• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 12
  • Tagged with
  • 32
  • 32
  • 17
  • 17
  • 11
  • 11
  • 10
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Three essays in empirical asset pricing

Tédongap, Roméo January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
22

Particle methods in finance / Les méthodes de particule en finance

Miryusupov, Shohruh 20 December 2017 (has links)
Cette thèse contient deux sujets différents la simulation d'événements rares et un transport d'homotopie pour l'estimation du modèle de volatilité stochastique, dont chacun est couvert dans une partie distincte de cette thèse. Les méthodes de particules, qui généralisent les modèles de Markov cachés, sont largement utilisées dans différents domaines tels que le traitement du signal, la biologie, l'estimation d'événements rares, la finance, etc. Il existe un certain nombre d'approches basées sur les méthodes de Monte Carlo, tels que Markov Chain Monte Carlo (MCMC), Monte Carlo séquentiel (SMC). Nous appliquons des algorithmes SMC pour estimer les probabilités de défaut dans un processus d'intensité basé sur un processus stable afin de calculer un ajustement de valeur de crédit (CV A) avec le wrong way risk (WWR). Nous proposons une nouvelle approche pour estimer les événements rares, basée sur la génération de chaînes de Markov en simulant le système hamiltonien. Nous démontrons les propriétés, ce qui nous permet d'avoir une chaîne de Markov ergodique et nous montrons la performance de notre approche sur l'exemple que nous rencontrons dans la valorisation des options. Dans la deuxième partie, nous visons à estimer numériquement un modèle de volatilité stochastique, et à le considérer dans le contexte d'un problème de transport, lorsque nous aimerions trouver «un plan de transport optimal» qui représente la mesure d'image. Dans un contexte de filtrage, nous le comprenons comme le transport de particules d'une distribution antérieure à une distribution postérieure dans le pseudo-temps. Nous avons également proposé de repondérer les particules transportées, de manière à ce que nous puissions nous diriger vers la zone où se concentrent les particules de poids élevé. Nous avons montré sur l'exemple du modèle de la volatilité stochastique de Stein-Stein l'application de notre méthode et illustré le biais et la variance. / The thesis introduces simulation techniques that are based on particle methods and it consists of two parts, namely rare event simulation and a homotopy transport for stochastic volatility model estimation. Particle methods, that generalize hidden Markov models, are widely used in different fields such as signal processing, biology, rare events estimation, finance, etc. There are a number of approaches that are based on Monte Carlo methods that allow to approximate a target density such as Markov Chain Monte Carlo (MCMC), sequential Monte Carlo (SMC). We apply SMC algorithms to estimate default probabilities in a stable process based intensity process to compute a credit value adjustment (CV A) with a wrong way risk (WWR). We propose a novel approach to estimate rare events, which is based on the generation of Markov Chains by simulating the Hamiltonian system. We demonstrate the properties, that allows us to have ergodic Markov Chain and show the performance of our approach on the example that we encounter in option pricing.In the second part, we aim at numerically estimating a stochastic volatility model, and consider it in the context of a transportation problem, when we would like to find "an optimal transport map" that pushes forward the measure. In a filtering context, we understand it as the transportation of particles from a prior to a posterior distribution in pseudotime. We also proposed to reweight transported particles, so as we can direct to the area, where particles with high weights are concentrated. We showed the application of our method on the example of option pricing with Stein­Stein stochastic volatility model and illustrated the bias and variance.
23

Essays on numerically efficient inference in nonlinear and non-Gaussian state space models, and commodity market analysis

Djegnéné, Gbowan Barnabé 06 1900 (has links)
No description available.
24

Algorithmes stochastiques pour la gestion du risque et l'indexation de bases de données de média / Stochastic algorithms for risk management and indexing of database media

