• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 5
  • 5
  • 5
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 61
  • 61
  • 21
  • 19
  • 19
  • 19
  • 18
  • 17
  • 13
  • 13
  • 13
  • 12
  • 11
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Výpočetní a experimentální analýzy jaderných paliv nové generace / Experimental and calculational analyses of new generation nuclear fuels

Tioka, Jakub January 2021 (has links)
The search for Accident tolerant fuels (ATF) which is the first part of this thesis is currently one of the most actual topics in the field of nuclear fuels. These fuels must be first successfully tested in operational and also accident conditions for their possible inclusion in commercial use. Following part of the thesis specifically focuses on the boiling crisis in nuclear reactors which can damage the nuclear fuel cladding. Therefore, it is necessary to know the critical heat flux value and the departure from nuclear boiling ratio. Calculations which determine critical heal flux value are placed in the practical part of the thesis. Calculations are compared with the data obtained during experiments. The ALTHAMC12 and the other correlations which are based on the previous measurements are used for the computational analysis.
52

Entwicklung und Validierung eines Verfahrens zur Zustandsüberwachung des Reaktordruckbehälters während auslegungsüberschreitender Unfälle in Druckwasserreaktoren

Schmidt, Sebastian 14 February 2018 (has links)
Für den zielgerichteten Einsatz von präventiven und mitigativen Notfallmaßnahmen sowie zur Beurteilung ihrer Wirksamkeit während auslegungsüberschreitender Unfälle in Druckwasserreaktoren aber auch für Hinweise zum Störfallverlauf und für die Abschätzung der Auswirkungen auf die Anlagenumgebung müssen geeignete Störfallinstrumentierungen vorhanden sein. Insbesondere der Zustand des Reaktordruckbehälterinventars (RDB-Inventar) während der In-Vessel-Phase eines auslegungsüberschreitenden Unfalls lässt sich mit aktuellen Störfallinstrumentierungen nur stark eingeschränkt überwachen, wodurch die o. g. Forderungen nicht erfüllt werden können. Die vorliegende Arbeit beinhaltet detaillierte Untersuchungen für die Entwicklung einer Störfallinstrumentierung, welche eine durchgängige Zustandsüberwachung des RDB-Inventars während der In-Vessel-Phase eines auslegungsüberschreitenden Unfalls ermöglicht. Die Störfallinstrumentierung basiert auf der Messung und Klassifikation von unterschiedlichen Gammaflussverteilungen, welche während der In-Vessel-Phase außerhalb des Reaktordruckbehälters auftreten können. Ausgehend von der Analyse zum Stand von Wissenschaft und Technik wird der modell-basierte Ansatz für Structural Health Monitoring-Systeme genutzt, um eine grundlegende Vorgehensweise für die Entwicklung der Störfallinstrumentierung zu erarbeiten. Anschließend erfolgt eine detaillierte Analyse zu den Vorgängen während der In-Vessel-Phase und eine daraus abgeleitete Definition von Kernzuständen für einen generischen Kernschmelzunfall. Für die definierten Kernzustände werden mittels Simulationen (Monte-Carlo-Simulationen zum Gammastrahlungstransport in einem zu dieser Arbeit parallel laufenden Vorhaben) Gammaflüsse außerhalb des Reaktordruckbehälters berechnet. Die Simulationsergebnisse dienen dem Aufbau von Datenbasen für die Entwicklung und Analyse eines Modells zur Klassifikation von Gammaflussverteilungen. Für die Entwicklung des Klassifikationsmodells kommen drei diversitäre und unabhängig arbeitende Klassifikationsverfahren (Entscheidungsbaum, k-nächste-Nachbarn-Klassifikation, Multilayer Perzeptron) zur Anwendung, um die Identifikationsgenauigkeit und Robustheit der Störfallinstrumentierung zu erhöhen. Die abschließenden Betrachtungen