Spelling suggestions: "subject:"variétés algébrique"" "subject:"variétés algébricas""
1 |
Résolutions coniques des variétés discriminants e applications à la géométrie algébrique complexe et réelleGorinov, Alexey 17 December 2004 (has links) (PDF)
Il existe de nombreuses situations où des objets géométriques ou topologiques (comme les configurations de points du plan, les applications lisses entre variétés, les hypersurfaces projectives complexes) sont paramétrés par des éléments d'un espace vectoriel. Un discriminant (généralisé) est un sous-ensemble formé des éléments singuliers (dans un sens à préciser) d'un tel espace vectoriel. Par la dualité d'Alexander, les groupes de cohomologie du complémentaire d'un discriminant sont isomorphes aux groupes d'homologie de Borel-Moore du discriminant même. Souvent, ces derniers groupes peuvent être calculés en utilisant une certaine résolution naturelle du faisceau constant sur le discriminant ; par référence à leur construction, ces <br />résolutions sont parfois appelées coniques.<br /><br />Dans cette thèse, nous généralisons la méthode des résolutions coniques qui a été proposée par V. A. Vassiliev afin d'étudier la cohomologie des espaces des hypersurfaces projectives lisses complexes. Notre construction se base sur les relations d'inclusion entre les lieux singuliers plutôt qu'entre les systèmes linéaires correspondants. Cela nous permet d'effectuer certains calculs qui semblent être hors de portée de l'approche originelle. Pour illustrer notre méthode, nous calculons la cohomologie rationnelle de l'espace des courbes lisses complexes planes de degré 5, de l'espace des courbes bielliptiques lisses sur une quadrique non dégénérée dans l'espace projectif complexe de dimension 3, ainsi que de l'espace des courbes cubiques réelles lisses planes.<br /><br />La thèse contient un appendice où l'on démontre le résultat suivant. Supposons que le cercle est muni d'un atlas où tous les changements de cartes sont des homographies ; alors ce cercle borde une surface orientable munie d'un atlas où tous les changements de cartes sont aussi des homographies (à coefficients<br />complexes cette fois-ci) et sont compatibles dans le sens évident avec les applications de changement de cartes sur le bord. Dans l'appendice, nous montrons également que la classification des structures projectives sur le cercle donnée il y a longtemps par N. Kuiper n'est pas tout à fait correcte, et nous complétons cette classification.
|
2 |
Autour du problème de Lehmer relatif dans un toreDelsinne, Emmanuel 14 December 2007 (has links) (PDF)
Le problème de Lehmer consiste à minorer la hauteur de Weil d'un nombre algébrique en fonction de son degré sur Q. Si la question originelle de Lehmer reste aujourd'hui sans réponse, la conjecture optimale correspondante a été démontrée à un epsilon près. Par ailleurs, ce problème admet plusieurs généralisations. D'une part, on peut formuler le même type de conjecture en remplaçant le corps des rationnels par une extension abélienne d'un corps de nombres. D'autre part, on peut généraliser ces énoncés en dimension supérieure. Il s'agit alors de minorer la hauteur normalisée d'un point ou d'une sous-variété d'un tore ; dans ce cas, on substitue au degré un invariant plus fin : l'indice d'obstruction. Il est ensuite naturel de chercher à combiner ces deux généralisations : c'est le problème de Lehmer relatif dans un tore.<br /><br />Dans cette thèse, nous considérons tout d'abord le problème de Lehmer relatif unidimensionnel. Nous donnons une minoration pour la hauteur d'un nombre algébrique en fonction de son degré sur une extension abélienne d'un corps de nombres. Il s'agit d'une amélioration d'un théorème d'Amoroso et Zannier, obtenue à l'aide d'une démonstration techniquement plus simple. De plus, nous explicitons la dépendance de la borne inférieure en le corps de base. Puis nous abordons le problème de Lehmer relatif en dimension supérieure et minorons la hauteur d'une hypersurface en fonction de son indice d'obstruction sur une extension abélienne de Q. Enfin, nous obtenons un résultat analogue pour un point, sous réserve que celui-ci satisfasse une hypothèse technique. Nous montrons ainsi les conjectures les plus fines à un epsilon près.
