Spelling suggestions: "subject:"aidedand"" "subject:"anidesand""
231 |
Studies in Wireless Home Networking Including Coexistence of UWB and IEEE 802.11a SystemsFiroozbakhsh, Babak 25 January 2007 (has links)
Characteristics of wireless home and office services and the corresponding networking issues are discussed. Local Area Networking (LAN) and Personal Area Networking (PAN) technologies such as IEEE 802.11 and Ultra Wideband (UWB) are introduced. IEEE 802.11a and UWB systems are susceptible to interference from each other due to their overlapping frequencies. The major contribution of this work is to provide a framework for coexistence of the two systems. The interference between the two systems is evaluated theoretically by developing analytical models, and by simulations. It is shown that the interference from UWB on IEEE 802.11a systems is generally insignificant. IEEE 802.11a interference on UWB systems, however, is very critical and can significantly increase the bit error rate (BER) and degrade the throughput of the UWB system. A novel idea in the MAC layer is presented to mitigate this interference by means of temporal separation. Simulation results validate our technique. Implications to wireless home services such as high definition television (HDTV) are provided. Future research directions are discussed.
|
232 |
A CMOS LNA for 3.1-10.6GHz Ultra-WidebandLin, Shin-Yang 25 January 2011 (has links)
The objective of this thesis is aimed at the design of low noise amplifier (LNA) for
an ultra-wideband (UWB) receiver system using standard 0.18um CMOS process.
A two amplified stage topology is proposed in the low noise amplifier. The first stage
introduces inductively source degeneration, it can achieve wideband
input impedance matching. The second stage introduces traditional CS configuration, it can
improve the forward gain (S21). The second stage also used L-C section for output match.
In order to improve the gain at high frequency, we introduces the series peaking between the
first stage and second stage. We use the resistive-feedback between second stage and output, it can achieve wideband output impedance matching. The total power dissipation of the low noise amplifier is about 16.5mW at power supply 1.5 volt and the chip size is 920*940mm2. The simulated result shows that S11 is under -9dB, S22 is under -10dB, the forward gain S21 is 11.63dB~12.56dB at 3.1-10.6GHz, the reverse isolation S12 is under -32dB, and the noise figure is3.3dB~3.96dB.
|
233 |
Mobile Communication Device Antennas for LTE/WWAN and LTE MIMO OperationsKang, Ting-Wei 24 April 2011 (has links)
In this dissertation, not only the antenna and antenna array design techniques for fourth-generation mobile communication system are proposed, but also the specifications related to antenna bio-compatibility are studied. At first, two dual-wideband design techniques suitable to be applied for laptop computer applications for LTE/WWAN and LTE MIMO operations are proposed. The techniques can also be applied to internal tablet computer antennas. The isolation issues of MIMO antenna array of different mobile communication devices, such as laptop computer, tablet computer, and mobile phone, are then discussed. Finally, an analysis of body SAR for tablet computer applications are given and discussed.
|
234 |
High Performance Integrated Circuit Blocks for High-IF Wideband ReceiversSilva Rivas, Jose F. 2009 May 1900 (has links)
Due to the demand for high‐performance radio frequency (RF) integrated circuit
design in the past years, a system‐on‐chip (SoC) that enables integration of analog and
digital parts on the same die has become the trend of the microelectronics industry. As
a result, a major requirement of the next generation of wireless devices is to support
multiple standards in the same chip‐set. This would enable a single device to support
multiple peripheral applications and services.
Based on the aforementioned, the traditional superheterodyne front‐end
architecture is not suitable for such applications as it would require a complete receiver
for each standard to be supported. A more attractive alternative is the highintermediate
frequency (IF) radio architecture. In this case the signal is digitalized at an
intermediate frequency such as 200MHz. As a consequence, the baseband operations,
such as down‐conversion and channel filtering, become more power and area efficient
in the digital domain. Such architecture releases the specifications for most of the front‐end building blocks, but the linearity and dynamic range of the ADC become the
bottlenecks in this system. The requirements of large bandwidth, high frequency and
enough resolution make such ADC very difficult to realize. Many ADC architectures
were analyzed and Continuous‐Time Bandpass Sigma‐Delta (CT‐BP‐ΣΔ) architecture was
found to be the most suitable solution in the high‐IF receiver architecture since they
combine oversampling and noise shaping to get fairly high resolution in a limited
bandwidth.