umfassen die Validierung der Störfallinstrumentierung mittels eines Versuchstandes zur Erzeugung unterschiedlicher Gammaflussverteilungen. Im Ergebnis der Untersuchungen konnte die prinzipielle Funktionsweise der entwickelten Störfallinstrumentierung nachgewiesen werden. Unter der Voraussetzung, die Gültigkeit der definierten Kernzustände zu untermauern sowie weitere, nicht in dieser Arbeit betrachtete Kernschmelzszenarien mit in die Entwicklung der Störfallinstrumentierung einzubeziehen, steht somit insbesondere für zukünftige Kernkraftwerke mit Druckwasserreaktoren eine Möglichkeit für die messtechnische Überwachung des RDB-Inventars während auslegungsüberschreitender Unfälle bereit. Die Arbeit leistet einen wesentlichen Beitrag auf dem Gebiet der Reaktorsicherheitsforschung sowie für den sicheren Betrieb von kerntechnischen Anlagen.:1 Einleitung 2 Analyse zum Stand von Wissenschaft und Technik 2.1 Sicherheit in deutschen Kernkraftwerken mit Druckwasserreaktor 2.1.1 Mehrstufenkonzept 2.1.2 Störfallinstrumentierungen 2.2 Auslegungsüberschreitende Unfälle mit Kernschmelze in DWR 2.2.1 Auslösende Ereignisse 2.2.2 Grundlegender Ablauf eines auslegungsüberschreitenden Unfall mit Kernschmelze 2.3 Strahlungstechnik, Strahlungsmesstechnik 2.3.1 Grundlagen der Strahlungstechnik 2.3.2 Wechselwirkungen von Gammastrahlung mit Materie 2.3.3 Messung ionisierender Strahlung 2.4 Verfahren und Methoden der Zustandsüberwachung 2.4.1 Zustandsüberwachung 2.4.2 Structural Health Monitoring 2.4.3 Mustererkennung 2.4.4 Entscheidungsbäume 2.4.5 k-nächste-Nachbarn-Klassifikation 2.4.6 Künstliche neuronale Netze 2.5 Schlussfolgerungen aus der Analyse zum Stand von Wissenschaft und Technik 2.5.1 Zusammenfassung zum Kapitel 2 2.5.2 Zielstellung, Aufbau und Abgrenzung der Arbeit 3 Analyse der In-Vessel-Phase und Definition von Kernzuständen 3.1 Detaillierte Analyse der In-Vessel-Phase 3.1.1 Auftretende Temperaturbereiche 3.1.2 Vorgänge während der frühen In-Vessel-Phase 3.1.3 Vorgänge während der späten In-Vessel-Phase 3.1.4 Spaltproduktfreisetzung 3.2 Definition von Kernzuständen für einen generischen Kernschmelzunfall 3.3 Zusammenfassung zum Kapitel 3 4 Datenbasen zur Entwicklung und Analyse des Klassifikationsmodells 4.1 Beschreibung der Monte-Carlo-Simulationsmodell 4.2 Beschreibung der Simulationsergebnisse und Merkmalsextraktion 4.3 Datenbasis zur Entwicklung 4.4 Datenbasen zur Analyse 4.5 Zusammenfassung zum Kapitel 4 5 Entwicklung und Analyse des Klassifikationsmodells 5.1 Beschreibung des Klassifikationsmodells 5.2 Teilmodell 1 - Entscheidungsbaum 5.2.1 Entwicklung 5.2.2 Analyse der Identifikationsgenauigkeit 5.3 Teilmodell 3 - k-nächste-Nachbarn-Klassifikation 5.3.1 Entwicklung 5.3.2 Analyse der Identifikationsgenauigkeit 5.4 Teilmodell 3 - Multilayer Perzeptron 5.4.1 Trainings- und Testdatenbasis 5.4.2 Entwicklung 5.4.3 Analyse der Identifikationsgenauigkeit 5.5 Teilmodell 4 - Vergleichsalgorithmus 5.5.1 Entwicklung 5.5.2 Analyse der Identifikationsgenauigkeit 5.6 Analysen zur Robustheit des Klassifikationsmodells 5.6.1 Ausfall einzelner Gammastrahlungsdetektoren 5.6.2 Gleichzeitiger Ausfall mehrerer Gammastrahlungsdetektoren 5.7 Zusammenfassung und Schlussfolgerungen für das Kapitel 5 6 Validierung der Kernzustandsüberwachungsverfahren 6.1 Zielstellung und Vorgehensweise 6.2 Versuchstand zur Validierung 6.2.1 Aufbau 6.2.2 Funktionsweise 6.3 Anpassung der Kernzustandsüberwachungsverfahren an den Versuchsstand 6.4 Validierungsexperimente 6.4.1 Experiment 1 - Füllstandsänderungen 6.4.2 Experiment 2 - Quellenbewegungen 6.4.3 Experiment 3 - Füllstandsänderungen, Quellenbewegungen und Änderung von Profilkonturen 6.5 Zusammenfassung und Schlussfolgerungen für das Kapitel 6 7 Zusammenfassung und Ausblick
53