Reutenauer, Victor 22 March 2017 (has links)
Cette thèse s’intéresse à différents problèmes de contrôle et d’optimisation dont il n’existe à ce jour que des solutions approchées. D’une part nous nous intéressons à des techniques visant à réduire ou supprimer les approximations pour obtenir des solutions plus précises voire exactes. D’autre part nous développons de nouvelles méthodes d’approximation pour traiter plus rapidement des problèmes à plus grande échelle. Nous étudions des méthodes numériques de simulation d’équation différentielle stochastique et d’amélioration de calculs d’espérance. Nous mettons en œuvre des techniques de type quantification pour la construction de variables de contrôle ainsi que la méthode de gradient stochastique pour la résolution de problèmes de contrôle stochastique. Nous nous intéressons aussi aux méthodes de clustering liées à la quantification, ainsi qu’à la compression d’information par réseaux neuronaux. Les problèmes étudiés sont issus non seulement de motivations financières, comme le contrôle stochastique pour la couverture d’option en marché incomplet mais aussi du traitement des grandes bases de données de médias communément appelé Big data dans le chapitre 5. Théoriquement, nous proposons différentes majorations de la convergence des méthodes numériques d’une part pour la recherche d’une stratégie optimale de couverture en marché incomplet dans le chapitre 3, d’autre part pour l’extension la technique de Beskos-Roberts de simulation d’équation différentielle dans le chapitre 4. Nous présentons une utilisation originale de la décomposition de Karhunen-Loève pour une réduction de variance de l’estimateur d’espérance dans le chapitre 2. / This thesis proposes different problems of stochastic control and optimization that can be solved only thanks approximation. On one hand, we develop methodology aiming to reduce or suppress approximations to obtain more accurate solutions or something exact ones. On another hand we develop new approximation methodology in order to solve quicker larger scale problems. We study numerical methodology to simulated differential equations and enhancement of computation of expectations. We develop quantization methodology to build control variate and gradient stochastic methods to solve stochastic control problems. We are also interested in clustering methods linked to quantization, and principal composant analysis or compression of data thanks neural networks. We study problems motivated by mathematical finance, like stochastic control for the hedging of derivatives in incomplete market but also to manage huge databases of media commonly known as big Data in chapter 5. Theoretically we propose some upper bound for convergence of the numerical method used. This is the case of optimal hedging in incomplete market in chapter 3 but also an extension of Beskos-Roberts methods of exact simulation of stochastic differential equations in chapter 4. We present an original application of karhunen-Loève decomposition for a control variate of computation of expectation in chapter 2.
25

Affine and generalized affine models : Theory and applications

Feunou Kamkui, Bruno January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
26

