Spelling suggestions: "subject:"verossimilhança."" "subject:"verossimilhanças.""
151 |
Modelagem estatística de extremos espaciais com base em processos max-stable aplicados a dados meteorológicos no estado do Paraná / Statistical modelling of spatial extremes based on max-stable processes applied to environmental data in the Parana StateOlinda, Ricardo Alves de 09 August 2012 (has links)
A maioria dos modelos matemáticos desenvolvidos para eventos raros são baseados em modelos probabilísticos para extremos. Embora as ferramentas para modelagem estatística de extremos univariados e multivariados estejam bem desenvolvidas, a extensão dessas ferramentas para modelar extremos espaciais integra uma área de pesquisa em desenvolvimento muito ativa atualmente. A modelagem de máximos sob o domínio espacial, aplicados a dados meteorológicos é importante para a gestão adequada de riscos e catástrofes ambientais nos países que tem a sua economia profundamente dependente do agronegócio. Uma abordagem natural para tal modelagem é a teoria de extremos espaciais e o processo max-stable, caracterizando-se pela extensão de dimensões infinitas da teoria de valores extremos multivariados, podendo-se então incorporar as funções de correlação existentes na geoestatística e consequentemente, verificar a dependência extrema por meio do coeficiente extremo e o madograma. Neste trabalho descreve-se a aplicação de tais processos na modelagem da dependência de máximos espaciais de precipitação máxima mensal do estado do Paraná, com base em séries históricas observadas em estações meteorológicas. Os modelos propostos consideram o espaço euclidiano e uma transformação denominada espaço climático, que permite explicar a presença de efeitos direcionais, resultantes de padrões meteorológicos sinóticos. Essa metodologia baseia-se no teorema proposto por De Haan (1984) e nos modelos de Smith (1990) e de Schlather (2002), verifica-se também o comportamento isotrópico e anisotrópico desses modelos via simulação Monte Carlo. Estimativas são realizadas através da máxima verossimilhança pareada e os modelos são comparados usando-se o Critério de Informação Takeuchi. O algoritmo utilizado no ajuste é bastante rápido e robusto, permitindo-se uma boa eficiência computacional e estatística na modelagem da precipitação máxima mensal, possibilitando-se a modelagem dos efeitos direcionais resultantes de fenômenos ambientais. / The most mathematical models developed for rare events are based on probabilistic models for extremes. Although the tools for statistical modeling of univariate and multivariate extremes are well-developed, the extension of these tools to model spatial extremes data is currently a very active area of research. Modeling of maximum values under the spatial domain, applied to meteorological data is important for the proper management of risks and environmental disasters in the countries where the agricultural sector has great influence on the economy. A natural approach for such modeling is the theory of extreme spatial and max-stable process, characterized by infinite dimensional extension of multivariate extreme value theory, and we can then incorporate the current correlation functions in geostatistics and thus, check the extreme dependence through the extreme coefficient and the madogram. This thesis describes the application of such procedures in the modeling of spatial maximum dependency of monthly maximum rainfall of Paraná State, historical series based on observed meteorological stations. The proposed models consider the Euclidean space and a transformation called climatic space, which makes it possible to explain the presence of directional effects resulting from synoptic weather patterns. This methodology is based on the theorem proposed by De Haan (1984) and Smith (1990) models and Schlather (2002), checking the isotropic and anisotropic behavior these models through Monte Carlo simulation. Estimates are performed using maximum pairwise likelihood and the models are compared using the Takeuchi information criterion. The algorithm used in the fit is very fast and robust, allowing a good statistical and computational efficiency in monthly maximum rainfall modeling, allowing the modeling of directional effects resulting from environmental phenomena.