Development and validation of a multi-scale and multi-physics methodology for the safety analysis of fast transients in Light Water Reactors

Hidalga García-Bermejo, Patricio 25 January 2021 (has links)
[ES] La tecnología nuclear para el uso civil genera más preocupación por la seguridad que muchas otras tecnologías que se usan a diario. La Autoridad Nuclear define las bases de cómo debe realizarse la operación segura de una Central Nuclear. De acuerdo a las directrices establecidas por la Autoridad Nuclear, una Central Nuclear debe analizar una envolvente de escenarios hipotéticos y comprobar de manera determinista que los criterios de aceptación para dicho evento se cumplen. El Análisis Determinista de Seguridad utiliza herramientas de simulación que aplican la física conocida sobre el comportamiento de la Central Nuclear para evaluar la evolución de una variable de seguridad y asegurar que los límites no se sobrepasan. El desarrollo de la tecnología informática, de los métodos matemáticos y de la física que envuelve el comportamiento de una Central Nuclear han proporcionado herra-mientas de simulación potentes que son capaces de predecir el comportamiento de las variables de seguridad con una importante precisión. Esto permite analizar escenarios de manera más realista evitando asumir condiciones conservadoras que hasta la fecha compensaban la falta de conocimiento modelado en las herramientas de simulación. Las herramientas conocidas como De Mejor Estimación son capaces de analizar even-tos transitorios en diferentes escalas. Además, emplean modelos analíticos de las dife-rentes físicas más detallados, así como correlaciones experimentales más realistas y actuales. Un paso adelante en el Análisis Determinista de Seguridad pretende combinar las diferentes herramientas de Mejor Estimación que se emplean para analizar las dis-tintas físicas de una Central Nuclear, considerando incluso la interacción entre ellas y el análisis progresivo a diferentes escalas, llegando a analizar fenómenos más locales si es necesario. Para este fin, esta tesis presenta una metodología de análisis multi-físico y multi-escala que emplea diferentes códigos de simulación analizando el escenario propuesto a dife-rentes escalas, es decir, desde un nivel de planta que incluye los distintos componentes, hasta el volumen de control que supone el refrigerante pasando entre las varillas de combustible. Esta metodología permite un flujo de información que va desde el análi-sis a mayor escala hasta el de menor escala. El desarrollo de esta metodología ha sido validado con datos de planta para poder evaluar el alcance de esta metodología y pro-porcionar nuevas líneas de trabajo futuro. Además, se han añadido los resultados de los distintos procesos de validación y verificación que han surgido a lo largo de este trabajo. / [CA] La tecnologia nuclear per a l'ús civil genera més preocupació per la seguretat que moltes altres tecnologies d'ús quotidià. L'Autoritat Nuclear defineix les bases de com ha de realitzar-se l'operació segura d'una Central Nuclear. D'acord amb les directrius establertes per l'Autoritat Nuclear, una Central Nuclear ha d'analitzar una envoltant d'escenaris hipotètics I comprovar de manera determinista que els criteris d'acceptació per a l'esdeveniment seleccionat es compleixen. L'Anàlisi Determinista de Seguretat utilitza eines de simulació que apliquen la física coneguda sobre el comportament de la Central Nuclear per avaluar l'evolució d'una variable de seguretat i assegurar que els límits no es traspassen. El desenvolupament de la tecnologia informàtica, els mètodes matemàtics i de la física que envolta el comportament d'una Central Nuclear han proporcionat eines de simulació potents amb capacitat de predir el comportament de les variables de seguretat amb una precisió significativa. Això permet analitzar escenaris de manera realista evitant assumir condicions conservadores que fins al moment compensaven la mancança de coneixement. Les eines de simulació conegudes com De Millor Estimació son capaces d'analitzar esdeveniment transitoris a diferent escales. A més, utilitzen models analítics per a les diferents físiques amb més detall així com correlacions experimentals més actualitzades i realistes. Un pas més endavant en l'Anàlisi Determinista de Seguretat pretén combinar les diferents eines de Millor Estimació que se utilitzen per analitzar les distintes físiques d'una Central Nuclear, considerant inclús la interacció entre ells i l'anàlisi progressiu a diferents escales, amb la finalitat de poder analitzar fenòmens locals. Per a aquest fi, esta tesi presenta una metodologia d'anàlisi multi-física i multi-escala que utilitza diferents codis de simulació analitzant l'escenari proposat a diferents escales, és a dir, des d'un nivell de planta que inclou els distints components, fins al volum de control que suposa el refrigerant passant entre les varetes de combustible. Esta metodologia permet un flux de informació que va des de l'anàlisi d'una escala major a una menor. El desenvolupament d'aquesta metodologia ha sigut validada i verificada amb dades de planta i els resultats han sigut analitzats a fi d'avaluar la capacitat de la metodologia i les possibles línies de treball futur. A més s'han afegit els principals resultats de verificació i validació que han sorgit en les distintes etapes d'aquest treball. / [EN] The nuclear technology for civil use has generated more concerns for the safety than several other technologies applied to the daily life. The Nuclear Regulators define the basis of how the Safety Operation of Nuclear Power Plants is to be done. According to these guidelines, a Nuclear Power Plant must analyze an envelope of hypothetical events and deterministically define if the acceptance criteria for these events is met. The Deterministic Safety Analysis uses simulation tools that apply the physics known in the behavior of the Nuclear Power Plant to evaluate the evolution of a safety varia-ble and assure that the safety limits will not be exceeded. The development of the computer science, the numerical methods and the physics involved in the behavior of a Nuclear Power Plant have yield powerful simulation tools that are capable to predict the evolution of safety variables which significant accuracy. This allows to consider more realistic simulation scenarios instead of con-servative approaches in order to compensate the lack of knowledge in the applied prediction methods. The so called Best Estimate simulation tools are capable to analyze the transient events in different scales. Furthermore, they account more detailed analytical models and experimental correlations. A step forward in the Deterministic Safety Analysis intends to combine the Best Estimate simulation tools of the different physics considering the interaction among them and analyzing the different scales, considering more local approaches if necessary. For this purpose, this thesis work presents a multi-scale and multi-physics methodology that uses different physics codes and has the aim of modeling postulated scenarios in different scales, i.e. from system models representing the components of the plants to the subchannel models that analyze the behavior of the coolant between the fuel rods. This methodology allows a flow of information where the output of one scale is used as input in a more detailed scale to predict a more local analysis of parameters, such as the Critical Power Ratio, which are of great importance for the estimation of safety margins. The development of this methodology has been validated against plant data with the aim of evaluating the scope of this methodology and in order to provide future lines of development. In addition, different results of the validation and verifi-cation yielded in the development of the parts of this methodology are presented. / Hidalga García-Bermejo, P. (2020). Development and validation of a multi-scale and multi-physics methodology for the safety analysis of fast transients in Light Water Reactors [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/160135 / TESIS
54