Estimation of State Space Models and Stochastic Volatility

Miller Lira, Shirley 09 1900 (has links)
Ma thèse est composée de trois chapitres reliés à l'estimation des modèles espace-état et volatilité stochastique. Dans le première article, nous développons une procédure de lissage de l'état, avec efficacité computationnelle, dans un modèle espace-état linéaire et gaussien. Nous montrons comment exploiter la structure particulière des modèles espace-état pour tirer les états latents efficacement. Nous analysons l'efficacité computationnelle des méthodes basées sur le filtre de Kalman, l'algorithme facteur de Cholesky et notre nouvelle méthode utilisant le compte d'opérations et d'expériences de calcul. Nous montrons que pour de nombreux cas importants, notre méthode est plus efficace. Les gains sont particulièrement grands pour les cas où la dimension des variables observées est grande ou dans les cas où il faut faire des tirages répétés des états pour les mêmes valeurs de paramètres. Comme application, on considère un modèle multivarié de Poisson avec le temps des intensités variables, lequel est utilisé pour analyser le compte de données des transactions sur les marchés financières. Dans le deuxième chapitre, nous proposons une nouvelle technique pour analyser des modèles multivariés à volatilité stochastique. La méthode proposée est basée sur le tirage efficace de la volatilité de son densité conditionnelle sachant les paramètres et les données. Notre méthodologie s'applique aux modèles avec plusieurs types de dépendance dans la coupe transversale. Nous pouvons modeler des matrices de corrélation conditionnelles variant dans le temps en incorporant des facteurs dans l'équation de rendements, où les facteurs sont des processus de volatilité stochastique indépendants. Nous pouvons incorporer des copules pour permettre la dépendance conditionnelle des rendements sachant la volatilité, permettant avoir différent lois marginaux de Student avec des degrés de liberté spécifiques pour capturer l'hétérogénéité des rendements. On tire la volatilité comme un bloc dans la dimension du temps et un à la fois dans la dimension de la coupe transversale. Nous appliquons la méthode introduite par McCausland (2012) pour obtenir une bonne approximation de la distribution conditionnelle à posteriori de la volatilité d'un rendement sachant les volatilités d'autres rendements, les paramètres et les corrélations dynamiques. Le modèle est évalué en utilisant des données réelles pour dix taux de change. Nous rapportons des résultats pour des modèles univariés de volatilité stochastique et deux modèles multivariés. Dans le troisième chapitre, nous évaluons l'information contribuée par des variations de volatilite réalisée à l'évaluation et prévision de la volatilité quand des prix sont mesurés avec et sans erreur. Nous utilisons de modèles de volatilité stochastique. Nous considérons le point de vue d'un investisseur pour qui la volatilité est une variable latent inconnu et la volatilité réalisée est une quantité d'échantillon qui contient des informations sur lui. Nous employons des méthodes bayésiennes de Monte Carlo par chaîne de Markov pour estimer les modèles, qui permettent la formulation, non seulement des densités a posteriori de la volatilité, mais aussi les densités prédictives de la volatilité future. Nous comparons les prévisions de volatilité et les taux de succès des prévisions qui emploient et n'emploient pas l'information contenue dans la volatilité réalisée. Cette approche se distingue de celles existantes dans la littérature empirique en ce sens que ces dernières se limitent le plus souvent à documenter la capacité de la volatilité réalisée à se prévoir à elle-même. Nous présentons des applications empiriques en utilisant les rendements journaliers des indices et de taux de change. Les différents modèles concurrents sont appliqués à la seconde moitié de 2008, une période marquante dans la récente crise financière. / My thesis consists of three chapters related to the estimation of state space models and stochastic volatility models. In the first chapter we develop a computationally efficient procedure for state smoothing in Gaussian linear state space models. We show how to exploit the special structure of state-space models to draw latent states efficiently. We analyze the computational efficiency of Kalman-filter-based methods, the Cholesky Factor Algorithm, and our new method using counts of operations and computational experiments. We show that for many important cases, our method is most efficient. Gains are particularly large for cases where the dimension of observed variables is large or where one makes repeated draws of states for the same parameter values. We apply our method to a multivariate Poisson model with time-varying intensities, which we use to analyze financial market transaction count data. In the second chapter, we propose a new technique for the analysis of multivariate stochastic volatility models, based on efficient draws of volatility from its conditional posterior distribution. It applies to models with several kinds of cross-sectional dependence. Full VAR coefficient and covariance matrices give cross-sectional volatility dependence. Mean factor structure allows conditional correlations, given states, to vary in time. The conditional return distribution features Student's t marginals, with asset-specific degrees of freedom, and copulas describing cross-sectional dependence. We draw volatility as a block in the time dimension and one-at-a-time in the cross-section. Following McCausland(2012), we use close approximations of the conditional posterior distributions of volatility blocks as Metropolis-Hastings proposal distributions. We illustrate using daily return data for ten currencies. We report results for univariate stochastic volatility models and two multivariate models. In the third chapter, we evaluate the information contributed by (variations of) realized volatility to the estimation and forecasting of volatility when prices are measured with and without error using a stochastic volatility model. We consider the viewpoint of an investor for whom volatility is an unknown latent variable and realized volatility is a sample quantity which contains information about it. We use Bayesian Markov Chain Monte Carlo (MCMC) methods to estimate the models, which allow the formulation of the posterior densities of in-sample volatilities, and the predictive densities of future volatilities. We then compare the volatility forecasts and hit rates from predictions that use and do not use the information contained in realized volatility. This approach is in contrast with most of the empirical realized volatility literature which most often documents the ability of realized volatility to forecast itself. Our empirical applications use daily index returns and foreign exchange during the 2008-2009 financial crisis.
27

Analyse numérique de modèles de diffusion-sauts à volatilité stochastique : cas de l'évaluation des options / Numerical analysis of the stochastic volatility jump diffusion models : case of options pricing

