• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 71
  • 9
  • 6
  • 2
  • 2
  • 1
  • Tagged with
  • 105
  • 105
  • 14
  • 12
  • 11
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Variações diurnas da fotossíntese e efeitos do anelamento de ramos sobre a fotossíntese e o metabolismo do carbono em café arábica / Diurnal changes in photosynthesis and effects of branch girdling on photosynthesis and carbon metabolism in arabica coffee

Batista, Karine Dias 26 February 2008 (has links)
Made available in DSpace on 2015-03-26T13:36:36Z (GMT). No. of bitstreams: 1 texto completo.pdf: 520335 bytes, checksum: 133b7aafe14e6bfde015c5e172526a0e (MD5) Previous issue date: 2008-02-26 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This study was carried out in order to examine (i) the diurnal changes in photosynthesis rates under low atmospheric evaporative demand, and (ii) the relationship between the rate of net photosynthesis (A) and carbon (C) metabolism in experimentally-manipulated branches through girdling. Two experiments were separately conducted and so analyzed. In both experiments, plants of arabica coffee (Coffea arabica L.) were grown in 12-L pots during approximately eight months. Then, gas exchanges (measured using an infrared gas analyzer), the rate of uptake of 14CO2 and the partitioning of the recently fixed 14C through the major photosynthetic routes were analyzed; leaf material was also harvested for biochemical assays. In Experiment I, plants were grown in a greenhouse under semi-controlled conditions (diurnal values of vapor pressure deficit, VPD, ranging from 1.0 to 1.6 kPa). There was a decrease (20%) in A paralleling a reduction (35%) in stomatal conductance (gs) at 16:00 h as compared with the values of these traits obtained at 08:00 and 12:00 h. The narrow diurnal fluctuations in A were apparently coupled with the maintenance of low VPD throughout the day. Simple and canonical correlations evidenced a lack of feedback inhibition to photosynthesis, a fact further supported by the (i) lack of diurnal changes in carbohydrate and amino acid levels and (ii) unchanging rate of 14CO2 uptake and the partitioning of the recently fixed 14C during the day. In addition, the activity of ADP-glucose pyrophosphorylase and the initial and total activities of Rubisco (as well as its activation state) did not change during the day. In fact, diurnal variations in A were largely explained by diffusive limitations. In Experiment II, gas exchange was measured at 08:00 h during 11 days in girdled and non-girdled (control) branches. There was a remarkable decrease in A and especially in gs. In girdled branches, starch levels increased by 271% and 203%, respectively at the 4th and 10th days after applying the treatments. The hexose-to-amino acid ratio increased in girdled branches at the 10th day of girdling, but the concentrations of other soluble sugars and amino acids did no change in response to the treatments, as also did the activity of ADP-glucose pyrophosphorylase and the initial and total activities of Rubisco. Moreover, the potential photosynthetic capacity also remained unchanged after girdling, suggesting that changes in A were marginally affected, if so, by biochemical constraints to the photosynthetic machinery. As in Experiment I, changes in A were largely explained by diffusive limitations. In summary, it is proposed that diurnal oscillations in A during the day, as well as between leaves from girdled and non-girdled branches were merely a consequence from diffusive, rather than from biochemical, limitations to photosynthesis. / O presente estudo foi conduzido procurando-se analisar (i) as variações diurnas da fotossíntese numa condição de baixa demanda evaporativa e (ii) as relações entre A e o metabolismo do carbono em ramos experimentalmente manipulados, via anelamento. Foram conduzidos dois experimentos isoladamente e analisados como tal. Em ambos, plantas de café arábica (Coffea arabica L.) foram cultivadas em vasos de doze litros, por aproximadamente oito meses, quando, então, foram avaliadas as trocas gasosas (usando-se de um analisador de gases a infravermelho), a taxa de fixação de 14CO2 e a partição de [14C]-assimilados entre as principais rotas biossintéticas associadas à fotossíntese; adicionalmente, foi coletado material foliar para análises bioquímicas posteriores. No primeiro experimento, as plantas foram cultivadas em uma casa de vegetação sob condições semi-controladas, com valores diurnos do déficit de pressão de vapor (DPV) variando de 1,0 a 1,6 kPa. Houve uma redução (20%) da taxa de fotossíntese líquida (A) em paralelo a um decréscimo (35%) na condutância estomática (gs), às 16:00 h, em comparação com os valores dessas variáveis obtidos às 08:00 e 12:00 h. As pequenas flutuações diurnas de A parecem ter sido resultantes da manutenção artificial do DPV em níveis relativamente baixos. As correlações simples e canônicas sugeriram que não houve retroinibição da fotossíntese, fato suportado pela ausência de variações diurnas nas concentrações de carboidratos e aminoácidos e pela constância da taxa de absorção de 14CO2 e da partição de [14C]-assimilados, ao longo do dia. Em adição, não se observou aumento na atividade da AGPase, tampouco decréscimo nas atividades inicial e total e no estado de ativação da Rubisco ao final da tarde. Com efeito, as variações diurnas em A foram largamente explicáveis por limitações difusivas à fotossíntese. No segundo experimento, as trocas gasosas foram analisadas ao longo de onze dias após o anelamento dos ramos, às 08:00 h, observando-se um acentuado decréscimo em A e, principalmente, em gs. Nos ramos anelados, os teores de amido aumentaram 271% e 203%, respectivamente, no quarto e no décimo dias após o anelamento, enquanto a razão hexoses:aminoácidos aumentou no décimo dia após a implantação dos tratamentos, em relação aos ramos-controle. Os teores dos demais carboidratos e dos aminoácidos mantiveram-se inalterados. As atividades inicial e total e o estado de ativação da Rubisco, bem como a atividade da AGPase, não foram alteradas com o anelamento. Adicionalmente, a capacidade fotossintética potencial não variou, em resposta ao anelamento, provendo, por conseguinte, forte evidência de que as variações em A foram pouco afetadas por limitações bioquímicas à maquinaria fotossintética. Os decréscimos em A foram explicados principalmente por alterações em gs e não por alterações no metabolismo do carbono, conforme sugere a análise de correlações canônicas. Conclui-se, pois, que as variações nas trocas gasosas ao longo do dia, bem como as variações entre folhas de ramos anelados e não anelados, em café, foram decorrentes meramente de limitações difusivas, e não de possíveis alterações no metabolismo do carbono.
92