|
3 |
Structures de Poisson sur les Algèbres de Polynômes, Cohomologie et DéformationsButin, F. 13 November 2009 (has links) (PDF)
La quantification par déformation et la correspondance de McKay forment les grands thèmes de l'étude qui porte sur des variétés algébriques singulières, des quotients d'algèbres de polynômes et des algèbres de polynômes invariants sous l'action d'un groupe fini. Nos principaux outils sont les cohomologies de Poisson et de Hochschild et la théorie des représentations. Certains calculs formels sont effectués avec Maple et GAP. Nous calculons les espaces d'homologie et de cohomologie de Hochschild des surfaces de Klein, en développant une généralisation du Théorème de HKR au cas de variétés non lisses et utilisons la division multivariée et les bases de Gröbner. La clôture de l'orbite nilpotente minimale d'une algèbre de Lie simple est une variété algébrique singulière sur laquelle nous construisons des star-produits invariants, grâce à la décomposition BGS de l'homologie et de la cohomologie de Hochschild, et à des résultats sur les invariants des groupes classiques. Nous explicitons les générateurs de l'idéal de Joseph associé à cette orbite et calculons les caractères infinitésimaux. Pour les algèbres de Lie simples B, C, D, nous établissons des résultats généraux sur l'espace d'homologie de Poisson en degré 0 de l'algèbre des invariants, qui vont dans le sens de la conjecture d'Alev et traitons les rangs 2 et 3. Nous calculons des séries de Poincaré à 2 variables pour des sous-groupes finis du groupe spécial linéaire en dimension 3, montrons que ce sont des fractions rationnelles, et associons aux sous-groupes une matrice de Cartan généralisée pour obtenir une correspondance de McKay algébrique en dimension 3. Toute l'étude a donné lieu à 4 articles.
|
4 |
Sur les opérations de tores algébriques de complexité un dans les variétés affines / On affine varieties with an algebraic torus action of complexity oneLanglois, Kevin 24 September 2013 (has links)
Cette thèse est consacrée aux propriétés géométriques des opérations de tores algébriques dans les variétés affines. Elle est issue de trois prépublications qui correspondent aux points (1), (2), (3) ci-après. Soit X une variété affine munie d’une opération d’un tore algébrique T. Nous appelons complexité la codimension de l’orbite générale de T dans X. Sous l’hypothèse de normalité et lorsque le corps de base est algébriquement clos de caractéristique 0, la variété X admet une description combinatoire en termes de géométrie convexe. Cette description, obtenue en 2006 par Altmann et Hausen, généralise celle classique des variétes toriques. Notre but consiste à étudier des problèmes nouveaux concernant les propriétés algébriques et géométriques de X lorsque l’operation de T dans X est de complexité 1. (1) Dans la première partie, un résultat donne une manière explicite de déterminer la clôture intégrale de toute variété affine définie sur un corps algébriquement clos de caractérisque 0 munie d’une opération de T de complexité 1 en termes de la description combinatoire d’Altmann-Hausen. Comme application, nous donnons une classification complète des idéaux intégralement clos homogènes de l’algèbre des fonctions régulières de X et généralisons un théorème de Reid-Roberts-Vitulli sur la description de certains idéaux normaux de l’algèbre des polynômes à plusieurs variables. (2) Les calculs de la première partie suggèrent une démonstration de la validité de la présentation d’Altmann-Hausen sur un corps quelconque dans le cas de complexité 1. Ce qui est fait dans la deuxième partie. Dans la situation non déployée, la descente galoisienne d’une variété affine normale munie d’une opération d’un tore algébrique de complexité 1 est décrite par un nouvel objet combinatoire que nous appelons diviseur polyédral Galois stable. (3) Dans la troisième partie, lorsque que le corps de base est parfait, nous classifions toutes les opérations du groupe additif dans X normalisées par l’action de T de complexité 1. Cette classification généralise des travaux classiques de Flenner et Zaidenberg dans le cas des