Jraifi, Abdelilah 03 February 2014 (has links)
Dans le monde économique, les contrats d'options sont très utilisés car ils permettent de se couvrir contre les aléas et les risques dus aux fluctuations des prix des actifs sous-jacents. La détermination du prix de ces contrats est d'une grande importance pour les investisseurs.Dans cette thèse, on s'intéresse aux problèmes d'évaluation des options, en particulier les options Européennes et Quanto sur un actif financier dont le prix est modélisé en multi dimensions par un modèle de diffusion-saut à volatilité stochastique avec sauts (1er cas considère la volatilité sans sauts, dans le 2ème cas les sauts sont pris en compte, finalement dans le 3ème cas, l'actif sous-jacent est sans saut et la volatilité suit un CEV modèle sans saut). Ce modèle permet de mieux prendre en compte certains phénomènes observés dans les marchés. Nous développons des méthodes numériques qui déterminent les valeurs des prix de ces options. On présentera d'abord le modèle qui s'écrit sous la forme d'un système d'équations intégro-différentielles stochastiques "EIDS", et on étudiera l'existence et l'unicité de la solution de ce modèle en fonction de ses coefficients, puis on établira le lien entre le calcul du prix de l'option et la résolution de l'équation Intégro-différentielle partielle (EIDP). Ce lien, qui est basé sur la notion des générateurs infinitésimaux, nous permet d'utiliser différentes méthodes numériques pour l'évaluation des options considérées. Nous introduisons alors l'équation variationnelle associée aux EIDP et démontrons qu'elle admet une unique solution dans un espace de Sobolev avec poids en s'inspirant des travaux de Zhang [106].Nous nous concentrons ensuite sur l'approximation numérique du prix de l'option en considérant le problème dans un domaine borné, et nous utilisons pour la résolution numérique la méthode des éléments finis de type (P1), et un schéma d'Euler-Maruyama, pour se servir, d'une part de la méthode de différences finies en temps, et d'autre part de la méthode de Monté Carlo et la méthode Quasi Monte Carlo. Pour cette dernière méthode nous avons utilisé les suites de Halton afin d'améliorer la vitesse de convergence.Nous présenterons une étude comparative des différents résultats numériques obtenus dans plusieurs cas différents afin d'étudier la performance et l'efficacité des méthodes utilisées. / In the modern economic world, the options contracts are used because they allow to hedge against the vagaries and risks refers to fluctuations in the prices of the underlying assets. The determination of the price of these contracts is of great importance for investors.We are interested in problems of options pricing, actually the European and Quanto options on a financial asset. The price of that asset is modeled by a multi-dimentional jump diffusion with stochastic volatility. Otherwise, the first model considers the volatility as a continuous process and the second model considers it as a jump process. Finally in the 3rd model, the underlying asset is without jump and volatility follows a model CEV without jump. This model allow better to take into account some phenomena observed in the markets. We develop numerical methods that determine the values of prices for these options. We first write the model as an integro-differential stochastic equations system "EIDS", of which we study existence and unicity of solutions. Then we relate the resolution of PIDE to the computation of the option value. This link, which is based on the notion of infinitesimal generators, allows us to use different numerical methods. We therefore introduce the variational equation associated with the PIDE, and drawing on the work of Zhang [106], we show that it admits a unique solution in a weights Sobolev space We focus on the numerical approximation of the price of the option, by treating the problem in a bounded domain. We use the finite elements method of type (P1), and the scheme of Euler-Maruyama, for this serve, on the one hand the finite differences method in time, and on the other hand the method of Monte Carlo and the Quasi Monte Carlo method. For this last method we use of Halton sequences to improve the speed of convergence.We present a comparative study of the different numerical results in many different cases in order to investigate the performance and effectiveness of the used methods.
28