Solubilité aqueuse, coefficient de partage octanol-eau et pression de vapeur de contaminants alimentaires organiques de la famille des phthalates et alkylphénols : détermination expérimentale et modélisation / Aqueous solubility, octanol-water partition coefficient and vapor pressure of organic food packaging contaminants : experimental determination and modeling

Ishak, Hanane 18 September 2017 (has links)
Cette étude s’attache à la caractérisation physico-chimique des contaminants des emballages alimentaires organiques, précisément les phtalates et les alkylphénols, en terme de solubilité aqueuse, coefficient de partage octanol-eau et pression de vapeur. Cette caractérisation se situe dans le cadre des règlementations REACH concernant l’identification des substances chimiques toxiques. Les mesures expérimentales de solubilité aqueuse sont effectuées par la méthode dynamique de saturation dans un intervalle de température [298.15-328.15K], celles du coefficient de partage octanol-eau avec la méthode « shake-flask » à 298.15. Les mesures de pression de vapeur sont réalisées avec la méthode dynamique de saturation dans un intervalle de température [313.15-423.15K] et validées avec la méthode statique. A partir de ces mesures, les coefficients de partage air-eau et octanol-air sont déterminés. En addition des mesures expérimentales, une prédiction de ces propriétés est effectuée avec les modèles thermodynamiques : UNIFAC originale, UNIQUAC, NRTL et COSMO-sac-dsp. A l’issue de ces résultats, une évaluation quantitative et qualitative de chacun des modèles est effectuée. Cette évaluation facilitera l’optimisation des paramètres de chacun des modèles des deux familles dans le but de créer un modèle de prédiction du phénomène de migration de l’emballage vers l’aliment / The aim of this study is the physical-chemical characterization of the organic food packaging contaminants, particularly phthalates and alkyl phenols, in terms of aqueous solubility, octanol-water partition coefficient and vapor pressure. This characterization falls within the scope of REACH regulations for the identification of chemical substances. The aqueous solubility measurements are performed using the dynamic saturation method in a temperature range of [298.15 – 328.15K], those of octanol-water partition coefficient with the “shake-flask” method at 298.15K. The vapor pressure measurements are carried out with the “dynamic saturation method” in a temperature range between 313.15 and 423.15K, and validated with the static method. These measurements are used in the determination of air-water and octnol-air partition coefficients. Beside experimental measurements, these poperties are predicted using thermodynamic models: UNIFAC originale, UNIQUAC, NRTL and COSMO-sac-dsp. A qualitative and quantitative evaluation is performed for each model. This evaluation will facilitate the optimization of the models’ parameters concerning phthalates and alkyl phenols in order to generate a model for the contaminants migration process
93