Development of a Nordic BWR plant model in APROS and design of a power controller using the control rods / Utveckling av en nordisk BWR-anläggningsmodell i APROS och design av ett effektregleringssystem med hjälp av styrstavarna

Al-Ani, Jonathan January 2021 (has links)
In this master thesis an input-model of a Nordic BWR power plant has been developed in APROS. The plant model contains key systems and major thermohydraulic components of the steam cycle, including I&C systems (i.e. power, pressure, level and flow controls). The plant model is primarily designed for balance of plant studies at discrete power levels. The input-model of the power plant focuses especially on the steam cycle which is crucial for analysing water and steam behaviour and its influence on the reactor power. At the current stage, the model primarily handles steady-state conditions of full-power operation, which has been the design point. It has also been shown that reduced-power operation can be simulated with a reasonable trendline of pressure and temperature progression over facility components. / Inom ramen för examensarbete har en indatafil (modell) av en nordisk kokvattenreaktor, BWR, utvecklats i simuleringsverktyget APROS. Anläggningsmodellen är främst utformad för att simulera diskreta effektnivåer och innehåller viktiga system och termohydrauliska komponenter som ingår i ångcykeln, inklusive instrumenterings- och kontrollutrustning (dvs. effekt-, tryck-, nivå- och flödesreglering). Fokus har lagts särskilt på att få till en bra representation av ångcykeln, vilket är avgörande för analys av vatten- och ångbeteendet och dess påverkan på reaktoreffekten. Modellen kan främst användas för simulering av jämviktstillstånd vid full effektdrift och till en viss grad även reducerad effektdrift.
55

Corrosion Study Of Interstitially Hardened SS 316L AND IN718 In Simulated Light Water Reactor Conditions

Niu, Wei January 2017 (has links)
No description available.
56

Development, validation and application of an effective convectivity model for simulation of melt pool heat transfer in a light water reactor lower head