|
152 |
O modelo Burr XII geométrico: propriedades e aplicações / The model Burr XII Geometric: properties and applicationsLanjoni, Beatriz Rezende 25 November 2013 (has links)
No presente trabalho são propostos dois modelos para dados censurados baseados na mistura da distribuição geométrica e na distribuição Burr XII considerando duas ativações latentes, máximo e mínimo. A distribuição Burr XII tem três parâmetros e é uma generalização da distribuição log-logística. Por sua vez a distribuição Burr XII Geométrica tipo I e tipo II tem quatro parâmetros e são generalizações da distribuição Burr XII relacionados as ativações latentes do mínimo e máximo respectivamente. Foram apresentadas algumas propriedades das duas novas distribuições tais como momentos, assimetria, curtose, função geradora de momentos e desvio médio. Além disso, foi intriduzido os modelos de regressão correspondentes, log Burr XII Geométrica tipo I e log Burr XII Geométrica tipo II. Adicionalmente foi desenvolvido um modelo de sobrevivência com fração de cura assumindo que o número de causas competitivas do evento de interesse segue a distribuição geométrica e o tempo do evento segue a distribuição Burr XII. Para todos os modelos desenvolvidos foi utilizado o método da máxima verossimilhança para estimar os parâmetros, que possibilita a construção de intervalos de confiança e testes de hipóteses. Por fim, são apresentadas três aplicações para ilustrar os modelos propostos. / In this paper are proposed two models for censored data based on the mixture of geometric distribution and Burr XII distribution considering two latent activations, maximum and minimum. The Burr XII distribution has three parameters and is a generalization of the log-logistic distribution. On the other hand Burr XII Geometric type I distribution and type II has four parameters and are a generalization of the Burr XII distribution related to minimum and maximum activations respectively. It were presented some properties of the news distributions such as moments, skewness, kurtosis, moment generating function and mean deviation. Furthermore, it was introduced two regression models, the log Burr XII Geometric type I and the log Burr XII Geometric type II. Additionally a new cure rate survival was formulated by assuming that the number of competing causes of the event of interest has the geometric distribution and the time to this event follows Burr XII distribution. For all models was developed the maximum likelihood method to estimate the parameters, which allows the construction of confidence intervals and hypothesis testing. Finally, three applications are presented to illustrate the proposed models.
|
153 |
Análise de experimentos em látice quadrado no melhoramento vegetal utilizando modelos mistos / Analysis of experiments in square lattice in plant breeding using mixed modelsPaulenas, Viviane Panariello 05 October 2016 (has links)
Experimentos conduzidos no delineamento látice ou reticulado são bastante comuns no melhoramento genético vegetal em que diversos materiais genéticos são comparados, principalmente nas etapas iniciais do programa, visando explorar com maior intensidade a variabilidade genética disponível. Em situações de restrições espaciais e financeiras estes delineamentos se destacam por permitir a comparação de todas as progênies em teste estando ou não instaladas no mesmo bloco. O objetivo do trabalho foi a avaliação de testes de progênies de milho (Zea mays L.), em diferentes ambientes para o caráter produção de grãos em t.ha-1. Duzentas e cinquenta e seis progênies foram instaladas em 4 estações experimentais do município de Piracicaba em diferentes anos agrícolas. Os dados de produção de grãos obtidos pelos diferentes ambientes foram analisados de forma individual e conjunta, a fim de verificar presença da interação genótipo × ambiente. O delineamento usado foi, portanto, o látice quadrado 16 × 16, com duas repetições em cada local. Duas abordagens experimentais foram confrontadas, considerando a estrutura de blocos incompletos parcialmente balanceados do látice e a outra em que cada repetição do látice foi analisada como se fosse um bloco completo. Uma maneira de se analisar estruturas experimentais como esta é utilizando modelos mistos, por meio da inclusão de fatores de efeito aleatório e, fazendo o uso da máxima verossimilhança restrita (REML) para estimar os componentes de variância associados a tais fatores com um menor viés. Além dos componentes de variância, os EBLUPs (melhores preditores lineares não viesados empíricos) também foram calculados e a partir deles foi verificada a correlação entre os diferentes ambientes, e a porcentagem de progênies selecionadas comparando-se os resultados obtidos pelas duas abordagens do conjunto de dados. Análises estatísticas foram implementadas utilizando o software gratuito R, com o pacote estatístico lme4. / Experiments conducted in the lattice design are quite common in plant breeding in which several genetic materials are compared, especially in the early stages of the program, aiming to explore more intensively the genetic variability available. In situations of space and financial constraints these designs stand out for allowing the comparison of all progenies being tested whether or not installed in the same block. The aim of the study was the evaluation of maize (Zea mays L.) progeny tests in different environments for grain yield in t.ha-1. Two hundred and fifty six progenies were tested in four experimental stations in the city of Piracicaba, in different agricultural years. Grain production data obtained by different environments were analyzed individually and jointly in order to verify the presence of genotype × environment interaction. Therefore, the square lattice design with dimension 16 × 16 was used with two replications in each location. Two experimental approaches were compared, considering the partially balanced incomplete block structure of the lattice and the other in each repetition of the lattice was analyzed as if it were a complete block. One way to analyze experimental structures like this is with the use of mixed models, by adding random effect factors, and by making use of the restricted maximum likelihood (REML) for estimating the variance components associated with such factors with less bias. Besides the variance components, EBLUPs (empirical best linear predictor unbiased) were also calculated and from them was checked the correlation between the different environments, and the percentage of selected progenies comparing the results obtained by the two assembly approaches data. Statistical analyzes were implemented for the open-souce software R, using the statistical package lme4.
