Spelling suggestions: "subject:"ertical axis"" "subject:"ertical xis""
21 |
System Perspectives on Hydro-Kinetic Energy ConversionYuen, Katarina January 2012 (has links)
Free-flowing water currents such as tides and unregulated water courses could contribute to world electricity production given the emergence of robust technical solutions for extracting the energy. At Uppsala University, a concept for converting the energy in water currents to electricity using a vertical axis turbine with fixed blade-pitch and a direct-drive permanent magnet generator is studied. Technological equipment for extracting energy from water currents can be studied at desktop to some extent, but physical realizations, first in a laboratory setting, and later in a natural aquatic setting, are necessary. For this reason, a laboratory generator has been constructed and evaluated, and an experimental setup comprising turbine, generator and control system has been constructed. The turbine and generator are to be deployed in the Dalälven River in Söderfors, and operated from an on-land control station. The author has worked with constructing and evaluating the low-speed laboratory generator, participated in the design and construction of the Söderfors generator, and designed and constructed the control system for Söderfors. The generator design incorporates a low rotational speed, permanent magnets, and many poles, in order to adapt the generator to the nature of water currents. Simulations and experimental data for the laboratory prototype have been compared and show that the simulation tool used is adequate for design studies of this type of generator. The generator has also been shown to be able to operate with the intended turbine design and range of water velocities. The control system to be used in Söderfors has been tested in a laboratory environment. Simulations of the control system show that it should be able to operate the turbine and generator at the desired rotational speeds in water velocities up to about 1.8 m/s. Simulations of the system have also shown that maximizing system power output may not correspond with maximizing turbine power.
|
22 |
Simulation et optimisation de forme d'hydroliennes à flux transverse / Simulation and shape optimization of vertical axis hydrokinetic turbinesGuillaud, Nathanaël 29 March 2017 (has links)
Dans le cadre de la production d'électricité par énergie renouvelable, cette thèse a pour objectif de contribuer à l'amélioration des performances hydrodynamiques des hydroliennes à flux transverse conçues par HydroQuest. Pour y parvenir, deux axes d'étude principaux sont proposés. Le premier consiste à améliorer la compréhension de la performance de l'hydrolienne et de l'écoulement en son sein par voie numérique. L'influence du paramètre d'avance ainsi que celle de la solidité de l'hydrolienne sont étudiées. Les écoulements mis en jeux étant complexes, une méthode de type Simulation des Granges Échelles 3D est utilisée afin de les restituer au mieux. Le phénomène de décrochage dynamique, qui apparaît pour certains régimes de fonctionnement de l'hydrolienne, fait l'objet d'une étude à part entière sur un cas de profil oscillant.Le second axe se concentre sur les carénages de l’hydrolienne qui font l'objet d'une procédure d'optimisation numérique. Afin de pouvoir réaliser les nombreuses simulations requises en un temps réaliste, des méthodes de type Unsteady Reynolds-Averaged Navier-Stokes 2D moins coûteuses et fournissant une précision suffisante pour ce type d'étude sont utilisées. / Within the renewable electricity production framework, this study aims to contribute to the efficiency improvement of the Vertical Axis Hydrokinetic Turbines designed by HydroQuest. To achieve this objective, two approaches are used. The first consists in the improvement of the comprehension of the turbine efficiency such as the flow through the turbine by numerical means. The influence of the tip speed ratio such as the turbine soldity are investigated. The flow through the turbine is complex. A 3D Large Eddy Simulation type is thus used. The dynamic stall phenomenon which could occur in Vertical Axis Hydrokinetic Turbines is also studied in a oscillating blade configuration.The second approach consists in the numerical optimization of the turbine channeling device. To perform the high number of simulations required, a 2D Unsteady Reynolds-Averaged Navier-Stokes simulation type is used.