Tran, Chi Thanh January 2007 (has links)
Severe accidents in a Light Water Reactor (LWR) have been a subject of the research for the last three decades. The research in this area aims to further understanding of the inherent physical phenomena and reduce the uncertainties surrounding their quantification, with the ultimate goal of developing models that can be applied to safety analysis of nuclear reactors. The research is also focusing on evaluation of the proposed accident management schemes for mitigating the consequences of such accidents. During a hypothetical severe accident, whatever the scenario, there is likelihood that the core material will be relocated and accumulated in the lower plenum in the form of a debris bed or a melt pool. Physical phenomena involved in a severe accident progression are complex. The interactions of core debris or melt with the reactor structures depend very much on the debris bed or melt pool thermal hydraulics. That is why predictions of heat transfer during melt pool formation in the reactor lower head are important for the safety assessment. The main purpose of the present study is to advance a method for describing turbulent natural convection heat transfer of a melt pool, and to develop a computational platform for cost-effective, sufficiently-accurate numerical simulations and analyses of Core Melt-Structure-Water Interactions in the LWR lower head during a postulated severe core-melting accident. Given the insights gained from Computational Fluid Dynamics (CFD) simulations, a physics-based model and computationally-efficient tools are developed for multi-dimensional simulations of transient thermal-hydraulic phenomena in the lower plenum of a Boiling Water Reactor (BWR) during the late phase of an in-vessel core melt progression. A model is developed for the core debris bed heat up and formation of a melt pool in the lower head of the reactor vessel, and implemented in a commercial CFD code. To describe the natural convection heat transfer inside the volumetrically decay-heated melt pool, we advanced the Effective Convectivity Conductivity Model (ECCM), which was previously developed and implemented in the MVITA code. In the present study, natural convection heat transfer is accounted for by only the Effective Convectivity Model (ECM). The heat transport and interactions are represented through an energy-conservation formulation. The ECM then enables simulations of heat transfer of a high Rayleigh melt pool in 3D large dimension geometry. In order to describe the phase-change heat transfer associated with core debris, a temperature-based enthalpy formulation is employed in the ECM (the phase-change ECM or so called the PECM). The PECM is capable to represent possible convection heat transfer in a mushy zone. The simple approach of the PECM method allows implementing different models of the fluid velocity in a mushy zone for a non-eutectic mixture. The developed models are validated by a dual approach, i.e., against the existing experimental data and the CFD simulation results. The ECM and PECM methods are applied to predict thermal loads to the vessel wall and Control Rod Guide Tubes (CRGTs) during core debris heat up and melting in the BWR lower plenum. Applying the ECM and PECM to simulations of reactor-scale melt pool heat transfer, the results of the ECM and PECM calculations show an apparent effectiveness of the developed methods that enables simulations of long term accident transients. It is also found that during severe accident progression, the cooling by water flowing inside the CRGTs plays a very important role in reducing the thermal load on the reactor vessel wall. The results of the CFD, ECM and PECM simulations suggest a potential of the CRGT cooling as an effective mitigative measure during a severe accident progression. / QC 20101119
57

Fuel failure analysis in Boiling Water Reactors (BWR) using Machine Learning. : A comparison of different machine learning algorithms and their performance at predicting fuel failures.

Borg, Sofia January 2024 (has links)
In collaboration with Westinghouse Electric AB this project aims to study the possibilities with using machine learning methods to predict fuel failure in a Boiling Water Reactors (BWRs). The main objective has been to create a dataset consisting of both empirical measurements and simulated samples from a physics model and evaluate different machine learning algorithms, that use these datasets to predict fuel defects. The simulated data is created using a physics model derived from the ANS-5.4 standard which allows for good control over specific parameter values. Three machine learning algorithms were deemed fit for this type of problem and used throughout the project: Random Forest (RF), K-Nearest Neighbor (KNN) and Neural Network (NN). Both classification and regression type problems have been assessed. All three methods showed good results for the classification problems, where the goal was to predict if there was a fuel failure or not. All models reached an accuracy above 97% and performed well, the RF model had the highest overall, with an accuracy of 98.2 %. However, the NN method made the fewest false negative predictions and can therefore be seen as the best model for this purpose. For the regression, problems with the aim of predicting escape rates, both the RF and KNN had similar promising results with very small errors overall. Yet, there is a slight increase in errors when predicting higher escape rates for both models. This is most likely due to the available data being of mostly low escape rates. The NN did not perform well with this problem, the predictions having large error for both low and high escape rates, a possible explanation is the lack of data. To improve the results, and create even better models, the empirical measurements need to contain more information such as defect location and fuel failure size, also an increase in the number of samples taken at fuel failure operation would be valuable.
58