|
154 |
The new class of Kummer beta generalized distributions: theory and applications / A nova classe de distribuições Kummer beta generalizada: teoria e aplicaçõesPescim, Rodrigo Rossetto 06 December 2013 (has links)
In this study, a new class of generalized distributions was developed, based on the Kummer beta distribution (NG; KOTZ, 1995), which contains as particular cases the exponentiated and beta generators of distributions. The main feature of the new family of distributions is to provide greater flexibility to the extremes of the density function and therefore, it becomes suitable for analyzing data sets with high degree of asymmetry and kurtosis. Also, two new distributions belonging to the new class of distributions, based on the Birnbaum-Saunders and generalized gamma distributions, that has as main characteristic the hazard function which assumes different forms (unimodal, bathtub shape, increase, decrease) were studied. In all studies, general mathematical properties such as ordinary and incomplete moments, generating function, mean deviations, reliability, entropies, order statistics and their moments were discussed. The estimation of parameters is approached by the method of maximum likelihood and Bayesian analysis and the observed information matrix is derived. It is also considered the likelihood ratio statistics and formal goodness-of-fit tests to compare all the proposed distributions with some of its sub-models and non-nested models. The developed results for all studies were applied to six real data sets. / Neste trabalho, foi proposta uma nova classe de distribuições generalizadas, baseada na distribuição Kummer beta (NG; KOTZ, 1995), que contém como casos particulares os geradores exponencializado e beta de distribuições. A principal característica da nova família de distribuições é fornecer grande flexibilidade para as extremidades da função densidade e portanto, ela torna-se adequada para a análise de conjuntos de dados com alto grau de assimetria e curtose. Também foram estudadas duas novas distribuições que pertencem à nova família de distribuições, baseadas nas distribuições Birnbaum-Saunders e gama generalizada, que possuem função de taxas de falhas que assumem diferentes formas (unimodal, forma de banheira, crescente e decrescente). Em todas as pesquisas, propriedades matemáticas gerais como momentos ordinários e incompletos, função geradora, desvios médio, confiabilidade, entropias, estatísticas de ordem e seus momentos foram discutidas. A estimação dos parâmetros é abordada pelo método da máxima verossimilhança e pela análise bayesiana e a matriz de informação observada foi derivada. Considerou-se, também, a estatística de razão de verossimilhanças e testes formais de qualidade de ajuste para comparar todas as distribuições propostas com alguns de seus submodelos e modelos não encaixados. Os resultados desenvolvidos foram aplicados a seis conjuntos de dados.
