• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 60
  • 60
  • 13
  • 10
  • 10
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Low energy air conditioning for hot climates

Almutairi, Hamad Hhn January 2012 (has links)
Fossil fuels are the major sources of electrical power generation in the world. Among all fossil fuels, oil is considered as the most sought-after fuel. The burden on countries that provide subsidized electricity produced from oil-fired power plants is noteworthy. Kuwait is a notable example of these countries. Electricity in Kuwait is heavily consumed by residential air conditioning, which comprises 60% of the total electricity generated at peak times on a hot summer day. From this perspective, residential air conditioning in Kuwait was selected to undergo further investigation regarding low energy air conditioning choices. Three solutions to control the rapid growth of demand for electricity by residential air conditioning are examined. The first solution investigated assesses the orientation and grouping of houses in Kuwait in order to examine their effect on cooling load and electrical energy consumption for future houses. Four residential cases were developed; each case comprises six typical houses. The cases identified are: (1) single block facing east-west, (2) single block facing north-south, (3) double block facing east-west and (4) double block facing north-south. Cooling loads are calculated using the DesignBuilder building thermal simulation software. Case (2) is found to have the smallest cooling load, and case (1) the largest. The estimated savings from applying case (2) compared to the average of the four cases for the future houses planned to be built by the government by the year 2016 (i.e. approximately 20,000 houses) are found to be approximately .US 33 million of power system capital costs, 15 GWh per year of electrical energy consumption and 11 kilotons per year of CO2 emissions. In the second solution, a lifecycle cost analysis is performed to evaluate the economic feasibilities of electricity driven chilled water system compared to predominant air conditioning system in Kuwaiti houses which is Packaged- Direct Expansion. The study considers the total cash paid by the consumer and the total cash paid by the government, since electricity is subsidized in Kuwait. The study finds that the chilled water system is not cost-effective for consumers due to high installation cost. However, a chilled water system would be cost-effective for the government because it consumes 40%less electrical energy than Packaged-DX. So, the study suggests subsidising the installation of chilled water systems so that the installation cost to the consumer is the same as for Packaged-DX systems. In the third solution, the study examines the viability of a single-effect LiBr absorption chiller driven by steam extracted from the steam turbine in the configuration of a combined cycle power plant (CCPP). The analysis shows that CCPP with absorption chiller yields less net electrical power available to utility grid compared to similar CCPP giving electricity to the grid and to Direct-Expansion air conditioning systems for the same cooling requirements. The reasons for that are the reduction in steam turbine power output resulted from steam extraction, and the amount of electrical energy required to operate the configuration of CCPP with absorption chiller.
52

Rural water supply in the Virginia coalfield counties

Nguyen, Vinh T. T. 26 January 2010 (has links)
Master of Urban and Regional Planning
53

Optimalizace kombinovaného systému ohřevu TUV / Optimalization of the water heating system

Lebeda, Ladislav January 2016 (has links)
This thesis is aimed to enable energy optimization of combined water heating system. The first part deals with the assessment of the general view of thermal solar systems with autonomic power from photovoltaics and description of a particular solar system for energy optimization. Then there is chosen the control system conception based on single-board computer Raspberry Pi, which is complemented by auxiliary measuring and controlling circuit. In the following chapters is described design and implementation of software for control system including web interface. The remote monitoring and controlling of solar heating system is the main purpose of web interface.
54

Evaluating the Impacts of Sustainable Water Use Measures on Drinking Water Microbiology and Chemistry

