Quantized Variational AutoEncoder, as an alternative to attention-based one, highlights the challenges in capturing complex relationships and meaningful patterns within the data. The correlation-based VQ-VAE’s tendency to predict flat outputs emphasizes the need for further exploration and innovative approaches to improve its performance. Overall, this thesis contributes to the field of human motion prediction by extending the prediction horizon and providing insights into model performance and limitations. The developed model introduces a novel option to consider when contemplating long-term prediction applications across various domains and sets the foundation for future research to enhance performance in long-term scenarios. / Denna avhandling fokuserar på att hantera begränsningarna i befintliga modeller för förutsägelse av mänskliga rörelser genom att utöka förutsägelsehorisonten till mycket långsiktiga prognoser. Målet är att utveckla en modell som uppnår en av de bästa stabila prognoshorisonterna inom området, vilket ger korrekta prognoser utan betydande felökning över tiden. Genom att använda kvantiseringsbaserade modeller uppnår vår forskning framgångsrikt det önskade målet med den föreslagna anpassade versionen av Mean Per Joint Position Error. Den första av de två föreslagna modellerna, en uppmärksamhetsbaserad Vector Quantized Variational AutoEncoder, visar goda resultat när det gäller att förutsäga bortom konventionella tidsgränser och bibehåller låga felfrekvenser när förutsägelsehorisonten förlängs. Även om små avvikelser i ledpositioner observeras, fångar modellen effektivt de underliggande mönstren och dynamiken i mänsklig rörelse, vilket förblir mycket tillämpligt i verkliga scenarier. Vår undersökning av en korrelationsbaserad Vector Quantized Variational AutoEncoder, som ett alternativ till en uppmärksamhetsbaserad sådan, belyser dessutom utmaningarna med att fånga komplexa relationer och meningsfulla mönster i data. Den korrelationsbaserade VQ-VAE:s tendens att förutsäga platta utdata understryker behovet av ytterligare utforskning och innovativa metoder för att förbättra dess prestanda. Sammantaget bidrar denna avhandling till området för förutsägelse av mänskliga rörelser genom att utöka förutsägelsehorisonten och ge insikter om modellens prestanda och begränsningar. Den utvecklade modellen introducerar ett nytt alternativ att ta hänsyn till när man överväger långsiktiga prediktionstillämpningar inom olika områden och lägger grunden för framtida forskning för att förbättra prestanda i långsiktiga scenarier.
19

Migranten im Spiegel der arabischen Presse / Migrants in the Arab Press - the Discourse on immigration to the Arab Gulf countries on the Example of the United Arab Emirates

Falk, Daniel 07 June 2016 (has links) (PDF)
Seit Mitte der 1990-er Jahre wird in den sechs Staaten des Golf-Kooperationsrates über die Konsequenzen der massiven Arbeitsimmigration für die arabischen Gesellschaften dieser Länder diskutiert. Während die Immigranten und ihre Lebenssituation in den Regionalwissenschaften zur Golfregion zunehmend Beachtung finden, ist der arabische Einwanderungskurs kaum untersucht. Am Beispiel von Print- und Onlinemedien aus dem Zeitraum 2008-2013 untersucht die Dissertation von Daniel Falk den Einwanderungsdiskurs der Vereinigten Arabischen Emirate. Was ist die Perspektive der Aufnahmegesellschaft? Wie in den Golfstaaten über Migranten und Migrationsprozesse gesprochen, geschrieben und diskutiert? / Migration to the Gulf countries over the past decades has led to dramatic change not only within the population structure. Especially in smaller Gulf countries, like Qatar and the UAE, where native Arab populations amount for less than 20 per cent of the total population, it had strong effects also on identity constructions, as the native “national” societies became minorities within their own countries. As this process continues, fears of losing the respective (Arab, Gulf, Emirati, Qatari …) identity are increasingly being voiced and calls for political action to take on this issue are becoming louder. This PhD project aimed at analysing the Arabic discourse on migration and identity and between 2008 and 2013. By analysing Arabic language mass media from the UAE it looked not only at representations of immigrants but also at of processes and consequences of migration and perceived loss of identity, e.g. the dis-course on the „population imbalance“ (al-khalal fi at-tarkeeba as-sukkaniyya). By focusing on the Arabic discourse the thesis seeks to counter-weigh a wide-spread phenomenon in Gulf-related social sciences and humanities: many studies on the region build on English-language sources and material only, thus ignoring the fact that a majority Gulf nationals still speak, write and think in their native language and constructing a biased image of Gulf societies. Especially in connection to such delicate topics like immigration and identity it is important to understand the respective (Emirati, Qatari…) perspective.
20

Electromagnetic radiation as a tool to determine actual crustal stresses - applications and limitations / Elektromagnetische Strahlung als Werkzeug zur Bestimmung rezenter Krustenspannungen - Anwendungen und Grenzen

Krumbholz, Michael 22 January 2010 (has links)
No description available.

Page generated in 0.0967 seconds