• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 299
  • 49
  • 36
  • 20
  • 19
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 577
  • 342
  • 111
  • 109
  • 104
  • 97
  • 91
  • 84
  • 73
  • 73
  • 72
  • 69
  • 66
  • 50
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

High efficiency wideband low-power delta-sigma modulators

Lee, Sang Hyeon 19 June 2013 (has links)
Delta-sigma analog-to-digital converters traditionally have been used for low speed, high resolution applications such as measurements, sensors, voice and audio systems. Through continued device scaling in CMOS technology and architectural and circuit level design innovations, they have even become popular for wideband, high dynamic range applications such as wired and wireless communication systems. Therefore, power efficient wideband low power delta-sigma data converters that bridges analog and digital have become mandatory for popular mobile applications today. In this dissertation, two architectural innovations and a development and realization of a state-of-the-art delta-sigma analog to digital converter with effective design techniques in both architectural and circuit levels are presented. The first one is timing-relaxed double noise coupling which effectively provides 2nd order noise shaping in the noise transfer function and overcomes stringent timing requirement for quantization and DEM. The second one presented is a noise shaping SAR quantizer, which provides one order of noise shaping in the noise transfer function. It uses a charge redistribution SAR quantizer and is applied to a timing-relaxed lowdistortion delta-sigma modulator which is suitable for adopting SAR quantizer. Finally a cascade switched capacitor delta-sigma analog-to-digital converter suitable for WLAN applications is presented. It uses a noise folding free double sampling technique and an improved low-distortion architecture with an embedded-adder integrator. The prototype chip is fabricated with a double poly, 4 metal, 0.18μm CMOS process. The measurement result achieves 73.8 dB SNDR over 10 MHz bandwidth. The figure of merit defined by FoM = P/(2 x BW x 2[superscript ENOB]) is 0.27 pJ/conv-step. The measurement results indicate that the proposed design ideas are effective and useful for wideband, low power delta-sigma analog-to-digital converters with low oversampling ratio. / Graduation date: 2012 / Access restricted to the OSU Community at author's request from June 19, 2012 - June 19, 2013
222

Performance Analysis of Parametric Spectral Estimators

Völcker, Björn January 2002 (has links)
No description available.
223

Ultra-wideband Antenna and Radio Front-end Systems

Karlsson, Magnus January 2008 (has links)
The number of wireless communication applications increase steadily, leading to the competition for currently allocated frequency bands. Pressure on authorities around the world to permit communications in higher and wider frequency ranges to achieve higher wireless capacity than those existed in the past has resulted in several new specifications. The federal communication commission (FCC) in USA has unleashed the band 3.1-10.6 GHz for ultra-wideband radio (UWB) communications. The release has triggered a worldwide interest for UWB. Other regulatory instances throughout the world have issued use of UWB techniques as well. Capacity issues in form of data rate and latency have always been a bottleneck for broadened wireless-communication usages. New communication systems like UWB require larger bandwidth than what is normally utilized with traditional antenna techniques. The interest for compact consumer electronics is growing in the meantime, creating a demand on efficient and low profile antennas which can be integrated on a printed circuit board. In this thesis, some methods to extend the bandwidth and other antenna parameters associated with wideband usages are studied. Furthermore, methods on how to enhance the performance when one antenna-element is not enough are studied as well. The principle of antenna parallelism is demonstrated using both microstrip patch antennas and inverted-F antennas. Several techniques to combine the antennas in parallel have been evaluated. Firstly, a solution using power-splitters to form sub-arrays that covers one 500-MHz multi-band orthogonal frequency division multiplexing (OFDM) UWB is shown in Paper I. It is then proposed that the sub-bands are selected with a switching network. A more convenient method is to use the later developed frequency multiplexing technique as described in Paper V and VIII. Using the frequency multiplexing technique, selective connection of any number of antennas to a common junction is possible. The characteristic impedance is chosen freely, typically using a 50-Ω feed-line. Secondly, in Paper VIII a frequency-triplexed inverted-F antenna system is investigated to cover the Mode 1 multi-band UWB bandwidth 3.1-4.8 GHz. The antenna system is composed of three inverted-F antennas and a frequency triplexer including three 5th order bandpass filters. In Paper VI a printed circuit board integrated-triplexer for multi-band UWB radio is presented. The triplexer utilizes a microstrip network and three combined broadside- and edge-coupled filters. The triplexer is fully integrated in a four metal-layer printed circuit board with the minimum requirement on process tolerances. Furthermore, the system is built completely with distributed microstrips, i.e., no discrete components. Using the proposed solution an equal performance between the sub-bands is obtained. Finally suitable monopoles and dipoles are discussed and evaluated for UWB. In Paper X circular monopole and dipole antennas for UWB utilizing the flex-rigid concept are proposed. The flex-rigid concept combines flexible polyimide materials with the regular printed circuit board material. The antennas are placed entirely on the flexible part while the antenna ground plane and the dipole antenna balun are placed in the rigid part.
224