|
23 |
Analyse numérique des hydroliennes à axe vertical munies d'un carénage / Numerical Analysis of Vertical Axis Water Current Turbines Equipped with a Channelling DeviceMenchaca Roa, Ane 30 September 2011 (has links)
Cette thèse s'inscrit dans le cadre des énergies renouvelables au sein du programme HARVEST du laboratoire LEGI, qui consiste à développer un concept d'hydrolienne de type Darrieus. L'hydrolienne peut être équipée d'un dispositif appelé carénage afin de transformer une portion plus grande de l'énergie cinétique contenue dans le courant d'eau en électricité. Les travaux présentés se sont focalisés sur ces systèmes de carénage, autour de trois axes : l'explication du principe de fonctionnement hydrodynamique du carénage, la quantification des performances de l'hydrolienne carénée et la mise en évidence des grandeurs géométriques clés du carénage permettant d'améliorer ou d'optimiser la performance du système. Toutes les études ont été réalisées à l'aide des calculs RANS 2D et des données expérimentales mises à disposition et, comparées aux résultats obtenus pour une hydrolienne non-carénée. / The general context of the present thesis is renewable energies within the HARVEST program initialized at LEGI laboratory, which consists in developing a Darrieus-type water current turbine (WCT). The WTC can be equipped with a channelling device which allows transforming a bigger amount of the kinetic energy contained in the flowstream into electricity. The present work is focused on the channelling devices. Studies concern three main topics: the explanation of the channelling device hydrodynamic functioning, the evaluation of the performance of the shrouded WCT and the revealing of the system geometrical parameters which allow its improvement or optimisation. All studies have been carried out by 2D RANS calculations and available experimental data, and have been compared to bare WTC results.
|
24 |
Small wind turbine starting behaviourWorasinchai, Supakit January 2012 (has links)
Small wind turbines that operate in low-wind environments are prone to suffer performance degradation as they often fail to accelerate to a steady, power-producing condition. The behaviour during this process is called “starting behaviour” and it is the subject of this present work. This thesis evaluates potential benefits that can be obtained from the improvement of starting behaviour, investigates, in particular, small wind turbine starting behaviour (both horizontal- and vertical-axis), and presents aerofoil performance characteristics (both steady and unsteady) needed for the analysis. All of the investigations were conducted using a new set of aerodynamic performance data of six aerofoils (NACA0012, SG6043, SD7062, DU06-W-200, S1223, and S1223B). All of the data were obtained at flow conditions that small wind turbine blades have to operate with during the startup - low Reynolds number (from 65000 to 150000), high angle of attack (through 360◦), and high reduced frequency (from 0.05 to 0.20). In order to obtain accurate aerodynamic data at high incidences, a series of CFD simulations were undertaken to illustrate effects of wall proximity and to determine test section sizes that offer minimum proximity effects. A study was carried out on the entire horizontal-axis wind turbine generation system to understand its starting characteristics and to estimate potential benefits of improved starting. Comparisons of three different blade configurations reveal that the use of mixed-aerofoil blades leads to a significant increase in starting capability. The improved starting capability effectively reduces the time that the turbine takes to reach its power-extraction period and, hence, an increase in overall energy yield. The increase can be as high as 40%. Investigations into H-Darriues turbine self-starting capability were made through the analogy between the aerofoil in Darrieus motion and flapping-wing flow mechanisms. The investigations reveal that the unsteadiness associated with the rotor is key to predicting its starting behaviour and the accurate prediction can be made when this transient aerofoil behaviour is correctly modelled. The investigations based upon the analogy also indicate that the unsteadiness can be exploited to promote the turbine ability to self-start. Aerodynamically, this exploitation is related to the rotor geometry itself.
|
25 |
Evaluation of potential marine current turbine sites in North American watersAndersson, Tim, Akram, Muhammad Arsal, Carlnäs, Carl-Henrik, Salisbury, Tiffany January 2020 (has links)
Suitable locations for marine current power generation were scouted. The specific turbines considered in this project are vertical axis turbines and require an water velocity of 0.8 m/s to start and has a system efficiency of 20%. In the beginning of the project focus was directed towards areas along Florida's coastal line with high water velocities tapping into the Gulf Stream. Data found the velocities did not meet the water speed requirements. Following this observation, it was decided to discontinue further research in the Florida region and divert the attention towards waters in Alaska. There current velocities were found to be significantly higher. Because velocities vary over time marine current power is not relevant in Alaska, but rather the closely related technology tidal power. Two areas in Alaska distinguished themselves, Cook Inlet and Aleutian Islands.Potential power and annual energy extraction were estimated for turbine stations at each site. A battery energy storage system was implemented to counteract varying water velocities. The most promising site could steadily deliver 269 kW and an annual energy production of 2.44 GWh per turbine.