Pressions de vapeur et de sublimation de composés organiques et inorganiques : mesure et modélisation / Vapor and sublimation pressures of organic and inorganic compounds : measurment and modeling

Abou-Naccoul, Ramy 25 May 2011 (has links)
Depuis quelques années, nous assistons à une prise de conscience croissante des effets à long terme des polluants chimiques sur l'environnement et la santé humaine. Il est donc nécessaire d'étudier non seulement leurs propriétés écotoxicologiques mais également leurs propriétés physicochimiques tels que la tension de vapeur (ou volatilité) et leur solubilité dans l'eau. L'Europe, quant à elle, a introduit la réglementation REACH (Registration, Evaluation and Autorisation of CHemicals) qui est entrée en vigueur le 1 juin 2007 dont le principal objectif est une meilleure connaissance des propriétés environnementales et sanitaires des substances chimiques. De même dans l’industrie, la détermination de la tension de vapeur des corps purs est une donnée indispensable pour les opérations de purification et de séparation. Dans ce but nous avons amélioré un appareil à saturation de gaz inerte existant au laboratoire. Une fois le bon fonctionnement de l’appareil vérifié (par mesure de la tension de vapeur d’un composé de référence : le phénanthrène) nous avons étudié des n-alcanes compris entre le C30 et le C60 ainsi que 8 hydrocarbures aromatiques polycycliques dans un large domaine de température (20 à 320 °C) et de pression (10-1 Pa à 10-7 Pa). Les résultats obtenus ont été comparés avec la littérature lorsque celle-ci est disponible. La détermination des tensions de vapeur de composés inorganiques d’intérêt industriel : tétrachlorure de Zirconium (ZrCl4) et le tétrachlorure d’hafnium (HfCl4) a été également entreprise. Les résultats expérimentaux des hydrocarbures polyaromatiques nous ont permis l’amélioration d’une équation d’état cubique (dérivée de celle de Peng-Robinson) dont les paramètres sont estimés par une méthode de contribution de groupes développée par Rauzy-Coniglio. Les tensions de vapeur prédites par le modèle sont en bon accord avec les valeurs expérimentales / For a few years, we have attended an increasing importance of the long-term effects of the chemical pollutants on the environment and human health. It is thus necessary to study not only their ecotoxicological properties but also their physico-chemical properties such as the vapor pressure (or volatility) and aqueous solubility. In Addition, the introduction of the regulation REACH (Registration, Evaluation and Authorization of CHemicals) in June 2007 whose main objective is a better knowledge of the environmental and medical properties of chemical substances has increased the necessity of compound characterization. From an industrial point of view, the determination of the vapor pressure of the pure substances is an essential data in many unit operations such as purification and separation. Thus, we improved an apparatus with saturation of inert gas existing at the laboratory. Once the good performance of the apparatus checked (by measurement of the vapor pressure of a reference compound: phenanthrene) we studied N-alkanes ranging between C30 and C60 and 8 polycyclic aromatic hydrocarbons in a broad temperature range (20 to 320°C) and of pressure (10-1 Pa with 10-7 Pa). The obtained results were compared with the literature when available. In addition, determination of the vapor pressure of inorganic compounds of industrial interest : zirconium tetrachloride (ZrCl4) and the hafnium tetrachloride (HfCl4) was also undertaken. The experimental results of polyaromatic hydrocarbons have allowed us to improve a cubic equation of state (derivative of Peng-Robinson EOS) whose parameters are estimated by a method of contribution of groups developed by Rauzy-Coniglio. The predicted vapor pressures were in good agreement with the experimental values
94