Christiane J Ley (11199507) 29 July 2021 (has links)
<div>This dissertation focused on examining the potential unintended consequences of sustainability on drinking water quality at the tap. The rising trend in water conservation awareness has given rise to the use of water-efficient appliances and fixtures for residential potable water systems. The first study (Chapter 1) characterized the microbial dynamics at a water-efficient residential building over the course of one year and examined the effects of water stagnation, season, and changes in physicochemical properties on the occurrence of opportunistic pathogen markers. When rainwater harvesting is utilized as an alternative water resource in buildings, a combination of municipal water and rainwater is typically required to meet water demands. However, altering source water chemistry can disrupt pipe scale and biofilm and negatively impact water quality at the distribution level. The second study (Chapter 2) in this dissertation evaluated the potential water quality consequences of using intermittent supplies of municipal water and rainwater within building plumbing systems. Cross-linked polyethylene (PEX) pipes are considered by some to be more sustainable than copper pipes and are commonly installed in building plumbing. The goal of the third study (Chapter 3) was to better understand chemical release from commercially available PEX pipes, to characterize toxicological characteristics of the contact water, and to compare microbial growth potential among the three pipe types. During the COVID-19 pandemic, many commercial and office buildings were closed for extended periods of time, allowing water age to increase over the course of several months. Heightened water age is often associated with an increase in chemical and microbial contamination. The objective of the fourth study (Chapter 4) was to evaluate the impacts of an extended COVID-19 related building closure and stagnation on water quality. The goal of this study was to evaluate the efficacy of flushing and shock chlorination remediation strategies on water quality at the tap. </div><div><br></div><div>This dissertation contains four chapters and each chapter is a single manuscript. The first two chapters have been published.</div><div><br></div><div>“Drinking water microbiology in a water-efficient building: Stagnation, seasonality, and physiochemical effects on opportunistic pathogen and total bacteria proliferation.” (Chapter 1) Utilizing a residential building that had been retrofitted with low-flow fixtures, the unintended water quality consequences of increased stagnation in low-flow plumbing were evaluated over a year long period. The study results indicated that microbial growth and potential opportunistic pathogen markers, Legionella and Mycobacterium spp. were detected at higher levels within the home as compared to the municipal water main. Reduced water usage induced longer stagnation times and longer stagnation times were correlated with an increase in Legionella spp., Mycobacterium spp., and total cell counts.</div><div><br></div><div>“Impacts of Municipal Water−Rainwater Source Transitions on Microbial and Chemical Water Quality Dynamics at the Tap.” (Chapter 2) Altering source water chemistry can disrupt pipe scale and biofilm and negatively impact water quality at the distribution level. Still, it is unknown if similar reactions occur within building plumbing following a transition in source water quality. To date, no prior studies had evaluated the water quality impacts of transitioning between rainwater and municipal groundwater sources in low-flow plumbing. The study revealed that influent water chemistry impacted rates of metal release from plumbing. Because of differences in source water treatment and water chemistry, rainwater and municipal water uniquely interacted with building plumbing and generated distinctively different drinking water chemical and microbial quality profiles. </div><div><br></div><div>“Contaminant Leaching and Toxicological Assessment of Drinking Water in Contact with Cross-linked Polyethylene (PEX) Pipes.” (Chapter 3) Cross-linked polyethylene (PEX) plastic water pipes are increasingly being installed instead of copper pipes for conventional and green building construction. Unlike metal pipe, PEX pipe is easier to install and not vulnerable to corrosion. However, potential health concerns associated with PEX pipe are: 1.) the organic contaminant release that occurs during its service-life, 2.) increased microbial growth compared to metal pipes, and 3.) compound toxicity. Our study goal was to better understand chemical release from commercially available PEX pipes, to characterize toxicological characteristics of the contact water, and to compare microbial growth potential among the three pipe types at varying chlorine concentrations. Results indicated that PEX contact waters did not affect the neurobehavioral development of zebrafish, but affected development in the zebrafish model. Further studies should be conducted to determine how influent water chemistry impacts carbon migration and the water’s toxicity.</div><div><br></div><div>“Water quality during the COVID-19 pandemic: The role of flushing and shock chlorination strategies in reducing building water problems.” (Chapter 4) The COVID-19 pandemic led to widespread “stay at home” orders across the United States. As a result, many office buildings, schools, and commercial buildings were left empty, allowing water age within the plumbing to increase dramatically. Heightened stagnation and water age can lead to increased metal leaching from pipe walls, as well as increases in microbial growth and opportunistic pathogen proliferation. Water quality in a large school building was monitored after approximately six months of being closed due to COVID-19 related restrictions. Upon sampling the building, chemical and microbial water quality indicators were affected by the initial six month stagnation period. To monitor the relationship between shock chlorination and water quality at the tap, samples were collected at fixtures at different time points to gain a better understanding of the effects of shock disinfection on drinking water chemistry and microbiology. This study raises concerns with respect to the impact of extended building closures on drinking water quality and the best approach to remediate and monitor water quality issues thereafter.</div>
55

Tekniska system i Förskolan : Barns uppfattningar kring vatten och avloppssystemet. / Technical systems in preschool : Children's perceptions of water and sewerage system.