Ultra Wideband Impulse Radio for Wireless Sensing and Identification

Baghaei Nejad, Majid January 2008 (has links)
Ubiquitous computing and Internet-of-Things (IoT) implies an untapped opportunity in the realm of information and communication technology, in which a large number of micro-devices with communication and/or computing capabilities, provides connectivity for anything, by anyone at anytime and anywhere. Especially, these devices can be equipped with sensors and actuators that interact with our living environment. Barcode, smart contactless card, Radio Frequency Identification (RFID) systems, wireless sensor network (WSN), and smart mobile phones are some examples which can be utilized in ubiquitous computing. RFIDs and WSN have been recognized as the two promising enablers for realization of ubiquitous computing. They have some great features such as low-cost and small- size implementation, non-line of sight operation, sensing possibilities, data storing ability, and positioning. However, there are several challenges which need to be addressed, such as limited life time for battery powered device, maintenance cost, longer operation range, higher data rate, and operation in dense multipath and multiuser environment. Ultra-Wideband Impulse Radio (UWB-IR) with its huge advantages has been recognized as a great solution for future WSN and RFID. UWB-IR technique has the possibility of achieving Gb/s data rate, hundreds of meter operation range, pJ energy per bit, centimeter accuracy of positioning, and low cost implementation. In this work utilization of UWB-IR in WSN and RFID is investigated. A wireless sensor network based on UWB-IR is proposed focusing on low-cost and low-power implementation. Our contribution is to imply two different architectures in base station and sensor nodes to satisfy power, complexity and cost constraints. For sensor nodes, an autonomous UWB-IR detection is proposed, which detects the UWB signal autonomously and no restrict synchronization is required. It reduces the circuit complexity significantly. The performance in term of bit-error-rate is compared with two other common detection techniques. It is shown that the new detection is more robustness to timing jitter and clock skew, which consequently reduces the clock and synchronization requirements considerably. A novel wireless sensing and identification system, based on remote-powered tag with asymmetric wireless link, is proposed. Our innovative contribution is to deploy two different UWB and UHF communication techniques in uplink and downlink respectively. In the proposed system, tags capture the required power supply from different environmental sources (e.g. electromagnetic wave transmitted by a reader) and transmit data through an ultra-low power impulse UWB link. A new communication protocol is devised based on slotted-aloha anti-collision algorithm. By introducing several improvements including of pipelined communication, adaptive frame size, and skipping idle slots, the system throughput of more than 2000 tags/s is achieved. To prove the system concept a single chip integrated tag is implemented in UMC 0.18μm CMOS process. The measurement results show the minimum sensitivity of -18.5 dB (14.1 μW) and adaptive data rate up to 10 Mb/s. It corresponds to 13.9 meters operation range, considering 4W EIRP, a matched antenna to the tag with 0dB gain, and free space path loss. This is a great improvement in operation range and data rate, compared with conventional passive RFID, which data rate is limited to a few hundreds of Kb/s. System integration in a Liquid-Crystal-polymer (LCP) substrate is investigated. The integration of a tunable UWB-IR transmitter and a power scavenging unit are studied. Our contribution includes embedding and modeling the RF components and antenna in substrate and co-optimizing the chip and package with on-chip versus off-chip passives trade-offs. Simulation results verify the potential of system-on-package solution for UWB integration. The effect of antenna miniaturization in a UWB system is studied. Our focus is to scale down a UWB antenna and optimize the performance through the chip-antenna co-design. A tunable impulse- UWB transmitter is designed in two cases - a conventional 50Ω design and a co-design methodology. The simulation results show that the standard 50Ω design technique can not reach the best condition in all cases, when a real antenna is placed into the system. The performance can be improved significantly when doing codesign. The antennas and UWB transmitter performances are evaluated in a given UWB systems. It is shown that the operation distance at a target performance is reduced with antenna scaling factor and it can be compensated by antenna-transceiver co-design. The result proves the importance of antenna-transceiver codesign, which needs to be addressed in the earliest phases of the design flow. / QC 20100701
225