Modellierung PBPK-relevanter Verteilungskoeffizienten organischer Stoffe

Stöckl, Stefanie 20 December 2013 (has links)
Drei Verteilungskoeffizienten, die für physiologie-basierte Pharmakokinetik (PBPK)-Modelle relevant sind, wurden mit verschiedenen Ansätzen modelliert. Für den Blut/Luft-Verteilungskoeffizienten wurde ein auf linearen Solvatations-Energie-Beziehungen (LSER) beruhendes Literaturmodell angewendet und diskutiert. Mit einer schematischen Aufteilung des Blutkompartiments in Wasser und einen organischen Teil wurde der Blut/Luft-Verteilungskoeffizient mit einer linearen Regression von anderen Verteilungskoeffizienten vorhergesagt. Zusätzlich wurde ein Fragmentmodell entwickelt. Der Fett/Luft-Verteilungskoeffizient wurde mit dem LSER-Ansatz und mit anderen Verteilungskoeffizienten modelliert. Der Koeffizient Fett/Blut wurde aus den ersten beiden errechnet. Da der inverse dimensionslose Henry-Koeffizient Wasser/Luft-Verteilungskoeffizient bei der Blut/Luft-Modellierung zum Einsatz kommt und dieser aus dem Dampfdruck und der Wasserlöslichkeit gewonnen werden kann, wurde der Dampfdruck ebenfalls modelliert.
95

Determination of Phase Equilibria and the Critical Point Using Two-Phase Molecular Dynamics Simulations with Monte Carlo Sampling

Patel, Sonal 15 June 2012 (has links) (PDF)
The two-phase MD technique employed in this work determines the liquid and vapor phase densities from a histogram of molecular densities within phase clusters in the simulation cell using a new Monte Carlo (MC) sampling method. These equilibrium densities are then fitted in conjunction with known critical-point scaling laws to obtain the critical temperature, and the critical density. This MC post-processing method was found to be more easily implemented in code, and it is efficient and easily applied to complex, structured molecules. This method has been successfully applied and benchmarked for a simple Lennard-Jones (LJ) fluid and a structured molecule, propane. Various degrees of internal flexibility in the propane models showed little effect on the coexisting densities far from critical point, but internal flexibility (angle bending and bond vibrations) seemed to affect the saturated liquid densities in the near-critical region, changing the critical temperature by approximately 20 K. Shorter cutoffs were also found to affect the phase dome and the location of the critical point. The developed MD+MC method was then used to test the efficacy of two all-atom, site-site pair potential models (with and without point charges) developed solely from the energy landscape obtained from high-level ab initio pair interactions for the first time. Both models produced equivalent phase domes and critical loci. The model's critical temperature for methanol is 77 K too high while that for 1-propanol is 80 K too low, but the critical densities are in good agreement. These differences are likely attributable to the lack of multi-body interactions in the true pair potential models used here. Lastly, the transferability of the ab initio potential model was evaluated by applying it to 1-pentanol. An attempt has been made to separate the errors due to transferability of the potential model from errors due to the use of a true-pair potential. The results suggested a good level of transferability for the site-site model. The lack of multi-body effects appears to be dominant weakness in using the generalized ab initio potential model for determination of the phase dome and critical properties of larger alcohols.
96

OPTIMIZATION OF A TRANSFERABLE SHIFTED FORCE FIELD FOR INTERFACES AND INHOMOGENEOUS FLUIDS USING THERMODYNAMIC INTEGRATION