Estimation of State Space Models and Stochastic Volatility

Miller Lira, Shirley 09 1900 (has links)
Ma thèse est composée de trois chapitres reliés à l'estimation des modèles espace-état et volatilité stochastique. Dans le première article, nous développons une procédure de lissage de l'état, avec efficacité computationnelle, dans un modèle espace-état linéaire et gaussien. Nous montrons comment exploiter la structure particulière des modèles espace-état pour tirer les états latents efficacement. Nous analysons l'efficacité computationnelle des méthodes basées sur le filtre de Kalman, l'algorithme facteur de Cholesky et notre nouvelle méthode utilisant le compte d'opérations et d'expériences de calcul. Nous montrons que pour de nombreux cas importants, notre méthode est plus efficace. Les gains sont particulièrement grands pour les cas où la dimension des variables observées est grande ou dans les cas où il faut faire des tirages répétés des états pour les mêmes valeurs de paramètres. Comme application, on considère un modèle multivarié de Poisson avec le temps des intensités variables, lequel est utilisé pour analyser le compte de données des transactions sur les marchés financières. Dans le deuxième chapitre, nous proposons une nouvelle technique pour analyser des modèles multivariés à volatilité stochastique. La méthode proposée est basée sur le tirage efficace de la volatilité de son densité conditionnelle sachant les paramètres et les données. Notre méthodologie s'applique aux modèles avec plusieurs types de dépendance dans la coupe transversale. Nous pouvons modeler des matrices de corrélation conditionnelles variant dans le temps en incorporant des facteurs dans l'équation de rendements, où les facteurs sont des processus de volatilité stochastique indépendants. Nous pouvons incorporer des copules pour permettre la dépendance conditionnelle des rendements sachant la volatilité, permettant avoir différent lois marginaux de Student avec des degrés de liberté spécifiques pour capturer l'hétérogénéité des rendements. On tire la volatilité comme un bloc dans la dimension du temps et un à la fois dans la dimension de la coupe transversale. Nous appliquons la méthode introduite par McCausland (2012) pour obtenir une bonne approximation de la distribution conditionnelle à posteriori de la volatilité d'un rendement sachant les volatilités d'autres rendements, les paramètres et les corrélations dynamiques. Le modèle est évalué en utilisant des données réelles pour dix taux de change. Nous rapportons des résultats pour des modèles univariés de volatilité stochastique et deux modèles multivariés. Dans le troisième chapitre, nous évaluons l'information contribuée par des variations de volatilite réalisée à l'évaluation et prévision de la volatilité quand des prix sont mesurés avec et sans erreur. Nous utilisons de modèles de volatilité stochastique. Nous considérons le point de vue d'un investisseur pour qui la volatilité est une variable latent inconnu et la volatilité réalisée est une quantité d'échantillon qui contient des informations sur lui. Nous employons des méthodes bayésiennes de Monte Carlo par chaîne de Markov pour estimer les modèles, qui permettent la formulation, non seulement des densités a posteriori de la volatilité, mais aussi les densités prédictives de la volatilité future. Nous comparons les prévisions de volatilité et les taux de succès des prévisions qui emploient et n'emploient pas l'information contenue dans la volatilité réalisée. Cette approche se distingue de celles existantes dans la littérature empirique en ce sens que ces dernières se limitent le plus souvent à documenter la capacité de la volatilité réalisée à se prévoir à elle-même. Nous présentons des applications empiriques en utilisant les rendements journaliers des indices et de taux de change. Les différents modèles concurrents sont appliqués à la seconde moitié de 2008, une période marquante dans la récente crise financière. / My thesis consists of three chapters related to the estimation of state space models and stochastic volatility models. In the first chapter we develop a computationally efficient procedure for state smoothing in Gaussian linear state space models. We show how to exploit the special structure of state-space models to draw latent states efficiently. We analyze the computational efficiency of Kalman-filter-based methods, the Cholesky Factor Algorithm, and our new method using counts of operations and computational experiments. We show that for many important cases, our method is most efficient. Gains are particularly large for cases where the dimension of observed variables is large or where one makes repeated draws of states for the same parameter values. We apply our method to a multivariate Poisson model with time-varying intensities, which we use to analyze financial market transaction count data. In the second chapter, we propose a new technique for the analysis of multivariate stochastic volatility models, based on efficient draws of volatility from its conditional posterior distribution. It applies to models with several kinds of cross-sectional dependence. Full VAR coefficient and covariance matrices give cross-sectional volatility dependence. Mean factor structure allows conditional correlations, given states, to vary in time. The conditional return distribution features Student's t marginals, with asset-specific degrees of freedom, and copulas describing cross-sectional dependence. We draw volatility as a block in the time dimension and one-at-a-time in the cross-section. Following McCausland(2012), we use close approximations of the conditional posterior distributions of volatility blocks as Metropolis-Hastings proposal distributions. We illustrate using daily return data for ten currencies. We report results for univariate stochastic volatility models and two multivariate models. In the third chapter, we evaluate the information contributed by (variations of) realized volatility to the estimation and forecasting of volatility when prices are measured with and without error using a stochastic volatility model. We consider the viewpoint of an investor for whom volatility is an unknown latent variable and realized volatility is a sample quantity which contains information about it. We use Bayesian Markov Chain Monte Carlo (MCMC) methods to estimate the models, which allow the formulation of the posterior densities of in-sample volatilities, and the predictive densities of future volatilities. We then compare the volatility forecasts and hit rates from predictions that use and do not use the information contained in realized volatility. This approach is in contrast with most of the empirical realized volatility literature which most often documents the ability of realized volatility to forecast itself. Our empirical applications use daily index returns and foreign exchange during the 2008-2009 financial crisis.
29