|
155 |
Extensões da distribuição gama generalizada: propriedades e aplicações / Extensions of the generalized gamma distribution: properties and applicationsPascoa, Marcelino Alves Rosa de 25 April 2012 (has links)
A distribuição gama generalizada (GG) possui, como casos particulares, distribuição Weibull, log-normal, gama, qui-quadrado, entre outras. Por essa razão, ela e considerada uma distribuição exvel no ajuste dos dados. A ideia de Cordeiro e Castro (2011) foi utilizada para o desenvolvimento de duas novas distribuições de probabilidade a partir da distribuição GG. Uma delas e denominada de Kumaraswamy gama generalizada (KumGG) e possui cinco parâmetros; a outra distribuição e uma modificação de um dos parmetros de forma da distribuição KumGG e foi denominada de distribuição Kumaraswamy gama generalizada estendida (KumGGE). Desenvolveu-se o modelo de regressão log-Kumaraswamy gama generalizada estendida. Alem disso, a ideia de Adamidis e Loukas (1998) para modicar distribuições foi utilizada para a distribuição GG; essa nova distribuição foi nomeada de gama generalizada geometrica (GGG). A vantagem desses novos modelos reside na capacidade de acomodar varias formas da função risco eles tambem se mostraram uteis na discriminação de modelos. Para cada um dos modelos foram calculados os momentos, função geradora de momentos, os desvios medios, a conabilidade e a função densidade de probabilidade da estatistica de ordem. Para a estimação dos parâmetros, foram utilizados os metodos de maxima verossimilhanca e bayesiano e, finalmente, para ilustrar a aplicação das novas distribuições foram analisados alguns conjuntos de dados reais. / The generalized gamma (GG) distribution has as particular cases the Weibull, log-normal, gamma and Chi-square distributions, among others. For this reason, it is considered a exible distribution for tting data. In this paper, the idea of Cordeiro and Castro (2011) is used to develop two new probability distributions based on the GG distribution. The rst is called the generalized gamma Kumaraswamy (KumGG) and has ve parameters, while the other involves a modication of one of the shape parameters of the KumGG distribution and is called the extended generalized gamma Kumaraswamy (KumGGE). Based in these, we develop the extended generalized log-Kumaraswamy regression model. Besides this, we employ the idea regarding modifying distributions of Adamidis and Loukas (1998) for the GG distribution, calling this new distribution the geometric generalized gamma (GGG). The advantage of these new models rests in their capacity to accommodate various risk function forms. They are also useful in model discrimination. We calculate the moments, moments generating function, mean deviations, reliability and probability density function of the order statistics. To estimate the parameters we use the maximum likelihood and Bayesian methods. Finally, to illustrate the application of the new distributions, we analyze some real data sets.
|
156 |
Estimação de efeitos variantes no tempo em modelos tipo Cox via bases de Fourier e ondaletas Haar / Time-varying effects estimation in Cox-type models using Fourier and Haar wavelets seriesCalsavara, Vinícius Fernando 12 May 2015 (has links)
O modelo semiparamétrico de Cox é frequentemente utilizado na modelagem de dados de sobrevivência, pois é um modelo muito flexível e permite avaliar o efeito das covariáveis sobre a taxa de falha. Uma das principais vantagens é a fácil interpretação, de modo que a razão de riscos de dois indivíduos não varia ao longo do tempo. No entanto, em algumas situações a proporcionalidade dos riscos para uma dada covariável pode não ser válida e, este caso, uma abordagem que não dependa de tal suposição é necessária. Nesta tese, propomos um modelo tipo Cox em que o efeito da covariável e a função de risco basal são representadas via bases de Fourier e ondaletas de Haar clássicas e deformadas. Propomos também um procedimento de predição da função de sobrevivência para um paciente específico. Estudos de simulações e aplicações a dados reais sugerem que nosso método pode ser uma ferramenta valiosa em situações práticas em que o efeito da covariável é dependente do tempo. Por meio destes estudos, fazemos comparações entre as duas abordagens propostas, e comparações com outra já conhecida na literatura, onde verificamos resultados satisfatórios. / The semiparametric Cox model is often considered when modeling survival data. It is very flexible, allowing for the evaluation of covariates effects. One of its main advantages is the easy of interpretation, as long as the rate of the hazards for two individuals does not vary over time. However, this proportionality of the hazards may not be true in some practical situations and, in this case, an approach not relying on such assumption is needed. In this thesis we propose a Cox-type model that allows for time-varying covariate effects, for which the baseline hazard is based on Fourier series and wavelets on a time-frequency representation. We derive a prediction method for the survival of future patients with any specific set of covariates. Simulations and an application to a real data set suggest that our method may be a valuable tool to model data in practical situations where covariate effects vary over time. Through these studies, we make comparisons between the two approaches proposed here and comparisons with other already known in the literature, where we verify satisfactory results.