Razavi, Seyed Mostafa January 2016 (has links)
No description available.
97

<b>CHARACTERIZING ENVIRONMENTAL EFFECTS ON THE WATER STATUS OF CUTTINGS ACCLIMATED INDOORS</b>

Ana Sofia Gomez (19837308) 11 October 2024 (has links)
<p dir="ltr">Vertical indoor propagation (VIP) systems that use <a href="" target="_blank">sole-source lighting and temperature, relative humidity (RH), and carbon dioxide (CO<sub>2</sub>) control are increasingly being used by young-plant growers to start </a>unrooted cuttings (URC) indoors for greenhouse finishing. However, optimal environmental setpoints for VIP systems are unknown. Providing an environment that limits water loss by URC prior to root initiation is particularly critical for VIP systems. Thus, understanding the isolated and combined effects of different environmental factors on the water status of URC will help ensure the rooting success and growth of high-quality liners. In chapter 1, we characterized the effect of blue light and CO₂ concentration on the water status of <i>Chrysanthemum</i> and <i>Begonia</i> cuttings, as both factors are known to affect stomatal behavior of plants. The first experiment evaluated short-term effects of blue light (15% to 60% blue light) on water status and physiological responses by URC. This was followed by a second experiment that evaluated short-term effects on water use (water loss, water uptake) and long-term effects on evapotranspiration, physiological responses, and growth of cuttings under two blue-light treatments (21% or 45% blue light) and two CO<sub>2</sub> concentrations (ambient or high at ~500 or 1200 μmol·mol<sup>–1</sup>, respectively). In the first experiment, increasing blue light increased short-term water use but did not affect stomatal conductance (<i>g</i><sub><em>s</em></sub>) and transpiration (<i>E</i>), likely due to limitations in stomatal control by URC. Results from the second experiment showed there were few differences in shoot growth and root development in response to blue light at the two CO<sub>2</sub> concentrations applied during indoor acclimation and subsequent greenhouse finishing phases, suggesting that growth of cuttings is more responsive to environmental stimuli after root initiation. When significant, growth responses were species-specific, likely attributed to morphological and anatomical differences. The only effect in long-term evapotranspiration was measured in begonia under high CO<sub>2</sub>, which indicated that cuttings under 45% blue light had the highest water loss. This result corresponds with the general findings for <i>g</i><sub><em>s</em></sub> and <i>E</i>. In chapter 2, we evaluated the combined effect of photosynthetic photon flux density (PPFD) (0 to 210 µmol·m<sup>–2</sup>·s<sup>–1</sup>) and vapor pressure deficit of the air (VPD<sub>air</sub>) (0.00 to 0.76 kPa) on various environmental factors and on the short-term water status of cuttings, as are both major drivers of water loss. <a href="" target="_blank">Results showed that PPFD was weakly correlated with both VPD<sub>air</sub> and VPDl<sub>eaf</sub>, indicating that PPFD had a minimal heating effect on the air and leaves. Furthermore, results evaluating the relationship of both VPD<sub>air</sub> and VPD<sub>leaf</sub> for predicting the different water status variables showed similar responses, suggesting that measurements of leaf temperature would not be critical for irrigation control in VIP systems, where PPFD is typically relatively low and environmental conditions tend to be constant.</a> In general, the water status of begonia was minimally affected by PPFD and VPD<sub>air,</sub> but water status of chrysanthemum was responsive to both variables. For chrysanthemum URC, water loss and water uptake tended to increase in response to increasing PPFD, but there was no response to PPFD in <i>g</i><sub><em>s</em></sub>, <i>E</i>, evapotranspiration, and relative water content (RWC). For rooted cuttings (RC), however, <i>g</i><sub><em>s</em></sub> and <i>E</i> followed a linear increasing response to increasing PPFD, suggesting they were able to regulate transpirational losses through water uptake from the substrate. Increasing VPD<sub>air</sub> linearly increased the rate of water loss, water uptake, and evapotranspiration by chrysanthemum URC and RC, which in turn reduced RWC, whereas the leaf-air temperature difference linearly decreased in response to increasing VPD<sub>air</sub>, likely attributed to an increase in evaporative cooling under less saturated conditions. Overall, results from our studies provide baseline information on how different environmental conditions in VIP systems affect water status by cuttings from two ornamental herbaceous species.</p>
98

Application of Relative Response Factors in Solid-Phase Micro Extraction GC/MS for the Determination of Polycyclic Aromatic Hydrocarbons in Water