Affine and generalized affine models : Theory and applications

Feunou Kamkui, Bruno January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
30

Développement stochastique pour les processus de diffusion et applications à la valorisation d'options

Bompis, Romain 11 December 2013 (has links) (PDF)
Cette thèse est consacrée à l'approximation de l'espérance d'une fonctionnelle (pouvant dépendre de toute la trajectoire) appliquée à un processus de diffusion (pouvant être multidimensionnel). La motivation de ce travail vient des mathématiques financières où la valorisation d'options se réduit au calcul de telles espérances. La rapidité des calculs de prix et des procédures de calibration est une contrainte opérationnelle très forte et nous apportons des outils temps-réel (ou du moins plus compétitifs que les simulations de Monte Carlo dans le cas multidimensionnel) afin de combler ces besoins. Pour obtenir des formules d'approximation, on choisit un modèle proxy dans lequel les calculs analytiques sont possibles, puis nous utilisons des développements stochastiques autour de ce modèle proxy et le calcul de Malliavin afin d'approcher les quantités d'intérêt. Dans le cas où le calcul de Malliavin ne peut pas être appliqué, nous développons une méthodologie alternative combinant calcul d'Itô et arguments d'EDP. Toutes les approches (allant des EDPs à l'analyse stochastique) permettent d'obtenir des formules explicites et des estimations d'erreur précises en fonction des paramètres du modèle. Bien que le résultat final soit souvent le même, la dérivation explicite du développement peut être très différente et nous comparons les approches, tant du point de vue de la manière dont les termes correctifs sont rendus explicites que des hypothèses requises pour obtenir les estimées d'erreur. Nous considérons différentes classes de modèles et fonctionnelles lors des quatre Parties de la thèse. Dans la Partie I, nous nous concentrons sur les modèles à volatilité locale et nous obtenons des nouvelles formules d'approximation pour les prix, les sensibilités (delta) et les volatilités implicites des produits vanilles surpassant en précision les formules connues jusque-là. Nous présentons aussi des nouveaux résultats concernant la valorisation des options à départ différé. La Partie II traite de l'approximation analytique des prix vanilles dans les modèles combinant volatilité locale et stochastique (type Heston). Ce modèle est très délicat à analyser car ses moments ne sont pas tous finis et qu'il n'est pas régulier au sens de Malliavin. L'analyse d'erreur est originale et l'idée est de travailler sur une régularisation appropriée du payoff et sur un modèle habilement modifié, régulier au sens de Malliavin et à partir duquel on peut contrôler la distance par rapport au modèle initial. La Partie III porte sur la valorisation des options barrières régulières dans le cadre des modèles à volatilité locale. C'est un cas non considéré dans la littérature, difficile à cause de l'indicatrice des temps de sorties. Nous mélangeons calcul d'Itô, arguments d'EDP, propriétés de martingales et de convolutions temporelles de densités afin de décomposer l'erreur d'approximation et d'expliciter les termes correctifs. Nous obtenons des formules d'approximation explicites et très précises sous une hypothèse martingale. La Partie IV présente une nouvelle méthodologie (dénotée SAFE) pour l'approximation en loi efficace des diffusions multidimensionnelles dans un cadre assez général. Nous combinons l'utilisation d'un proxy Gaussien pour approcher la loi de la diffusion multidimensionnelle et une interpolation locale de la fonction terminale par éléments finis. Nous donnons une estimation de la complexité de notre méthodologie. Nous montrons une efficacité améliorée par rapport aux simulations de Monte Carlo dans les dimensions petites et moyennes (jusqu'à 10).

Page generated in 0.0622 seconds