Johansson, Malin January 2015 (has links)
The purpose of this study was to examine what kind of knowledge and thoughts pre-school children have on water – and sewage systems. The most interesting part will be to examine which components, of the water – and sewage systems, the children have knowledge about. Another interesting part to look into is whether the children’s age, gender and the pre-schools geographical position affects what the children knows about the systems. The study was implemented through qualitative semi-structured interviews, with 15 children in the ages of 4-6. The investigational method was chosen because I wanted to hear the children’s view on the sewage system. The children were interviewed separately, and all the interviews were started with a discussion about toilets. Questions about water – and sewage systems were then asked, to elicit what each individual child knew about the systems. The result shows that the knowledge about water – and sewage systems differs a lot between the children. Some could only name one component, while others could up to six different parts. The age of the children didn´t affect the results, but it´s clear that the boys had more knowledge about the different systems, than the girls had. The children that go to a pre-school in an urban area generally had more knowledge about Sewage treatment, than the children in the rural area. / Syftet med examensarbetet är att undersöka hur barn ser på vatten och avloppssystemet. Intresset ligger i att undersöka vilka komponenter i vatten och avloppssystemen barnen har kunskaper om. Att jämföra vad som har betydelse för barnens kunskaper är också intressant för att se om barnens ålder, kön och förskolans geografiska läge har betydelse för vilka kunskaper de har. I studien ingick 15 förskolebarn åldern 4-6 år. Kvalitativa semistrukturerade intervjuer användes för att ta reda på barnens uppfattningar om avloppssystemet. Barnen intervjuades var för sig och varje intervju inleddes med att prata om toaletten. Frågor om vatten och avloppssystemet ställdes för att få fram vad varje barn hade för kunskaper. Resultatet visar att kunskaper om vatten och avloppssystemet skiljer sig väldigt mycket mellan barnen, de kunde nämna mellan 1-6st olika komponenter. Ålder har inte betydelse, men pojkarna hade överlag mer koll på de olika systemen än flickorna. Barnen som går på en förskola i tätorten hade generellt mer kunskaper om avloppsreningen än barnen på landsbygden.
56