surfaces et de Liendo dans le cas où le corps ambiant est algébriquement clos de caractéristique 0. / This thesis is devoted to the study of geometric properties of affine algebraic varieties endowed with an action of an algebraic torus. It comes from three preprints which correspond to the indicated points (1), (2), (3). Let X be an affine variety equipped with an action of the algebraic torus T. The complexity of the T-action on X is the codimension of the general T-orbit. Under the assumption of normality and when the ground field is algebraically closed of characteristic 0, the variety X admits a combinatorial description in terms of convex geometry. This description obtained by Altmann and Hausen in the year 2006 generalizes the classical one for toric varieties. Our purpose is to investigate new problems on the algebraic and geometric properties of the variety X when the T-action on X is of complexity 1. (1) In the first part, a result gives an effective method to determine the integral closure of any affine variety defined over an algebraically field of characteristic 0 with a T-action of complexity 1 in terms of the combinatorial description of Altmann-Hausen. As an application, we provide an entire classification of the homogeneous integrally closed ideals of the algebra of regular functions on X and generalize the Reid-Roberts-Vitulli's theorem on the description of certain normal ideals of the polynomial algebra. (2) The calculations of the first part suggest a proof of the validity of the presentation of Altmann-Hausen in the case of complexity 1 over an arbitrary ground field. This is done in the second part of this thesis. In the non-split situation, the Galois descent of normal affine varieties with a T-action of complexity 1 is described by a new combinatorial object which we call a Galois invariant polyhedral divisor. (3) In the third part, when the base field is perfect, we classify all the actions of the additive group on X normalized by the T-action of complexity 1. This classification generalizes classical works of Flenner and Zaidenberg in the surface case and of Liendo when the base field is algebraically closed of characteristic 0.
|
5 |
Géométrie algébrique : théorèmes d'annulation sur les variétés toriquesGirard, Vincent 08 1900 (has links)
No description available.
|
6 |
Variétés algébriques et corps de fonctions sur un corps finiAubry, Yves 13 December 2002 (has links) (PDF)
Nous nous intéressons au nombre de points rationnels des variétés algébriques projectives sur un corps fini. Nous déterminons notamment la fonction zêta (et plus précisément les polynômes caractéristiques de l'endomorphisme de Frobenius sur les espaces de cohomologie étale l-adique) des courbes algébriques projectives sans autre hypothèse de lissité ou d'irréductibilité. Nous montrons la divisibilité de ces polynômes dans un revêtement plat de courbes connexes, que l'on peut interpréter comme un analogue de la conjecture d'holomorphie d'Artin sur les fonctions zêta de Dedekind des corps de nombres. Nous obtenons des bornes sur le nombre de points rationnels sur un corps fini dans un revêtement plat entre courbes algébriques projectives connexes, généralisant les bornes connues et notamment celle de Weil. Nous nous sommes également intéressé au problème du nombre de classes dans les corps de fonctions à une variable sur un corps fini. Nous avons établi un théorème de finitude en ce qui concerne les extensions totalement imaginaires d'extensions totalement réelles dont le nombre de classes d'idéaux du corps imaginaire est fixé . Dans le cas où ces extensions sont quadratiques, nous donnons une formule du nombre de classes relatif en terme de fonction L, ainsi qu'une formule liant cette fonction L à une somme de caractères de type Legendre dans le cas du nombre de classe 1. Si l'on suppose de plus que le groupe de Galois d'une telle extension est isomorphe au groupe de Klein, via la théorie du corps de classes ainsi que des factorisations de fonctions zêta et des estimations de régulateurs, nous déterminons ces corps via les extensions d'Artin-Schreier et les jacobiennes.