|
157 |
A distribuição log-logística exponenciada geométrica: dupla ativação / The exponentiated log-logistic geometric distribution: dual activationMendoza, Natalie Verónika Rondinel 18 September 2012 (has links)
Neste trabalho é proposta uma nova distribuição de quatro parâmetros denominada distribuição log-logística exponenciada geométrica, baseada em um mecanismo de dupla ativação para modelar dados de tempo de vida. Para esta nova distribuição, foi realizado um estudo da função de densidade de probabilidade, da função de distribuição acumulada, da função de sobrevivência e da função de taxa de falha, a qual apresenta formas que podem modelar dados de tempo de vida, tais como: forma crescente, decrescente, unimodal, bimodal e forma de U. Obteve-se expansões da função de densidade, expressões para os momentos de probabilidade ponderada, função geradora de momentos, desvios médios e as curvas de Bonferroni e de Lorenz. Considerando dados censurados, foi utilizado o método de máxima verossimilhança para estimação dos parâmetros. Analogamente também é proposto um modelo de regressão baseado no logaritmo da distribuição log-logística exponenciada geométrica com dupla ativação, que é uma extensão dos modelos de regressão logística exponenciada e logística. Este modelo pode ser usado na análise de dados reais, por fornecer um melhor ajuste que os modelos de regressão particulares, logística exponenciada e logística. Finalmente, são apresentados duas aplicações para ilustrar a utilização da nova distribuição. / In this work, we propose a new distribution with four parameters the so called exponentiated log-logistic geometric distribution based on a double mechanism of activation for modeling lifetime data. For this new distribution, we study the density function, cumulative distribution, survival function and the failure rate function which allows major harzad rates: increasing, decreasing, bathtub, unimodal and bimodal failure rates. We also obtain the density function expansions and the expressions for the probability-weighted moments, moment generating function, mean deviation and Bonferroni and Lorenz curves. Considering censored data, we use the maximum likelihood method for estimating the parameters. Similarly, we also propose the regression model based on the logarithm of the exponentiated log-logistic geometric distribution with double activation, which is an extension of the exponential logistic and logistic regression models. This new model could be widely used in the analysis of real data to provide a better fit than exponetial logistic and logistic regression models. Finally, two applications are presented to illustrate the application of the new distribution.
|
158 |
Modelos mistos aditivos semiparamétricos de contornos elípticos / Elliptical contoured semiparametric additive mixed models.Pulgar, Germán Mauricio Ibacache 14 August 2009 (has links)
Neste trabalho estendemos os modelos mistos semiparamétricos propostos por Zhang et al. (1998) para uma classe mais geral de modelos, a qual denominamos modelos mistos aditivos semiparamétricos com erros de contornos elípticos. Com essa nova abordagem, flexibilizamos a curtose da distribuição dos erros possibilitando a escolha de distribuições com caudas mais leves ou mais pesadas do que as caudas da distribuição normal padrão. Funções de verossimilhança penalizadas são aplicadas para a obtenção das estimativas de máxima verossimilhança com os respectivos erros padrão aproximados. Essas estimativas, sob erros de caudas pesadas, são robustas no sentido da distância de Mahalanobis contra observações aberrantes. Curvaturas de influência local são obtidas segundo alguns esquemas de perturbação e gráficos de diagnóstico são propostos. Exemplos ilustrativos são apresentados em que ajustes sob erros normais são comparados, através das metodologias de sensibilidade desenvolvidas no trabalho, com ajustes sob erros de contornos elípticos. / In this work we extend the models proposed by Zhang et al. (1998) to a more general class of models, know as semiparametric additive mixed models with elliptical errors in order to allow distributions with heavier or lighter tails than the normal ones. Penalized likelihood equations are applied to derive the maximum likelihood estimates which appear to be robust against outlying observations in the sense of the Mahalanobis distance. In order to study the sensitivity of the penalized estimates under some usual perturbation schemes in the model or data, the local influence curvatures are derived and some diagnostic graphics are proposed. Motivating examples preliminary analyzed under normal errors are reanalyzed under some appropriate elliptical errors. The local influence approach is used to compare the sensitivity of the model estimates.