Iterative low-complexity multiuser detection and decoding for coded UWB systems

Sathish, Arun D. 07 1900 (has links)
In general, ultra wideband (UWB) signals are transmitted using ~'eIYshort pulses m tiIae domain, thus promising very high data rates. In this thesis, a recei'ler structure is proposed for decoding multiuser information data in a convolutionally coded UWB system. The proposed iterative receiver has three stages: a pulse detector, a symbol detector, and a channel decoder. Each of these stages outputs soft values, which are used as a priori information in the next iteration. Simulation results show that the proposed system can provide performance very close to a single-user system. / Thesis (M.S.)--Wichita State University, College of Engineering, Dept. of Electrical and Computer Engineering. / "July 2006." / Incluldes bibliographic references (leaves 29-31)
226

Design, Modeling, and Analysis for MAC Protocols in Ultra-wideband Networks

Liu, Kuang-Hao January 2008 (has links)
Ultra-wideband (UWB) is an appealing transmission technology for short-range, bandwidth demanded wireless communications. With the data rate of several hundred megabits per second, UWB demonstrates great potential in supporting multimedia streams such as high-definition television (HDTV), voice over Internet Protocol (VoIP), and console gaming in office or home networks, known as the wireless personal area network (WPAN). While vast research effort has been made on the physical layer issues of UWB, the corresponding medium access control (MAC) protocols that exploit UWB technology have not been well developed. Given an extremely wide bandwidth of UWB, a fundamental problem on how to manage multiple users to efficiently utilize the bandwidth is a MAC design issue. Without explicitly considering the physical properties of UWB, existing MAC protocols are not optimized for UWB-based networks. In addition, the limited processing capability of UWB devices poses challenges to the design of low-complexity MAC protocols. In this thesis, we comprehensively investigate the MAC protocols for UWB networks. The objective is to link the physical characteristics of UWB with the MAC protocols to fully exploit its advantage. We consider two themes: centralized and distributed UWB networks. For centralized networks, the most critical issue surrounding the MAC protocol is the resource allocation with fairness and quality of service (QoS) provisioning. We address this issue by breaking down into two scenarios: homogeneous and heterogeneous network configurations. In the homogeneous case, users have the same bandwidth requirement, and the objective of resource allocation is to maximize the network throughput. In the heterogeneous case, users have different bandwidth requirements, and the objective of resource allocation is to provide differentiated services. For both design objectives, the optimal scheduling problem is NP-hard. Our contributions lie in the development of low-complexity scheduling algorithms that fully exploit the characteristics of UWB. For distributed networks, the MAC becomes node-based problems, rather than link-based problems as in centralized networks. Each node either contends for channel access or reserves transmission opportunity through negotiation. We investigate two representative protocols that have been adopted in the WiMedia specification for future UWB-based WPANs. One is a contention-based protocol called prioritized channel access (PCA), which employs the same mechanisms as the enhanced distributed channel access (EDCA) in IEEE 802.11e for providing differentiated services. The other is a reservation-based protocol called distributed reservation protocol (DRP), which allows time slots to be reserved in a distributed manner. Our goal is to identify the capabilities of these two protocols in supporting multimedia applications for UWB networks. To achieve this, we develop analytical models and conduct detailed analysis for respective protocols. The proposed analytical models have several merits. They are accurate and provide close-form expressions with low computational effort. Through a cross-layer approach, our analytical models can capture the near-realistic protocol behaviors, thus useful insights into the protocol can be obtained to improve or fine-tune the protocol operations. The proposed models can also be readily extended to incorporate more sophisticated considerations, which should benefit future UWB network design.
227