|
26 |
The development of a vertical axis tidal current turbineBrinck, Daniel, Jeremejeff, Nicklas January 2013 (has links)
Globally the amount of electricity produced each year is increasing significantly. Between 1980 and 2010 the average increase was 407 billion kWh per year. To be able to meet this increasing electricity demand, without burdening the environment in a too large extent, the research and development of renewable energy production techniques is of great importance. In the light of this we wanted to dedicate our master thesis to help SubseaTechnology Scandinavia AB with the development of a vertical axis tidal current turbine. The project set out to do the initial design proposal of a 2 x 4 meter H-shaped Darrieus turbine by applying the Double Multiple Streamtube model. The optimization process was performed with the aid of MATLAB for four different foils. The study included two symmetrical foils; NACA 0012 and S-1046 together with two asymmetrical foils; S-1210 and E216. The parameters studied were the number of blades, chord length, tip speed ratio, fixed pitch and the operational range. In the project, effects such as blade to wake interaction, torque fluctuations etc. were also considered. From the simulations the two bladed turbine fitted with the S-1046 hydrofoil showed the highest performance but was struggling with an unfavorable oscillating torque. In the light of this the three bladed turbine fitted with the S-1046 hydrofoil with a chord of 0.13 m and an optimal tip speed ratio of 3.2 was determined. From the simulations the power coefficient reached 53.47 % for this case. This configuration also showed good performance in a relatively wide range of both tip speed ratios and free stream velocities. The model does not include several effects causing losses and the power coefficients calculated in this model are to be used as a comparison between the different turbine configurations and not as absolute values of performance. The simulations showed good potential for the use of asymmetrical foils in vertical axis turbines. The performance was evaluated for the upstream half of the turbine where the E216 foil exceeded the symmetrical foils in the range of ten percentage points.
|
27 |
Simulations of vertical axis wind turbines with PMSG and diode rectification to a mutual DC-busChristoffer, Fjellstedt January 2017 (has links)
Transient simulations were performed with MATLAB Simulink on a mutual wind park topology, where three vertical axis wind turbines equipped with permanent magnet synchronous generators were connected to a mutual DC-bus through passive diode rectification. The aim with the work was to show the effects of two different kinds of loads on the system in respect to generator torque, rotor speed, produced power by the generators and the power on the DC-bus. The loads were a variable voltage source and a resistance with the value 2.0 Ω. It was shown that the transient behavior of the system in respect to both kinds of loads exhibited a high level of stability when the wind speed was altered. It was also shown that the system when equipped with a voltage source load began to oscillate with the natural frequency of a two mass rotating spring system if a sudden increase of the voltage made the DC-bus voltage larger than the peak of the internal induced voltage of the generators. Small variations of the DC voltage however exhibited a stable behavior.
|
28 |
Svenska partikelverb med "in", "ut", "upp" och "ner" : En semantisk studie ur kognitivt perspektiv = Swedish phrasal verbs with in, ut, upp and ner : a semantic study from a cognitive perspectiveStrzelecka, Elzbieta January 2003 (has links)
I avhandlingen analyseras betydelsen hos partiklarna "in", "ut", "upp" och "ner" då dessa fungerar som verbpartiklar och tillsammans med verbet bildar partikelverb. Analysen omfattar såväl semantiskt regelbundna som lexikaliserade partikelverb och söker finna förklaringar till partiklarnas polysemi. Undersökningen är korpusbaserad och materialet består av nästan 900 olika partikelverb representerade med över 5 100 belägg. Beskrivnings¬modellen bygger huvudsakligen på den kognitiva semantiken. Verbpartiklarna analyseras i olika kontexter i såväl det fysiska rummets domän som i andra domäner varvid utgångspunkten för analysen alltid är partiklarnas prototypiska (spatiala) betydelse. Undersökningen visar att verbpartiklarnas olika, till synes disparata, betydelser är motiverade av föreställningsscheman (VERTICAL AXIS schema) och deras transformationer (vertikal axel horisontell axel), samt av metonymier (DELEN FÖR HELHETEN) och metaforer (CENTRUM IS UP). Partiklarnas betydelser är länkade till varandra genom familjelikhet och bildar ett nätverk. Partikelverb bildade med in, ut, upp och ner uppvisar vanligen en avgränsad aktionsart, men verbpartiklarna har i de allra flesta en mer specifik betydelse än enbart den perfektiva. Verbpartiklarna upp och in betecknar i regel riktningen mot centrum och har ofta positiva konnotationer medan verbpartiklarna ut och ner denoterar rörelsen mot periferin och snarare har negativa konnotationer. Den vertikala orienteringen tycks dominera svenskans strukturering av det fysiska rummets domän; en rörelse i förhållande till en vertikalt orienterad behållare (behållare utan tak) beskrivs med de vertikala partiklarna upp/ner och inte med behållarpartiklarna in/ut. I vissa få speciella kontexter kan de undersökta partiklarna signalera talarens perspektiv.