|
159 |
Mapeamento de QTLs utilizando as abordagens Clássica e Bayesiana / Mapping QTLs: Classical and Bayesian approachesToledo, Elisabeth Regina de 02 October 2006 (has links)
A produção de grãos e outros caracteres de importância econômica para a cultura do milho, tais como a altura da planta, o comprimento e o diâmetro da espiga, apresentam herança poligênica, o que dificulta a obtenção de informações sobre as bases genéticas envolvidas na variação desses caracteres. Associações entre marcadores e QTLs foram analisadas através dos métodos de mapeamento por intervalo composto (CIM) e mapeamento por intervalo Bayesiano (BIM). A partir de um conjunto de dados de produção de grãos, referentes à avaliação de 256 progênies de milho genotipadas para 139 marcadores moleculares codominantes, verificou-se que as metodologias apresentadas permitiram classificar marcas associadas a QTLs. Através do procedimento CIM, associações entre marcadores e QTLs foram consideradas significativas quando o valor da estatística de razão de verossimilhança (LR) ao longo do cromossomo atingiu o valor máximo dentre os que ultrapassaram o limite crítico LR = 11; 5 no intervalo considerado. Dez QTLs foram mapeados distribuídos em três cromossomos. Juntos, explicaram 19,86% da variância genética. Os tipos de interação alélica predominantes foram de dominância parcial (quatro QTLs) e dominância completa (três QTLs). O grau médio de dominância calculado foi de 1,12, indicando grau médio de dominância completa. Grande parte dos alelos favoráveis ao caráter foram provenientes da linhagem parental L0202D, que apresentou mais elevada produção de grãos. Adotando-se a abordagem Bayesiana, foram implementados métodos de amostragem através de cadeias de Markov (MCMC), para obtenção de uma amostra da distribuição a posteriori dos parâmetros de interesse, incorporando as crenças e incertezas a priori. Resumos sobre as localizações dos QTLs e seus efeitos aditivo e de dominância foram obtidos. Métodos MCMC com saltos reversíveis (RJMCMC) foram utilizados para a análise Bayesiana e Fator calculado de Bayes para estimar o número de QTLs. Através do método BIM associações entre marcadores e QTLs foram consideradas significativas em quatro cromossomos, com um total de cinco QTLs mapeados. Juntos, esses QTLs explicaram 13,06% da variância genética. A maior parte dos alelos favoráveis ao caráter também foram provenientes da linhagem parental L02-02D. / Grain yield and other important economic traits in maize, such as plant heigth, stalk length, and stalk diameter, exhibit polygenic inheritance, making dificult information achievement about the genetic bases related to the variation of these traits. The number and sites of (QTLs) loci that control grain yield in maize have been estimated. Associations between markers and QTLs were undertaken by composite interval mapping (CIM) and Bayesian interval mapping (BIM). Based on a set of grain yield data, obtained from the evaluation of 256 maize progenies genotyped for 139 codominant molecular markers, the presented methodologies allowed classification of markers associated to QTLs.Through composite interval mapping were significant when value of likelihood ratio (LR) throughout the chromosome surpassed LR = 11; 5. Significant associations between markers and QTLs were obtained in three chromosomes, ten QTLs has been mapped, which explained 19; 86% of genetic variation. Predominant genetic action for mapped QTLs was partial dominance and (four QTLs) complete dominance (tree QTLs). Average dominance amounted to 1,12 and confirmed complete dominance for grain yield. Most alleles that contributed positively in trait came from parental strain L0202D. The latter had the highest yield rate. Adopting a Bayesian approach to inference, usually implemented via Markov chain Monte Carlo (MCMC). The output of a Bayesian analysis is a posterior distribution on the parameters, fully incorporating prior beliefs and parameter uncertainty. Reversible Jump MCMC (RJMCMC) is used in this work. Bayes Factor is used to estimate the number of QTL. Through Bayesian interval, significant associations between markers and QTLs were obtained in four chromosomes and five QTLs has been mapped, which explained 13; 06% of genetic variation. Most alleles that contributed positively in trait came from parental strain L02-02D. The latter had the highest yield rate.