Essays on Water Infrastructure Investments and Infectious Diseases Management

Kouassi, Régis 06 1900 (has links)
En étant nécessaire à la vie humaine, l’eau est également nécessaire au fonctionnement des économies. Pour qu’elle soit utile à la société, l’eau doit être disponible en quantité et en qualité adéquates, caractéristiques qui ne sont pas toujours disponibles dans la nature. Ainsi, trop ou pas assez d’eau entraînerait des inondations ou des sécheresses, tandis qu’une eau contaminée pourrait être le vecteur de maladies contagieuses mortelles, chacun de ces fléaux entraînant des dommages économiques. Cette thèse est organisée en trois chapitres traitant de thématiques liées aux investissements dans les infrastructures d'eau et à la gestion des maladies infectieuses. Le premier chapitre étudie comment les améliorations apportées aux réseaux d’égouts atténuent les impacts économiques des inondations provoquées par la pluie. Pour estimer l’effet causal de ces investissements, ce chapitre utilise un resserrement inattendu du financement fédéral américain en faveur des réseaux d’égouts, à la suite de l’amendement de 1977 à la politique du Clean Water Act. L'analyse empirique combine un nouveau modèle statistique du risque d'inondation induit par la pluie avec des données horaires sur la quantité de pluie dans les comtés et les codes postaux américains de 1996 à 2019. Les résultats indiquent que des investissements plus importants dans les réseaux d'égouts ont conduit à des réductions substantielles des inondations locales. Les bénéfices de ces investissements sont supérieurs à leurs coûts, économisant près de 23 millions de dollars pour le comté moyen. Dans l’ensemble, ces résultats mettent en évidence à quel point la détérioration des infrastructures publiques peut exacerber les conséquences du changement climatique. Le deuxième chapitre étudie le rôle des épidémies locales de maladies infectieuses dans l'adoption de systèmes centralisés d'approvisionnement en eau dans les premières villes américaines au XIXe siècle. À l’aide d’un vaste corpus de données provenant d’archives de journaux de 1800 à 1896, je construis un nouvel indicateur capturant les épidémies de fièvre jaune, de choléra et de fièvre typhoïde au niveau des villes. Les résultats indiquent que (1) les épidémies locales de maladies infectieuses ont entraîné une augmentation du nombre systèmes d'approvisionnement en eau construits par les villes et ont joué un rôle crucial dans la décision de construire environ 12% des ouvrages d’adduction d’eau en activité en 1897 ; (2) La réponse des villes aux épidémies de typhoïde a été deux fois plus importante que celle qui a suivi les épidémies de fièvre jaune ou de choléra. (3) Les entreprises privées ont construit davantage de nouveaux réseaux d’adduction d’eau après les épidémies locales, tandis que les gouvernements locaux ont procédé à davantage d’améliorations et d’extensions des réseaux d’adduction d’eau publics existants ainsi qu’à des rachats de sociétés d’eau privées. Enfin, je discute du rôle potentiel de divers facteurs sociodémographiques. Le troisième chapitre étudie les coûts économiques associés à une stratégie utilisée pour gérer les épidémies locales lors de la récente pandémie de COVID-19. Dans ce travail en collaboration avec Jian Tang, nous quantifions les effets de la politique ‘zéro-COVID’ à l’aide d’un riche ensemble de données sur les confinements au niveau des comtés en Chine et d’images satellitaires nocturnes. Nous constatons que des confinements plus stricts induisent une forte baisse de la luminosité nocturne au cours de la même période, suivie d’une lente reprise, qui se produit au moins deux trimestres après l’instauration du confinement. En l’absence de contagions généralisées, un comté soumis à un confinement total subit en moyenne une perte de PIB de 6% par rapport aux comtés non confinés. L’effet négatif est particulièrement persistant dans les zones où la production est dominée par les services, par opposition aux zones où la production est dominée par l’activité manufacturière. L’on note par ailleurs la présence d’effets d’entraînement à proximité des comtés confinés, mais ces effets sont de courte durée. / By being necessary to human life, water is also necessary for the functioning of economies. For it to be valuable to society, water should be available in the right quantity and the right quality, characteristics not always available in nature. Hence, too much or too little water would lead to floods or droughts, while tainted water could be the vector of deadly contagious diseases, each of these scourges coming with its economic damages. This thesis is organized into three chapters treating topics related to investments in water infrastructure and the management of infectious diseases. The first chapter studies how improvements in water infrastructure -- sewer systems -- mitigate the economic impacts of rainfall-induced flooding. To estimate the causal impact of these investments, this chapter exploits an unanticipated tightening in federal funding towards sewer systems, following the 1977 Amendment to the Clean Water Act. The empirical analysis combines a novel statistical model of rainfall-induced flood risk with hourly data on precipitation across U.S. counties and ZIP codes from 1996 to 2019. Results indicate that greater investments in sewer systems led to substantial reductions in local flooding. I estimate that the benefits from these investments exceeded their costs, saving nearly $23 million for the average county. Overall, these findings highlight how deteriorating public infrastructure may exacerbate the consequences of climate change. The second chapter studies the role of local outbreaks of infectious diseases in the adoption of centralized water systems in early American cities during the nineteenth century. Using a large corpus of archival newspaper data from 1800 to 1896, I construct a novel measure of city-level outbreaks of yellow fever, cholera, and typhoid fever. Results indicate that (1) infectious disease local outbreaks led to an increase in the number of waterworks constructed by cities and were pivotal in the decision to construct around 12% of waterworks in operation by 1897; (2) Cities’ response to typhoid outbreaks was twice as large as that following yellow fever or cholera outbreaks. (3) Private companies constructed more new waterworks after local outbreaks while local governments operated more improvements and extensions of existing public waterworks as well as takeovers of private water companies. Finally, I discuss the potential role of various socio-demographic factors. The third chapter studies the economic costs associated with a strategy used to manage local outbreaks during the more recent COVID-19 pandemic. In this joint work with Jian Tang, we quantify the effects of the “zero-COVID” policy using a rich set of county-level lockdown events in China and nighttime satellite imagery. We find that more stringent lockdowns induce a large contemporaneous decline in nightlight followed by a slow recovery, which happens at least two quarters after lockdown enactment. Absent widespread contagions, a county under total lockdown incurs on average a 6% GDP loss compared to those without restrictions. The negative effect is particularly persistent in service-heavy areas as opposed to manufacturing-heavy areas. There exists some evidence consistent with spillover effects near counties under lockdown, but these effects are short-lived.
57