|
29 |
Fluid Mechanics of Vertical Axis Turbines : Simulations and Model DevelopmentGoude, Anders January 2012 (has links)
Two computationally fast fluid mechanical models for vertical axis turbines are the streamtube and the vortex model. The streamtube model is the fastest, allowing three-dimensional modeling of the turbine, but lacks a proper time-dependent description of the flow through the turbine. The vortex model used is two-dimensional, but gives a more complete time-dependent description of the flow. Effects of a velocity profile and the inclusion of struts have been investigated with the streamtube model. Simulations with an inhomogeneous velocity profile predict that the power coefficient of a vertical axis turbine is relatively insensitive to the velocity profile. For the struts, structural mechanic loads have been computed and the calculations show that if turbines are designed for high flow velocities, additional struts are required, reducing the efficiency for lower flow velocities.Turbines in channels and turbine arrays have been studied with the vortex model. The channel study shows that smaller channels give higher power coefficients and convergence is obtained in fewer time steps. Simulations on a turbine array were performed on five turbines in a row and in a zigzag configuration, where better performance is predicted for the row configuration. The row configuration was extended to ten turbines and it has been shown that the turbine spacing needs to be increased if the misalignment in flow direction is large.A control system for the turbine with only the rotational velocity as input has been studied using the vortex model coupled with an electrical model. According to simulations, this system can obtain power coefficients close to the theoretical peak values. This control system study has been extended to a turbine farm. Individual control of each turbine has been compared to a less costly control system where all turbines are connected to a mutual DC bus through passive rectifiers. The individual control performs best for aerodynamically independent turbines, but for aerodynamically coupled turbines, the results show that a mutual DC bus can be a viable option.Finally, an implementation of the fast multipole method has been made on a graphics processing unit (GPU) and the performance gain from this platform is demonstrated.
|
30 |
Modélisation de parcs d'hydroliennes à flux transverse avec une méthode d'équivalence / Vertical axis water turbine modeling with an equivalence methodMercier, Guillaume 26 September 2014 (has links)
L'exploitation de l'énergie cinétique des courants marins ou fluviaux est une source d'énergie prometteuse et renouvelable. Les performances hydrodynamiques des hydroliennes sont à ce jour bien connues et l'attention se porte sur la compréhension des phénomènes de parc et l'interaction entre machines. Ce document présente la construction d'un modèle simplifié (ou méthode d'équivalence) pour les turbines à axe de rotation vertical. Une étape préliminaire consiste à valider l'utilisation de la méthode de maillage rotatif proposée par Code_Saturne (solveur CFD open source). La simulation de la turbine Darrieus/Achard A10 en 2D met en évidence une bonne concordance des mesures expérimentales (PIV). Cet outil sert dans une seconde étape à mettre au point un modèle simplifié de ces mêmes turbines. Celui-ci consiste à représenter la turbine dans l'écoulement par son équivalent en termes sources de quantité de mouvement sur la base d'une paramétrisation efficace des données empiriques. La méthode est validée pour une large plage de vitesses de rotation et de confinements, et sur plusieurs machines. La représentation du sillage par par les deux méthode de simulation est ensuite étudiée en détail. Des mesures par la technique de LDV dans le sillage proche d'un modèle réduit sont effectuées et établissent une référence expérimentale nécessaire pour ce type de machine. La dépendance forte des deux méthodes de simulation aux paramètres et aux modèles de turbulence est constatée. Deux phénomènes principaux sont relevés : la diffusion turbulente et les instabilités à grandes échelles. Des calculs de rendement sur des dispositions de machines variables illustrent l'applicabilité du modèle. Ils mettent notamment en avant l'effet positif de l'intensité turbulente ambiante sur le rendement dans un parc. / Harnessing kinetic energy from oceans or rivers is a promising source of renewable energy. The hydrodynamical performance of water turbines is well known and the focus is now on array optimization and turbine interaction. The present document aims to introduce a new modeling solution for vertical axis water current turbine of Darrieus/Achard type and its construction methodology. A preliminary stage consists in the validation of the new sliding mesh method available in Code_Saturne, EDF CFD open source solver. The good results obtained by comparison with PIV measurements on the Achard type turbine allow the use of this method as a reference tool. The second stage sees the construction of an equivalence model for the Darrieus turbine using momentum source terms. These terms are calculated thanks to an efficient parametrization of empirical data. The comparison of the model with full geometry calculation shows a good agreement in terms of power for a wide range of rotational velocity and blocking ratio. LDV measurements in the near wake of a small scale Achard turbine give a necessary reference set of data. The wake given by both simulations is strongly dependent of turbulence parameters or models, with the cohabitation of two main phenomena : momentum turbulent diffusion, and large scale fluctuations. To conclude, a calculation of the power output for several turbine distributions in an array illustrates the model capability.
|
Page generated in 0.0405 seconds