|
7 |
Répartition des points rationnels sur certaines classes de variétés algébriques / Distribution of rational points of bounded height on certain algebraic varietiesDestagnol, Kévin 08 June 2017 (has links)
Dans cette thèse, nous étudions les conjectures de Manin et Peyre pour plusieursclasses de variétés algébriques. Les conjectures de Manin et Peyre décrivent pour les variétés"presque de Fano" le comportement asymptotique des points rationnels de hauteur inférieure à B lorsque B tend vers l’infini en termes d’invariants géométriques de la variété.Nous démontrons dans un premier temps, les conjectures de Manin et Peyre pour la famille de surfaces de Châtelet définies comme modèle minimal propre et lisse de variétés affines de A3Q d’équation Y 2 + Z2 = F(X, 1) pour une forme binaire F de degré 4 sans racine multiple admettant une factorisation du type F = L1L2Q avec L1 et L2 deux formes linéaires et Q une forme quadratique irréductible sur Q[i], achevant ainsi le traitement des conjectures de Manin et Peyre dans le cas des surfaces de Châtelet avec a = −1 initié par La Bretèche, Browning et Peyre.Dans une deuxième partie de cette thèse, nous déterminons un anneau de Cox de type identité sur Q de certaines surfaces fibrées en coniques comprenant les surfaces de Châtelet. Nous en déduisons une description de certains torseurs pour ces variétés. Cela nous permet de préciser la géométrie derrière les preuves de la conjectures de Manin et notamment de préciser le traitement de la constante dans le cas où F = Q1Q2 pour Qiune forme quadratique irréductible sur Q[i]. Par ailleurs, cela permet également d’ouvrir l’espoir de nouvelles applications. Enfin, dans une troisième partie, nous établissons pour tout n > 2, les conjectures de Manin et Peyre pour la famille d’hypersurfaces singulières, de dimension 2n−2, normales et projectives Wn de P2n−1 définies par l’équation x1y2y3 · · · yn + x2y1y3 · · · yn + · · · + xny1y2 · · · yn−1 = 0 généralisant les travaux de Blomer, Brüdern et Salberger dans le cas n = 3. Les méthodes utilisées reposent sur des travaux récents de La Bretèche sur le nombre de matrices aléatoires pour la partie comptage et sur une annexe de Salberger afin de construire une résolution crépante de Wn et d’expliciter son torseur versel pour la partie conjecture de Peyre. / In this thesis, we study the Manin and Peyre’s conjectures for several families of algebraic varieties. The Manin and Peyre’s conjectures describe the distribution of rational points of height less than B when B goes to infinity for "almost Fano" varieties in termso f geometric invariants of the variety. We prove in a first part the Manin and Peyre’s conjectures for the family of Châteletsurfaces defined as minimal proper smooth model of affine varieties of A3Q of the shapeY 2 + Z2 = F(X, 1)for a binary form F of degree 4 without multiple roots and factorizing as F = L1L2Q withL1 and L2 two linear forms and Q a quadratic form irreducible over Q[i], settling the las tremaining case of the Manin and Peyre’s conjectures for Châtelet surfaces with a = −1after works of La Bretèche, Browning, Peyre and Tenenbaum .In a second part, we find a Cox ring of identity type over Q for a family of conic bundle surfaces which contains Châtelet surfaces. This yields a description of some torsors overthese surfaces over Q and it allows us to better describe the geometry behind the existing proofs of Manin’s conjecture for Châtelet surfaces, especially in the case F = Q1Q2 with Qj a quadratic form which is irreducible over Q[i]. Moreover, this result opens the way to new applications. Finally, in a third part, we establish the Manin and Peyre’s conjectures for all n > 2for the family of singular normal projective hypersurfaces Wn of dimension 2n−2 of P2n−1defined by the equation x1y2y3 · · · yn + x2y1y3 · · · yn + · · · + xny1y2 · · · yn−1 = 0 generalizing work of Blomer, Brüdern and Salberger in the case n = 3. The method used in this work relies on recent work of La Bretèche about the number of stochastic matrices for the counting part and on an Appendix by Salberger in order to construct a crepantre solution of Wn and to describe its versal torsor for Peyre’s conjecture.