Schebywolok, Tomi 13 July 2018 (has links)
Solid-phase microextraction (SPME) coupled with gas chromatography/mass spectrometry (GC/MS) is routinely used to analyze polycyclic aromatic hydrocarbons (PAHs) in water. A common SPME-GC/MS approach quantifies target analytes using isotopically labeled standards (IISs); one IIS is needed for each target analyte. This approach is challenging, even prohibitive since IISs are often expensive; moreover, they are generally not available for each analyte of interest. This study developed a novel SPME-GC/MS approach for the quantification of PAHs in water. The new method, which employs only a small number of IISs, uses relative response factor (RRF) (i.e., analyte corresponding to IIS) to quantify PAHs in water. Possible matrix dependency of RRFs values was examined using water that was modified concerning different physical-chemical characteristics (i.e., ionic strength, pH, suspended solids, humic acid, and biological organic carbon represented by hemoglobin). The results revealed that RRFs are not noticeably affected by changing ionic strength and pH; the other three parameters did affect the RRFs. However, the results also showed that the effect is minimal when the solution is dilute (i.e., low concentrations of suspended solids, humic acid or hemoglobin). Relatively stable RRFs for dilute water solutions indicates that this approach can be used for routine quantification of water that does not contain prohibitive amounts of suspended solids, humic acid, and biological organic matter. The developed method was employed to quantify trace levels of PAHs in three different types of water, namely river water, well water, and bottled water. PAH levels in every kind of water were less than 100 ng/L level (i.e., 0.1 ppb). Analyses of spiked water samples containing 2 ng PAHs revealed correlations between calculated RRFs and the physical-chemical properties of the PAHs investigated (i.e., vapor pressure, boiling point, octanol/water partition coefficient, octanol/air partition coefficient, GC retention time). This implies that RRFs for PAHs not examined in this study can be predicted. Overall, the results presented herein constitute a meaningful contribution to the development of SPME-GC/MS methods for quantitative analysis of PAHs and other chemicals in dilute aqueous solutions. Moreover, the development of methods that alleviate the need for IISs corresponding to each target analyte.
99

Synthesis of Mg and Zn diolates and their use in metal oxide deposition

Frenzel, Peter, Preuß, Andrea, Bankwitz, Jörn, Georgi, Colin, Ganss, Fabian, Mertens, Lutz, Schulz, Stefan E., Hellwig, Olav, Mehring, Michael, Lang, Heinrich 08 April 2019 (has links)
The synthesis of complexes [M(OCHMeCH2NMeCH2)2] (5, M = Mg; 7, M = Zn) is described. Treatment of MeHNCH2CH2NMeH (1) with 2-methyloxirane (2) gave diol (HOCHMeCH2NMeCH2)2 (3), which upon reaction with equimolar amounts of MR2 (4, M = Mg, R = Bu; 6, M = Zn, R = Et) gave 5 and 7. The thermal behavior and vapor pressure of 5 and 7 were investigated to show whether they are suited as CVD (= chemical vapor deposition) and/or spin-coating precursors for MgO or ZnO layer formation. Thermogravimetric (TG) studies revealed that 5 and 7 decompose between 80–530 °C forming MgO and ZnO as evidenced by PXRD studies. In addition, TG-MS-coupled experiments were carried out with 7 proving that decomposition occurs by M–O, C–O, C–N and C–C bond cleavages, as evidenced from the detection of fragments such as CH4N+, C2H4N+, C2H5N+, CH2O+, C2H2O+ and C2H3O+. The vapor pressure of 7 was measured at 10.4 mbar at 160 °C, while 5 is non-volatile. The layers obtained by CVD are dense and conformal with a somewhat granulated surface morphology as evidenced by SEM studies. In addition, spin–coating experiments using 5 and 7 as precursors were applied. The corresponding MO layer thicknesses are between 7–140 nm (CVD) or 80 nm and 65 nm (5, 7; spin-coating). EDX and XPS measurements confirm the formation of MgO and ZnO films, however, containing 12–24 mol% (CVD) or 5–9 mol% (spin-coating) carbon. GIXRD studies verify the crystalline character of the deposited layers obtained by CVD and the spin-coating processes.
100

Comparative Surface Tension Predictions via Grand Canonical Transition Matrix Monte Carlo Simulation

Long, Garrett Earle 02 August 2018 (has links)
No description available.

Page generated in 0.0652 seconds