|
160 |
Comparação de métodos de estimação de componentes de variância e parâmetros genéticos considerando o delineamento III aplicado a caracteres quantitativos em milho / Comparison of estimation methods for variance components and genetic parameters considering the Design III applied to quantitative characters in maizeCoelho, Angela Mello 09 April 2010 (has links)
Esse trabalho teve como objetivo comparar métodos de estimação de componentes de variância e parâmetros genéticos, considerando tanto o delineamento estatístico fatorial instalado em látice quadrado como o delineamento genético III. Como referência, foram utilizados três conjuntos de dados reais, em melhoramento genético de milho, relativos aos caracteres de produção de grãos (gramas por parcela), altura da folha bandeira ao chão (centímetros) e o número de folhas entre a primeira espiga e o pendão; sendo que a altura da folha bandeira e o número de folhas foram obtidos pela média entre cinco plantas competitivas para cada parcela. O método da Análise da Variância (ANOVA), conforme indicado pelo Delineameno III, foi utilizado na análise dos dados e estimação dos componentes de variância relativos ao modelo matemático, variâncias genéticas, coeficiente de herdabilidade e grau médio de dominância para cada um dos três caracteres estudados. Essas estimativas foram utilizadas na simulação de 1000 conjuntos de dados com características semelhantes a cada um dos conjuntos de dado reais considerados. Os métodos da ANOVA e da máxima verossimilhança restrita (REML) foram utilizados na predição dos parâmetros já mencionados para cada um dos conjuntos de dados simulados dentro de cada caráter. As 1000 estimativas obtidas por cada método, para cada caráter estudado, foram utilizadas no cálculo de estatísticas descritivas (média, desvio-padrão e acurácia relativa) e na montagem de gráficos de Box-plot. Utilizando as informações obtidas a partir das estimativas fornecidas por cada método e em posse dos valores reais que essas estimativas deveriam prever (valor utilizado na simulação dos dados) foi possível comparar ambos os métodos quanto à eficiência das estimativas por eles fornecidas. Ambos os métodos apresentaram características semelhantes na predição da maioria dos componentes de variância relativos ao modelo matemático, sendo que as maiores disparidades se deram para os componentes relativos aos efeitos de progênie (?p2) e as interações entre progênie e linhagem (?pt2) e entre progênie, linhagem e ambiente (?pta2); os quais são os componentes de maior peso no cálculo das variâncias e parâmetros genéticos. O método da ANOVA foi o bastante eficiente na predição de ?p2, sendo que o método da REML se aproxima dos resultados obtidos pelo método da ANOVA conforme diminuem os valores de referência para esse componente; para ?pt2 o método da REML se mostrou mais eficiente conforme maior é o valor de referência, porém, perde eficiência e se aproxima do método da ANOVA conforme o valor de referência do componente diminui. Ambos os métodos se mostraram ineficientes na predição de ?pta2, porém o método da REML foi o menos eficiente. O melhor desempenho do método da ANOVA na predição dos componentes de variância de maior peso no cálculo das variâncias genéticas levou a um melhor desempenho desse método na predição de todos os parâmetros genéticos, com exceção da variância de dominância, a qual depende unicamente de ?pt2. Porém, foi observada uma tendência no método da ANOVA, em média, na superestimação do grau médio de dominância em cerca de 45% do seu valor de referência, independentemente do caráter estudado. / This work aimed to compare estimation methods for variance components and genetic parameters, considering the factorial statistical design set in randomized blocks and the genetic Design III. As reference, three sets of real data were used, on maize genetic improvement, related to the characters: grain yield (grams by plot), plant height, measured from the ground to the °ag leaf in centimeters, and the number of leaves above the uppermost ear. The analysis of variance method (ANOVA), accordingly to the proposed by the Design III, was used on the analysis of the data and estimation of the variance components derived from the mathematical model, genetic variances, heritability and average degree of dominance for each of the studied characters. This estimatives were used on the simulation of 1000 data sets with similar characteristics to the real data analyzed. The ANOVA and restricted maximum likelihood (REML) methods were used on the prediction of the already mentioned parameters for each of the simulated data sets within each character. The 1000 estimatives obtained by each method, for each studied character, were used on the calculation of descriptive statistics (mean, standard deviation and relative accuracy) and for the ¯tting of box-plot graphics. Through the information obtained from the estimatives given by each method and in possession of the actual values that they should predict (values used in the simulation of the data sets) it was possible to compare both methods as to the e±ciency of the estimatives given by them. Both methods presented similar characteristics on the prediction of most of the variance components derived from the mathematical model, being that most di®erences were pertinent to the components related to the e®ects of progeny (¾2 p) and to the interactions between progeny and parental inbred (¾2 pt) and between progeny, parental inbred and environment (¾2 pta); which are the components of greater importance on the calculation of the genetic parameters. The ANOVA method was very e±cient on the prediction of ¾2 p, being that the smaller the reference value for this component, more the REML method approached the results obtained by the ANOVA method; for larger values of ¾2 pt the most e±cient was the REML method, but its e±ciency decayed and approached the ANOVA method for smaller reference values for this component. Both methods were poorly e±cient on the prediction of ¾2 pta, but the REML method was the least e±cient. The better performance of the ANOVA method on the prediction of the variance components of greater importance on the calculation of the genetic variances lead to a better performance of the ANOVA method on the prediction of all genetic parameters, with exception to the dominance variance, which depended solely on ¾2 pt. However, it was observed a tendency on the ANOVA method, in average, on the overestimation of the average degree of dominance of around 45% of the actual reference value, independently of the studied character.
|
Page generated in 0.0558 seconds