|
8 |
Structures de Poisson sur les Algèbres de Polynômes, Cohomologie et Déformations / Poisson Structures on Polynomial Algebras, Cohomology and DeformationsButin, Frédéric 13 November 2009 (has links)
La quantification par déformation et la correspondance de McKay forment les grands thèmes de l'étude qui porte sur des variétés algébriques singulières, des quotients d'algèbres de polynômes et des algèbres de polynômes invariants sous l'action d'un groupe fini. Nos principaux outils sont les cohomologies de Poisson et de Hochschild et la théorie des représentations. Certains calculs formels sont effectués avec Maple et GAP. Nous calculons les espaces d'homologie et de cohomologie de Hochschild des surfaces de Klein, en développant une généralisation du Théorème de HKR au cas de variétés non lisses et utilisons la division multivariée et les bases de Gröbner. La clôture de l'orbite nilpotente minimale d'une algèbre de Lie simple est une variété algébrique singulière sur laquelle nous construisons des star-produits invariants, grâce à la décomposition BGS de l'homologie et de la cohomologie de Hochschild, et à des résultats sur les invariants des groupes classiques. Nous explicitons les générateurs de l'idéal de Joseph associé à cette orbite et calculons les caractères infinitésimaux. Pour les algèbres de Lie simples B, C, D, nous établissons des résultats généraux sur l'espace d'homologie de Poisson en degré 0 de l'algèbre des invariants, qui vont dans le sens de la conjecture d'Alev et traitons les rangs 2 et 3. Nous calculons des séries de Poincaré à 2 variables pour des sous-groupes finis du groupe spécial linéaire en dimension 3, montrons que ce sont des fractions rationnelles, et associons aux sous-groupes une matrice de Cartan généralisée pour obtenir une correspondance de McKay algébrique en dimension 3. Toute l'étude a donné lieu à 4 articles / Deformation quantization and McKay correspondence form the main themes of the study which deals with singular algebraic varieties, quotients of polynomial algebras, and polynomial algebras invariant under the action of a finite group. Our main tools are Poisson and Hochschild cohomologies and representation theory. Certain calculations are made with Maple and GAP. We calculate Hochschild homology and cohomology spaces of Klein surfaces by developing a generalization of HKR theorem in the case of non-smooth varieties and use the multivariate division and the Groebner bases. The closure of the minimal nilpotent orbit of a simple Lie algebra is a singular algebraic variety : on this one we construct invariant star-products, with the help of the BGS decomposition of Hochschild homology and cohomology, and of results on the invariants of the classical groups. We give the generators of the Joseph ideal associated to this orbit and calculate the infinitesimal characters. For simple Lie algebras of type B, C, D, we establish general results on the Poisson homology space in degree 0 of the invariant algebra, which support Alev's conjecture, then we are interested in the ranks 2 and 3. We compute Poincaré series of 2 variables for the finite subgroups of the special linear group in dimension 3, show that they are rational fractions, and associate to the subgroups a generalized Cartan matrix in order to obtain a McKay correspondence in dimension 3. All the study comes from 4 papers
|
9 |
Structures produits sur la filtration par le poids des variétés algébriques réelles / Product structures on the weight filtration of real algebraic varietiesLimoges, Thierry 10 March 2015 (has links)
On associe à chaque variété algébrique définie sur R un complexe de cochaînes filtré, qui calcule la cohomologie à supports compacts et coefficients dans Z_2 de ses points réels. Ce complexe filtré est additif pour les inclusions fermées et acyclique pour la résolution des singularités, et est unique à quasi-isomorphisme filtré près. Il est représenté par la filtration duale de la filtration géométrique sur les chaînes semi-algébriques à supports fermés définie par McCrory and Parusiński, et induit une suite spectrale qui calcule la filtration par le poids sur la cohomologie à supports compacts. Cette suite spectrale est un invariant naturel qui contient les nombres de Betti virtuels. On montre que le produit cartésien de deux variétés nous permet de comparer le produit de leurs complexe de poids et suite spectrale respectifs avec ceux du produit, et on prouve que les produits cap et cup en cohomologie et homologie sont filtrés par rapport à ces filtrations par le poids réelles. / We associate to each algebraic variety defined over R a filtered cochain complex, which computes the cohomology with compact supports and Z_2-coefficients of the set of its real points. This filtered complex is additive for closed inclusions and acyclic for resolution of singularities, and is unique up to filtered quasi-isomorphism. It is represented by the dual filtration of the geometric filtration on semialgebraic chains with closed supports defined by McCrory and Parusiński, and leads to a spectral sequence which computes the weight filtration on cohomology with compact supports. This spectral sequence is a natural invariant which contains the additive virtual Betti numbers. We then show that the cross product of two varieties allows us to compare the product of their respective weight complexes and spectral sequences with those of their product, and prove that the cup and cap products in cohomology and homology are filtered with respect to the real weight filtrations.
|
Page generated in 0.0433 seconds