Simulation-based design of water harvesting schemes for irrigation

Heiler, Terence David January 1981 (has links)
New Zealand Agricultural Engineering Institute / Also published as: Agricultural Engineering Thesis no. 4 / For large areas of New Zealand that suffer from agricultural drought, the only practicable way of providing irrigation is through the use of water harvesting schemes that divert winter flood water in nearby streams into off-stream storages for irrigation use in the summer. A community water harvesting scheme is presently under construction in the Glenmark area of North Canterbury which was designed using traditional methods. The objectives of this thesis were to assess the limitations of traditional design methods for water harvesting schemes using the Glenmark Scheme as a case study and to develop an improved method based on a systems modelling approach. A daily simulation model was developed that incorporated in a realistic way the engineering, hydrologic, agronomic and economic features of importance to the design of water harvesting schemes in New Zealand. The model was used to study the adequacy of the traditional methods used for the design of the Glenmark Scheme; to arrive at alternative design solutions that achieved higher levels of engineering, agronomic and economic efficiency; and to develop a better understanding of the nature of complex water harvesting systems. It was demonstrated that compounding conservatism inherent in traditional design methods resulted in scheme overdesign and that the ability of the systems model to capture the essential dynamics of the system allowed higher levels of design performance to be achieved. The experience gained in the use of the systems model led to the development of a formalised design procedure for water harvesting schemes that represents an advance on methods hitherto available.
58

ἄριστον μέν ὕδωρ: URBAN PLANNING AND WATER IN AKRAGAS AND METAPONTO

Vasilodimitrakis-Hart, Seraphina 11 1900 (has links)
This thesis examines the water resource management in two Greek colonies in Magna Graecia, Akragas and Metaponto, and the relationship between resource management and political regimes. It asks how similar ancient urban theory was to the practical reality, and if different forms of government made different provisions for water management. Chapter 1 outlines urban and health theories found in the works of ancient theorists. It debunks the idea that Hippodamos was the inventor of grid planning, while introducing the concept of ‘total’ city planning. The focus of Classical scholarship on Athens necessitates discussions of several Athenian water systems and how resource management changed (or continued) through different governments in Athens as a point of comparison for Akragas and Metaponto. This chapter focuses on literary analysis and introduces the controversial Southeast Fountain House, with an in-depth consideration of the fountain’s naming and dating problems. Chapter 2 contains the case studies of Akragas and Metaponto and an exploration of the hydrogeology at the two sites, with an introduction to the hydrological phenomenon of karst activity. A discussion of their unique water features—the kolymbethra at Akragas and the canals in the chora of Metaponto—connects the deliberate planning that occurred in both cities to Hippodamos and the urban theorists. Chapter 3 more fully explores the role of tyrants and democracies in water management. Regardless of authorship, water resource management and water systems are necessary for any city, and so most tyrannical water infrastructure continued to be used and expanded and improved upon even under different governments. Even under tyranny water management is a provision of the state and is engaged with and managed by the citizens of the city. Water management is an essential part of siting and establishing a city, so that it is inseparable from urban planning. / Thesis / Master of Arts (MA)
59

Development of a Methodology to Characterize Sustainability in Hidraulic Systems by Applying Indicators that Evaluate Goals Contained in the Sustainable Development Goals