Feed-and-bleed transient analysis of OSU APEX facility using the modern Code Scaling, Applicability, and Uncertainty method

Hallee, Brian Todd 05 March 2013 (has links)
The nuclear industry has long relied upon bounding parametric analyses in predicting the safety margins of reactor designs undergoing design-basis accidents. These methods have been known to return highly-conservative results, limiting the operating conditions of the reactor. The Best-Estimate Plus Uncertainty (BEPU) method using a modernized version of the Code-Scaling, Applicability, and Uncertainty (CSAU) methodology has been applied to more accurately predict the safety margins of the Oregon State University Advanced Plant Experiment (APEX) facility experiencing a Loss-of-Feedwater Accident (LOFA). The statistical advantages of the Bayesian paradigm of probability was utilized to incorporate prior knowledge when determining the analysis required to justify the safety margins. RELAP5 Mod 3.3 was used to accurately predict the thermal-hydraulics of a primary Feed-and-Bleed response to the accident using assumptions to accompany the lumped-parameter calculation approach. A novel coupling of thermal-hydraulic and statistical software was accomplished using the Symbolic Nuclear Analysis Package (SNAP). Uncertainty in Peak Cladding Temperature (PCT) was calculated at the 95/95 probability/confidence levels under a series of four separate sensitivity studies. / Graduation date: 2013
59

Effective Spatial Mapping for Coupled Code Analysis of Thermal–Hydraulics/Neutron–Kinetics of Boiling Water Reactors

Peltonen, Joanna January 2013 (has links)
Analyses of nuclear reactor safety have increasingly required coupling of full three dimensional neutron kinetics (NK) core models with system transient thermal–hydraulics (TH) codes.  In order to produce results within a reasonable computing time, the coupled codes use two different spatial description of the reactor core.  The TH code uses few, typically 5 to 20 TH channels, which represent the core.  The NK code uses explicit one node for each fuel assembly.  Therefore, a spatial mapping of a coarse grid TH and a fine grid NK domain is necessary.  However, improper mappings may result in loss of valuable information, thus causing inaccurate prediction of safety parameters. The purpose of this thesis is to study the effectiveness of spatial coupling (channel refinement and spatial mapping) and develop recommendations for NK/TH mapping in simulation of safety transients.  Additionally, sensitivity of stability (measured by Decay Ratio and Frequency) to the different types of mapping schemes, is analyzed against OECD/NEA Ringhals–1 Stability Benchmark data. The research methodology consists of spatial coupling convergence study, by increasing the number of TH channels and varying mapping approaches, up to and including the reference case.  The reference case consists of one-to-one mapping: one TH channel per one fuel assembly.  The comparisons of the results are done for steady–state and transient results.  In this thesis mapping (spatial coupling) definition is formed and all the existing mapping approaches were gathered, analyzed and presented.  Additionally, to increase the efficiency and applicability of spatial mapping convergence, a new mapping methodology has been proposed.  The new mapping approach is based on hierarchical clustering method; the method of unsupervised learning that is adopted by many researchers in many different scientific fields, thanks to its flexibility and robustness.  The proposed new mapping method turns out to be very successful for spatial coupling problem and can be fully automatized allowing for significant time reduction in mapping convergence study. The steady–state results obtained from three different plant models for all the investigated cases are presented.  All models achieved well converged steady–state and local parameters were compared and it was concluded that solid basis for further transient analysis was found.  Analyzing the mapping performance, the best predictions for steady–state conditions are the mappings that include the power peaking factor feature alone or with any combination of other features.  Additionally it is of value to keep the core symmetry (symmetry feature).  The big part of this research is devoted to transient analysis.  The selection of transients was done such that it covers a wide range of transients and gathered knowledge may be used for other types of transients.  As a representative of a local perturbation, Control Rod Drop Accident was chosen.  A specially prepared Feedwater Transient was investigated as a regional perturbation and a Turbine Trip is an example of a global one.  In the case of local perturbation, it has been found that a number of TH channels is less important than the type of mapping, so a high number of TH channels does not guarantee improved results.  To avoid unnecessary averaging and to obtain the best prediction, hot channel and core zone where accident happens should be always separated from the rest.  The best performance is achieved with mapping according power peaking factors, and therefore this one is recommended for such type of perturbation. The regional perturbation has been found to be more challenging than the others.  This kind of perturbation is strongly dependent on mapping type that affects the power increase rate, SCRAM time, onset of instability, development of limit cycle, etc.  It has been also concluded that a special effort is needed for input model preparation.   In contrast to the regional perturbation, the global perturbation is found to be the least demanding transient.  Here, the number of TH channels and type of mapping do not have significant impact on average plant behaviour – general plant response is always well recreated.  A special effort has also been paid to investigate the core stability performance, in both global and regional mode.  It has been found that in case of unstable cores, a low number of TH channels significantly suppresses the instability.  For these cases number of TH channels is very important and therefore at least half of the core has to be modeled to have a confidence in predicted DR and FR.  In case of regional instability in order to get correct performance of out-of-phase oscillations, it is recommended to use full-scale model.  If this is not possible, the mapping which is a mixture of 1st power mode and power peaking factors, should be used. The general conclusions and recommendations are summarized at the end of this thesis.  Development of these recommendations was one of the purposes of this investigation and they should be taken into consideration while designing new coupled TH/NK models and choosing mapping strategy for a new transient analysis. / <p>QC 20130516</p>
60