Development of an Ultra Wide-Band(UWB) Synthetic Aperture Radar (SAR)System for Imaging of Near Field Object

Fayazi, Seyedeh shaghayegh January 2012 (has links)
Ultra-wideband (UWB) technology and its use in imaging and sensing have drawnsignicant interest in the last two decades. Extensive studies have contributed toutilize UWB transient scattering for automated target recognition and imagingpurposes. In this thesis a near-eld UWB synthetic aperture radar (SAR) imagingalgorithm is presented.It is shown with measurements and simulation, that it is possible to reconstruct an imageof an object in the near eld region using UWB technology and SAR imaging algorithm.However the nal SAR image is highly aected by unwanted scattered elds at each pixelusually observed as an image artifact in the nal image. In this study these artifactsare seen as a smile around the main object. Two methods are suggested in this thesiswork to suppress this artifact. The rst method combines the scattered eld informationreceived from both rear and front of the object to reconstruct two separate images, onefrom rear view and one from front view of the object respectively. Since the scatteredelds from behind the object are mirrored, the pixel by pixel multiplication of thesetwo images for objects with simple geometry will cancel the artifact. This method isvery simple and fast applicable to objects with simple geometry. However this methodcannot be used for objects with rather complex geometry and boundaries. Thereforethe Range Point Migration (RPM) method is used along with the global characteristicsof the observed range map to introduce a new artifact rejection method based on thedirectional of arrival (DOA) of scattered elds at each pixel. DOA information can beused to calculate an optimum theta for each antenna. This optimum angle along withthe real physical direction of arrival at each position can produce a weighting factor thatlater can be used to suppress the eect of undesired scattered elds producing the smileshaped artifact. Final results of this study clearly show that the UWB SAR accompaniedwith DOA can produce an image of an object free of undesired artifact from scatteredeld of adjacent antennas.
228

Design of a transmitter for Ultra Wideband Radio / Konstruktion av en sändare till Ultra Wideband Radio

Andersson, Christofer January 2003 (has links)
Ultra Wideband Radio (UWB) is an upcoming alternative for wireless communications. Since the Federal Communication Commission in the USA allowed UWB for unlicensed usage in April 2002, more and more companies have started developing UWB systems. The major difference with UWB compared to other RF systems is that UWB sends information with pulses instead of using a carrier wave. The technique is from the nineteenth century and was first developed by Heinrich Hertz (1857-1894), which led to transatlantic communications 1901. This Master thesis presents a proposal of a transmitter for Ultra Wideband Radio using multiple bands. The proposed transmitter is implemented on system level in Simulink, Matlab. The frequency generation in the transmitter is also implemented at component level in a 0.13 um IBM process. The thesis begins with an introduction of UWB theory and techniques.
229