Garcia Rodriguez, Camila Andrea 21 November 2025 (has links)
Tesis por compendio / [ES] The pursuit of sustainable development in urban areas is crucial due to their significance as the primary human habitat and resource consumer. Rapid urbanization poses significant challenges for city management, necessitating actions to ensure sustainability and mitigate resource depletion. The conservation of water resources turns out to be an important focus, particularly in society's development due to the number of factors that depend on this resource. Water resources are essential for, serving critical roles in human health, agriculture, and industry, while also facilitating economic activities, cultural values, and climate regulation. In this context, the sustainability of water systems encompasses social, environmental, economic, and asset dimensions. Nevertheless, the accelerated social growth, exacerbates the strain on water supplies, necessitating measures to ensure sustainability. Key considerations include ensuring equitable access to water services, minimizing environmental impact, implementing cost-effective policies, and enhancing infrastructure resilience. Adopting sustainable practices encounters obstacles, particularly in data measurement and analysis, hindered by the complexities of emerging technologies. Addressing these challenges requires leveraging indicators to assess progress towards Sustainable Development Goals (SDGs) quantitatively. Despite significant strides, evaluating progress toward SDGs remains a complex task, particularly in urban water systems. Consequently, ongoing efforts are essential to advance sustainable development initiatives and ensure the long-term viability of urban water resources. Even though the SDGs have motivated several projects to advance sustainable development. However, it is complex to determine the progress made in fulfilling these goals, especially in particular cases like urban water systems. The development of a framework to measure sustainability in urban water systems contributes to the decision- making process to optimize system performance across the entire water cycle. These decision-making processes are crucial for various stakeholders, including governmental entities, the general population, and, of course, water resource managers. Considering the above, the main objective of this doctoral thesis consists of the development of a methodology to measure and categorize hydraulic systems according to their contribution to sustainability from their three dimensions. The methodology is based on the implementation of a series of indicators linked to each of the goals of the Sustainable Development Goals established by the UN. In this way and as a result of this work, it will be possible to categorize any type of urban water system with labels that indicate the level of contribution to achieving the SDGs and highlight the importance of water resources in meeting the SDGs. Also, another objective of the methodology's implementation is to validate by assessing the progress of the indicators if it is sufficient, or if acceleration and additional measures are required. This will serve as a benchmarking tool, as a support point for decision-making by the different actors involved in hydraulic management, thus achieving more sustainable water management. To achieve this objective, the doctoral thesis has been developed in three phases, the results of which have been published in 3 articles in indexed journals (JCR). The phases of work development are as follows: (i) Contextualization and development of the methodology (Publication I): an investigation was carried out on the concept of sustainability and what it encompassed, as well as the definition of the goals, their progress, and indicators currently used by both the UN and other entities for the evaluation of these. To complement this, case studies of urban hydraulic systems in which sustainability was evaluated were reviewed. Based on the information collected and as a result of the research, the evaluation methodolo / [CA] La cerca del desenvolupament sostenible en les zones urbanes és crucial a causa de la seua importància com a principal hàbitat humà i consumidor de recursos. La ràpida urbanització planteja desafiaments importants per a la gestió de la ciutat, la qual cosa requerix accions per a garantir la sostenibilitat i mitigar l'esgotament dels recursos. La conservació del recurs hídric resulta ser un focus important, particularment en el desenvolupament de la societat a causa de la quantitat de factors que depenen d'este recurs. Els recursos hídrics són essencials per a exercir funcions crítiques en la salut humana, l'agricultura i la indústria, al mateix temps que faciliten les activitats econòmiques, els valors culturals i la regulació del clima. En este context, la sostenibilitat dels sistemes hídrics abasta dimensions socials, ambientals, econòmiques i d'actius. No obstant això, el creixement social accelerat exacerba la pressió sobre el subministrament d'aigua, la qual cosa requerix mesures per a garantir la sostenibilitat. Les consideracions clau en este assumpte inclouen garantir l'accés equitatiu als servicis d'aigua, minimitzar l'impacte ambiental, implementar polítiques rendibles i millorar la resiliència de la infraestructura. L'adopció de pràctiques sostenibles troba obstacles, particularment en el mesurament i anàlisi de dades, obstaculitzats per les complexitats de les tecnologies emergents. Per a abordar estos desafiaments és necessari aprofitar els indicadors per a avaluar quantitativament el progrés cap als Objectius de Desenvolupament Sostenible (*ODS). Malgrat els importants avanços, avaluar el progrés cap als *ODS continua sent una tasca complexa, particularment en els sistemes d'aigua urbans. En conseqüència, els esforços continus són essencials per a promoure iniciatives de desenvolupament sostenible i garantir la viabilitat a llarg termini dels recursos hídrics urbans. Encara que els *ODS han motivat diversos projectes per a avançar en el desenvolupament sostenible. No obstant això, és complex determinar els avanços en el compliment d'estes