Thermomechanische Modellierung eines Reaktordruckbehälters in der Spätphase eines Kernschmelzunfalls / Thermomechanical Modelling of a Reactor Pressure Vessel during the Late Phase of a Core Melt Down Accident

Willschütz, Hans-Georg 16 January 2006 (has links) (PDF)
Considering the late in-vessel phase of an unlikely core melt down scenario in a light water reactor (LWR) with the formation of a corium pool in the lower head of the reactor pressure vessel (RPV) the possible failure modes of the RPV and the time to failure have to be investigated to assess the possible loadings on the containment. In this work, an integral model was developed to describe the processes in the lower plenum of the RPV. Two principal model domains have to be distinguished: The tem-perature field within the melt and RPV is calculated with a thermodynamic model, while a mechanical model is used for the structural analysis of the vessel wall. In the introducing chapters a description is given of the considered accident scenario and the relevant analytical, experimental, and numerical investigations are discussed which were performed worldwide during the last three decades. Following, the occurring physical phenomena are analysed and the scaling differences are evaluated between the FOREVER-experiments and a prototypical scenario. The thermodynamic and the mechanical model can be coupled recursively to take into account the mutual influence. This approach not only allows to consider the temperature dependence of the material parameters and the thermally induced stress in the mechanical model, it also takes into account the response of the temperature field itself upon the changing vessel geometry. New approaches are applied in this work for the simulation of creep and damage. Using a creep data base, the application of single creep laws could be avoided which is especially advantageous if large temperature, stress, and strain ranges have to be covered. Based on experimental investigations, the creep data base has been developed for an RPV-steel and has been validated against creep tests with different scalings and geometries. It can be stated, that the coupled model is able to exactly describe and predict the vessel deformation in the scaled integral FOREVER-tests. There are uncertainties concerning the time to failure which are related to inexactly known material parameters and boundary conditions. The main results of this work can be summarised as follows: Due to the thermody-namic behaviour of the large melt pool with internal heat sources, the upper third of the lower RPV head is exposed to the highest thermo-mechanical loads. This region is called hot focus. Contrary to that, the pole part of the lower head has a higher strength and therefore relocates almost vertically downwards under the combined thermal, weight and internal pressure load of the RPV. On the one hand, it will be possible by external flooding to retain the corium within the RPV even at increased pressures and even in reactors with high power (as e.g. KONVOI). On the other hand, there is no chance for melt retention in the considered scenario if neither internal nor external flooding of the RPV can be achieved. Two patents have been derived from the gained insights. Both are related to passively working devices for accident mitigation: The first one is a support of the RPV lower head pole part. It reduces the maximum mechanical load in the highly stressed area of the hot focus. In this way, it can prevent failure or at least extend the time to failure of the vessel. The second device implements a passive accident mitigation measure by making use of the downward movement of the lower head. Through this, a valve or a flap can be opened to flood the reactor pit with water from a storage reservoir located at a higher position in the reactor building. With regard to future plant designs it can be stated - differing from former presumptions - that an In-Vessel-Retention (IVR) of a molten core is possible within the reactor