Design, Modeling, and Analysis for MAC Protocols in Ultra-wideband Networks

Liu, Kuang-Hao January 2008 (has links)
Ultra-wideband (UWB) is an appealing transmission technology for short-range, bandwidth demanded wireless communications. With the data rate of several hundred megabits per second, UWB demonstrates great potential in supporting multimedia streams such as high-definition television (HDTV), voice over Internet Protocol (VoIP), and console gaming in office or home networks, known as the wireless personal area network (WPAN). While vast research effort has been made on the physical layer issues of UWB, the corresponding medium access control (MAC) protocols that exploit UWB technology have not been well developed. Given an extremely wide bandwidth of UWB, a fundamental problem on how to manage multiple users to efficiently utilize the bandwidth is a MAC design issue. Without explicitly considering the physical properties of UWB, existing MAC protocols are not optimized for UWB-based networks. In addition, the limited processing capability of UWB devices poses challenges to the design of low-complexity MAC protocols. In this thesis, we comprehensively investigate the MAC protocols for UWB networks. The objective is to link the physical characteristics of UWB with the MAC protocols to fully exploit its advantage. We consider two themes: centralized and distributed UWB networks. For centralized networks, the most critical issue surrounding the MAC protocol is the resource allocation with fairness and quality of service (QoS) provisioning. We address this issue by breaking down into two scenarios: homogeneous and heterogeneous network configurations. In the homogeneous case, users have the same bandwidth requirement, and the objective of resource allocation is to maximize the network throughput. In the heterogeneous case, users have different bandwidth requirements, and the objective of resource allocation is to provide differentiated services. For both design objectives, the optimal scheduling problem is NP-hard. Our contributions lie in the development of low-complexity scheduling algorithms that fully exploit the characteristics of UWB. For distributed networks, the MAC becomes node-based problems, rather than link-based problems as in centralized networks. Each node either contends for channel access or reserves transmission opportunity through negotiation. We investigate two representative protocols that have been adopted in the WiMedia specification for future UWB-based WPANs. One is a contention-based protocol called prioritized channel access (PCA), which employs the same mechanisms as the enhanced distributed channel access (EDCA) in IEEE 802.11e for providing differentiated services. The other is a reservation-based protocol called distributed reservation protocol (DRP), which allows time slots to be reserved in a distributed manner. Our goal is to identify the capabilities of these two protocols in supporting multimedia applications for UWB networks. To achieve this, we develop analytical models and conduct detailed analysis for respective protocols. The proposed analytical models have several merits. They are accurate and provide close-form expressions with low computational effort. Through a cross-layer approach, our analytical models can capture the near-realistic protocol behaviors, thus useful insights into the protocol can be obtained to improve or fine-tune the protocol operations. The proposed models can also be readily extended to incorporate more sophisticated considerations, which should benefit future UWB network design.
230

Superconducting Microwave Filters

Setoodeh, Sormeh 24 January 2011 (has links)
Superconducting microelectronics (SME) technology has the potential of realizing very high speed digital receivers capable of performing direct digitization of radio frequency signals with very low power consumption. The SME receiver is implemented on a single chip using Niobium based low temperature superconductive (LTS) Josephson Junction (JJ) technology by HYPRES. Analogue RF filters are still required at the receiver front end and are key components of the overall superconductor digital receiver. SME receivers usually require two types of RF filters; a wideband bandpass filter and a bandstop filter (a notch filter). The notch filter is required to eliminate interference and unwanted signals in the passband. In this thesis, design of highly miniaturized lumped element wideband and bandstop filters is investigated and some challenges are addressed. The filters are fabricated by the HYPRES process and therefore can be integrated with the SME receiver on the same chip. In a wideband filter, the coupling between the adjacent resonators is high. Achieving such a strong coupling is one of the challenges of designing wideband filters. The wideband filters realized with distributed elements usually suffer from very low spurious frequency. As the bandwidth of the filter becomes wider, the spurious peak of the second harmonic gets closer to the passband of the filter. In the first part of this work, the possibility of realizing lumped element superconducting bandpass filters (BPF) with a relative bandwidth of 80% is investigated. In the second part of the thesis, design and realization of lumped element superconducting bandstop filters (BSF) is discussed. The challenge for designing a bandstop filter is providing a good match over a wide frequency range. So narrowband inverters cannot be used. Instead, usually λ/4 matched transmission lines provide 90° phase shift between the resonators of a notch filter. The possibility of replacing the long transmission line with other means or eliminating the inverters and using both shunt and series resonators are investigated. Having both series and shunt resonators introduces some new challenges that are addressed in the thesis and discussed thoroughly. A tunable notch resonator is presented. The tunability is provided by a superconducting MEMS varactor that is realized in our group by doing some post processing on the device fabricated by HYPRES. The tunability range of the device at cryogenic temperatures is investigated. A 3-pole tunable BSF is also designed that uses the same tunable resonators. The tunability of the filter is investigated through simulation.

Page generated in 0.0401 seconds