metes, especialment en casos particulars com els sistemes d'aigua urbans. El desenvolupament d'un marc per a mesurar la sostenibilitat en els sistemes d'aigua urbans contribuïx al procés de presa de decisions per a optimitzar el rendiment del sistema al llarg de tot el cicle de l'aigua. Estos processos de presa de decisions són crucials per a diverses parts interessades, incloses entitats governamentals, la població en general i, per descomptat, els administradors de recursos hídrics. Considerant l'anterior, l'objectiu principal d'esta tesi doctoral consistix en el desenvolupament d'una metodologia per a mesurar i categoritzar els sistemes hidràulics segons la seua contribució a la sostenibilitat des de les seues tres dimensions. La metodologia es basa en la implementació d'una sèrie d'indicadors vinculats a cadascuna de les metes dels Objectius de Desenvolupament Sostenible establits per l'ONU. D'esta manera i com a resultat d'este treball, serà possible categoritzar qualsevol tipus de sistema d'aigua urbà amb etiquetes que indiquen el nivell de contribució a l'assoliment dels *ODS i ressalten la importància dels recursos hídrics en el compliment dels *ODS. Així mateix, un altre objectiu de la implementació de la metodologia és validar avaluant l'avanç dels indicadors si és suficient, o si es requerix acceleració i mesures addicionals. Això servirà com a ferramenta de benchmarking, com a punt de suport per a la presa de decisions dels diferents actors implicats en la gestió hidràulica, aconseguint així una gestió més sostenible de l'aigua. Per a aconseguir este objectiu, la tesi doctoral s'ha desenvolupat en tres fases, els resultats de les quals s'han publicat en 3 articles en revistes indexades (*JCR). Les fases del desenvolupament del treball són les següents: (i) Contextualització i desenvolupament de la metodologia (Publicació I): es va realitzar una investigació sobre e / [EN] The pursuit of sustainable development in urban areas is crucial due to their significance as the primary human habitat and resource consumer. Rapid urbanization poses significant challenges for city management, necessitating actions to ensure sustainability and mitigate resource depletion. The conservation of water resources turns out to be an important focus, particularly in society's development due to the number of factors that depend on this resource. Water resources are essential for, serving critical roles in human health, agriculture, and industry, while also facilitating economic activities, cultural values, and climate regulation. In this context, the sustainability of water systems encompasses social, environmental, economic, and asset dimensions. Nevertheless, the accelerated social growth, exacerbates the strain on water supplies, necessitating measures to ensure sustainability. Key considerations include ensuring equitable access to water services, minimizing environmental impact, implementing cost-effective policies, and enhancing infrastructure resilience. Adopting sustainable practices encounters obstacles, particularly in data measurement and analysis, hindered by the complexities of emerging technologies. Addressing these challenges requires leveraging indicators to assess progress towards Sustainable Development Goals (SDGs) quantitatively. Despite significant strides, evaluating progress toward SDGs remains a complex task, particularly in urban water systems. Consequently, ongoing efforts are essential to advance sustainable development initiatives and ensure the long-term viability of urban water resources. Even though the SDGs have motivated several projects to advance sustainable development. However, it is complex to determine the progress made in fulfilling these goals, especially in particular cases like urban water systems. The development of a framework to measure sustainability in urban water systems contributes to the decision- making process to optimize system performance across the entire water cycle. These decision-making processes are crucial for various stakeholders, including governmental entities, the general population, and, of course, water resource managers. Considering the above, the main objective of this doctoral thesis consists of the development of a methodology to measure and categorize hydraulic systems according to their contribution to sustainability from their three dimensions. The methodology is based on the implementation of a series of indicators linked to each of the goals of the Sustainable Development Goals established by the UN. In this way and as a result of this work, it will be possible to categorize any type of urban water system with labels that indicate the level of contribution to achieving the SDGs and highlight the importance of water resources in meeting the SDGs. Also, another objective of the methodology's implementation is to validate by assessing the progress of the indicators if it is sufficient, or if acceleration and additional measures are required. This will serve as a benchmarking tool, as a support point for decision-making by the different actors involved in hydraulic management, thus achieving more sustainable water management. To achieve this objective, the doctoral thesis has been developed in three phases, the results of which have been published in 3 articles in indexed journals (JCR). The phases of work development are as follows: (i) Contextualization and development of the methodology (Publication I): an investigation was carried out on the concept of sustainability and what it encompassed, as well as the definition of the goals, their progress, and indicators currently used by both the UN and other entities for the evaluation of these. To complement this, case studies of urban hydraulic systems in which sustainability was evaluated were reviewed. Based on the information collected and as a result of the research, the evaluation methodolo / Garcia Rodriguez, CA. (2024). Development of a Methodology to Characterize Sustainability in Hidraulic Systems by Applying Indicators that Evaluate Goals Contained in the Sustainable Development Goals [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/213236 / Compendio
60

