• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

From localization to delocalization: numerical studies of transport in disordered systems

Römer, Rudolf 22 June 2000 (has links) (PDF)
The present thesis reviews my scientific works on disordered systems from 1995 until today. They can be roughly categorized into three main classes: (1) non-interacting disordered systems, (2) the two-interacting particle problem, and (3) the interplay of disorder and many-particle interaction. A (4)th chapter is concerned with the implementation of the numerical algorithms. The structure of the thesis reflects this division. The reprints have been added at the end of these main divisions according to their context. For the convenience of the reader, I have ordered them in each chapter alphabetically according to the names of the authors. Furthermore, in each citation of my work, the starting page number in the thesis is given, e.g, Ref.\ \cite{EPR97} refers to a paper of Eckle, Punnoose and myself and can be found on page \pageref{EPR97}. Citations which do not refer to my work are numbered and are ordered in the bibliography according to the names of the authors.
2

From localization to delocalization: numerical studies of transport in disordered systems

Römer, Rudolf 19 April 2000 (has links)
The present thesis reviews my scientific works on disordered systems from 1995 until today. They can be roughly categorized into three main classes: (1) non-interacting disordered systems, (2) the two-interacting particle problem, and (3) the interplay of disorder and many-particle interaction. A (4)th chapter is concerned with the implementation of the numerical algorithms. The structure of the thesis reflects this division. The reprints have been added at the end of these main divisions according to their context. For the convenience of the reader, I have ordered them in each chapter alphabetically according to the names of the authors. Furthermore, in each citation of my work, the starting page number in the thesis is given, e.g, Ref.\ \cite{EPR97} refers to a paper of Eckle, Punnoose and myself and can be found on page \pageref{EPR97}. Citations which do not refer to my work are numbered and are ordered in the bibliography according to the names of the authors.
3

Rare events and other deviations from universality in disordered conductors

Uski, Ville 18 July 2001 (has links) (PDF)
Gegenstand dieser Arbeit ist die Untersuchung von statistischen Eigenschaften der ungeordneten Metallen im Rahmen des Anderson-Modells der Lokalisierung. Betrachtet wird ein Elektron auf einem Gitter mit "Nächste-Nachbarn-Hüpfen" und zufälligen potentiellen Gitterplatzenergien. Wegen der Zufälligkeit zeigen die Elektroneigenschaften, zum Beispiel die Eigenenergien und -zustände, irreguläre Fluktuationen, deren Statistik von der Amplitude der Potentialenergie abhängt. Mit steigender Amplitude wird das Elektron immer mehr lokalisiert, was schliesslich zum Metall-Isolator-Übergang führt. In dieser Arbeit wird die Statistik insbesondere im metallischen Bereich untersucht, und dadurch der Einfluss der Lokalisierung an den Eigenschaften des Systems betrachtet. Zuerst wird die Statistik der Matrixelemente des Dipoloperators untersucht. Die numerischen Ergebnisse für das Anderson-Modell werden mit Vorhersagen der semiklassischen Näherung verglichen. Dann wird der spektrale Strukturfaktor betrachtet, der als Fourier-Transformation der zwei-Punkt Zustandsdichtekorrelationsfunktion definiert wird. Dabei werden besonders die nichtuniversellen Abweichungen von den Vorhersagen der Zufallsmatrixtheorie untersucht. Die Abweichungen werden numerisch ermittelt, und danach mit den analytischen Vorhersagen verglichen. Die Statistik der Wellenfunktionen zeigt ebenfalls Abweichungen von der Zufallsmatrixtheorie. Die Abweichungen sind am größten für Statistik der großen Wellenfunktionsamplituden, die sogenannte seltene Ereignisse darstellen. Die analytischen Vorhersagen für diese Statistik sind teilweise widersprüchlich, und deshalb ist es interessant, sie auch numerisch zu untersuchen.
4

Rare events and other deviations from universality in disordered conductors

Uski, Ville 12 July 2001 (has links)
Gegenstand dieser Arbeit ist die Untersuchung von statistischen Eigenschaften der ungeordneten Metallen im Rahmen des Anderson-Modells der Lokalisierung. Betrachtet wird ein Elektron auf einem Gitter mit "Nächste-Nachbarn-Hüpfen" und zufälligen potentiellen Gitterplatzenergien. Wegen der Zufälligkeit zeigen die Elektroneigenschaften, zum Beispiel die Eigenenergien und -zustände, irreguläre Fluktuationen, deren Statistik von der Amplitude der Potentialenergie abhängt. Mit steigender Amplitude wird das Elektron immer mehr lokalisiert, was schliesslich zum Metall-Isolator-Übergang führt. In dieser Arbeit wird die Statistik insbesondere im metallischen Bereich untersucht, und dadurch der Einfluss der Lokalisierung an den Eigenschaften des Systems betrachtet. Zuerst wird die Statistik der Matrixelemente des Dipoloperators untersucht. Die numerischen Ergebnisse für das Anderson-Modell werden mit Vorhersagen der semiklassischen Näherung verglichen. Dann wird der spektrale Strukturfaktor betrachtet, der als Fourier-Transformation der zwei-Punkt Zustandsdichtekorrelationsfunktion definiert wird. Dabei werden besonders die nichtuniversellen Abweichungen von den Vorhersagen der Zufallsmatrixtheorie untersucht. Die Abweichungen werden numerisch ermittelt, und danach mit den analytischen Vorhersagen verglichen. Die Statistik der Wellenfunktionen zeigt ebenfalls Abweichungen von der Zufallsmatrixtheorie. Die Abweichungen sind am größten für Statistik der großen Wellenfunktionsamplituden, die sogenannte seltene Ereignisse darstellen. Die analytischen Vorhersagen für diese Statistik sind teilweise widersprüchlich, und deshalb ist es interessant, sie auch numerisch zu untersuchen.

Page generated in 0.1259 seconds