pressure vessel even for reactors with higher power. / Für das unwahrscheinliche Szenario eines Kernschmelzunfalls in einem Leichtwasserreaktor mit Bildung eines Schmelzesees in der Bodenkalotte des Reaktordruckbehälters (RDB) ist es notwendig, mögliche Versagensformen des RDB sowie Versagenszeiträume zu ermitteln, um die daraus resultierende mögliche Belastung des Sicherheitsbehälters bestimmen zu können. In dieser Arbeit wird ein integrales Modell entwickelt, das die Vorgänge im unteren Plenum beschreibt. Dabei sind zwei prinzipielle Modellbereiche zu unterscheiden: Das Temperaturfeld in der Schmelze und im RDB wird mit einem thermodynamischen Modell berechnet, während für die Strukturanalyse des RDB ein mechanisches Modell verwendet wird. Zunächst werden das betrachtete Unfallszenario dargestellt und die bisher in den letzten drei Dekaden weltweit durchgeführten wesentlichen analytischen, experimentellen und numerischen Untersuchungen diskutiert. Anschließend werden die auftretenden physikalischen Vorgänge analysiert. Gleichzeitig werden Skalierungsunterschiede zwischen den in dieser Arbeit betrachteten Experimenten der FOREVER-Reihe und einem prototypischen Szenario herausgearbeitet. Das thermodynamische und das mechanische Modell können rekursiv gekoppelt werden, wodurch die wechselseitige Beeinflussung berücksichtigt werden kann. Insbesondere werden damit neben der Temperaturabhängigkeit der Materialparameter und den thermisch induzierten Spannungen im mechanischen Modell auch die Rückwirkungen der Behälterverformung auf das Temperaturfeld selber erfasst. Für die Kriech- und Schädigungssimulation werden in dieser Arbeit neue Verfahren angewendet. Durch die Entwicklung und den Einsatz einer Kriechdatenbasis konnte die bei sehr unterschiedlichen Temperaturen, Spannungen und Dehnungen ungeeignete Verwendung einzelner Kriechgesetze umgangen werden. Aufbauend auf experimentellen Untersuchungen wurde eine Kriechdatenbasis für einen RDB-Stahl entwickelt und an Hand von Kriechversuchen verschiedener Geometrie und Dimension validiert. Als Ergebnis lässt sich festhalten, dass das gekoppelte Modell prinzipiell in der Lage ist, die Behälterdeformation im Falle der skalierten FOREVER-Experimente exakt zu beschreiben bzw. vorherzusagen. Unsicherheiten bezüglich der Versagenszeit resultieren aus nicht exakt bekannten Materialparametern und Randbedingungen. Die wesentlichen Ergebnisse dieser Arbeit lassen sich wie folgt zusammenfassen: Aufgrund des thermodynamischen Verhaltens eines großen Schmelzesees mit inneren Wärmequellen erfolgt die höchste thermomechanische Belastung des RDB im oberen Drittel der Bodenkalotte. Dieser Bereich wird als heißer Fokus bezeichnet. Der untere Bereich der Kalotte weist hingegen eine höhere Festigkeit auf und verlagert sich deswegen bei entsprechender Belastung des RDB im wesentlichen senkrecht nach unten. Bei einer externen Flutung besteht auch bei hohen Innendrücken für einen Reaktor großer Leistung (KONVOI) die Möglichkeit, die Schmelze im RDB zurückzuhalten. Ohne interne oder externe Flutung besteht für das betrachtete Szenario keine Aussicht für eine Schmelzerückhaltung im RDB. Aus den gewonnenen Erkenntnissen wurden zwei Patente abgeleitet. Dabei handelt es sich um passiv wirkende Einrichtungen zur Schadensbegrenzung: Die erste reduziert durch Abstützen des unteren Kalottenzentrums die Maximalspannungen im hochbeanspruchten Bereich des heißen Fokus und kann damit ein Versagen verhindern oder zumindest verzögern. Die zweite Einrichtung ermöglicht die passive Auslösung einer Flutung, indem die Abwärtsbewegung der Kalotte zur Steuerung genutzt wird. Hierdurch kann beispielsweise ein Ventil geöffnet werden, um Wasser aus im Gebäude höher angeordneten Reservoirs in die Reaktorgrube zu leiten. Abweichend von bisherigen Annahmen kann im Hinblick auf die Entwicklung zukünftiger Baulinien festgehalten werden, dass eine Kernschmelzerückhaltung im Reaktordruckbehälter auch für Reaktoren größerer Leistung möglich ist.

Page generated in 0.0556 seconds