Residential Solar Energy Adoption in a Community Context: Perceptions and Characteristics of Potential Adopters in a West Toronto Neighbourhood

Sherk, Theodore January 2012 (has links)
In the summer of 2007, a single neighbourhood in downtown Toronto contributed at least 13 percent of all residential grid???tie solar photovoltaic (PV) systems sold in the Canadian province of Ontario. On average, PV purchaser households produced 37 percent as much electricity as they consumed. This research investigates solar energy adoption in a community case study. Specifically, it investigates why some residents who sign up for a solar resource assessment through a community solar energy initiative (CSEI) decide to purchase, and others decide not to purchase in the short???term. Characteristics and perceptions of potential adopters are analyzed to better understand their motivations and barriers to adoption. Community energy projects became an official public policy goal in Ontario, with the passing of the Green Energy and Green Economy Act in 2009. Approximately 80 percent of Ontario???s anticipated generation capacity will need to be built, replaced or refurbished within 15 years. In this context, the Ontario Ministry of Energy, Ontario Power Authority, and Deloitte (one of Canada???s leading professional services firms), have partnered with a ???green benefit??? fund, the Community Power Fund, to help local community groups access resources to develop and establish renewable energy projects. Understanding solar energy adoption in a community context is therefore important to improve the effectiveness of such policies, including the disbursement of multi???million dollar grant funds. Differences between purchasers and non???purchasers in respect of adoption behaviour were found in this study to cluster around two general themes. The first theme concerns differences in compatibility of both the concept of solar energy systems, and their physical attributes, with characteristics of potential adopter households. Some compatibility issues are straightforward, e.g. availability of roof space with a southern orientation. Others are more complex, involving several interrelated perceptual and socio???demographic factors. For instance, while both purchasers and non???purchasers rated cost as a very important barrier, purchasers rated the motivation of solar energy systems to reduce climate change higher relative to the barrier of high financial costs than did non???purchasers. Purchasers were also more likely to possess a graduate degree, while non???purchasers were more likely to hold a professional degree. The second general theme relates to potential adopters??? trust and stake in the ability of the community???based initiative to reduce barriers in the adoption process. Since two types of solar energy systems are considered in the case study???PV and thermal (hot water)???differences are explored between each of three respondent groups: solar PV purchasers, solar hot water (SHW) purchasers, and non???purchasers. iv Surveys were used to gather data on adopter perceptions and characteristics. A participatory research design helped identify the research topic. Two main bodies of literature???community???based social marketing (CBSM) and diffusion of innovations theory???were drawn upon to conceptualize the adoption process and interpret the survey findings. These include five models of human behaviour that can be used to guide the design of CBSM campaigns. Diffusion theory was used as a basis for discussing ???perceived innovation attributes???. The study takes an integrated approach by considering both social and technical aspects of solar energy adoption, together with the issues of fuel substitution and household electricity demand.

Page generated in 0.0707 seconds