A major issue in continuous‐time networks is the lack of accuracy due to powervoltage‐
temperature (PVT) tolerances that lead to over 20% pole variations compared
to their discrete‐time counterparts. An optimally tuned BP ΣΔ ADC requires correcting
for center frequency deviations, excess loop delay, and DAC coefficients. Due to these
undesirable effects, a calibration algorithm is necessary to compensate for these
variations in order to achieve high SNR requirements as technology shrinks.
In this work, a novel linearization technique for a Wideband Low‐Noise
Amplifier (LNA) targeted for a frequency range of 3‐7GHz is presented. Post‐layout
simulations show NF of 6.3dB, peak S21 of 6.1dB, and peak IIP3 of 21.3dBm,
respectively. The power consumption of the LNA is 5.8mA from 2V.
Secondly, the design of a CMOS 6th order CT BP‐ΣΔ modulator running at 800
MHz for High‐IF conversion of 10MHz bandwidth signals at 200 MHz is presented. A
novel transconductance amplifier has been developed to achieve high linearity and high
dynamic range at high frequencies. A 2‐bit quantizer with offset cancellation is alsopresented. The sixth‐order modulator is implemented using 0.18 um TSMC standard
analog CMOS technology. Post‐layout simulations in cadence demonstrate that the
modulator achieves a SNDR of 78 dB (~13 bit) performance over a 14MHz bandwidth.
The modulator’s static power consumption is 107mW from a supply power of ± 0.9V.
Finally, a calibration technique for the optimization of the Noise Transfer
Function CT BP ΣΔ modulators is presented. The proposed technique employs two test
tones applied at the input of the quantizer to evaluate the noise transfer function of
the ADC, using the capabilities of the Digital Signal Processing (DSP) platform usually
available in mixed‐mode systems. Once the ADC output bit stream is captured,
necessary information to generate the control signals to tune the ADC parameters for
best Signal‐to‐Quantization Noise Ratio (SQNR) performance is extracted via Least‐
Mean Squared (LMS) software‐based algorithm. Since the two tones are located
outside the band of interest, the proposed global calibration approach can be used
online with no significant effect on the in‐band content.
|
235 |
Digitally-Assisted Mixed-Signal Wideband Compressive SensingYu, Zhuizhuan 2011 May 1900 (has links)
Digitizing wideband signals requires very demanding analog-to-digital conversion (ADC) speed and resolution specifications. In this dissertation, a mixed-signal parallel compressive sensing system is proposed to realize the sensing of wideband sparse signals at sub-Nqyuist rate by exploiting the signal sparsity. The mixed-signal compressive sensing is realized with a parallel segmented compressive sensing (PSCS) front-end, which not only can filter out the harmonic spurs that leak from the local random generator, but also provides a tradeoff between the sampling rate and the system complexity such that a practical hardware implementation is possible. Moreover, the signal randomization in the
system is able to spread the spurious energy due to ADC nonlinearity along the signal bandwidth rather than concentrate on a few frequencies as it is the case for a conventional ADC. This important new property relaxes the ADC SFDR requirement when sensing frequency-domain
sparse signals.
The mixed-signal compressive sensing system performance is greatly impacted by the accuracy of analog circuit components, especially with the scaling of CMOS technology. In this dissertation, the effect of the circuit imperfection in the mixed-signal compressive
sensing system based on the PSCS front-end is investigated in detail, such as the finite settling
time, the timing uncertainty and so on. An iterative background calibration algorithm based on LMS (Least Mean Square) is proposed, which is shown to be able to effectively calibrate the error due to the circuit nonideal factors.
A low-speed prototype built with off-the-shelf components is presented. The prototype is able to sense sparse analog signals with up to 4 percent sparsity at 32 percent of the Nqyuist rate. Many practical constraints that arose during building the prototype such as circuit nonidealities are addressed in detail, which provides good insights for a future high-frequency integrated
circuit implementation. Based on that, a high-frequency sub-Nyquist rate receiver exploiting the parallel compressive sensing is designed and fabricated with IBM90nm CMOS technology, and measurement results are presented to show the capability of wideband
compressive sensing at sub-Nyquist rate. To the best of our knowledge, this prototype is the first reported integrated chip for wideband mixed-signal compressive sensing. The proposed prototype achieves 7 bits ENOB and 3 GS/s equivalent sampling rate in simulation assuming a 0.5 ps state-of-art jitter variance, whose FOM beats the FOM of the high speed state-of-the-art Nyquist ADCs by 2-3 times.
The proposed mixed-signal compressive sensing system can be applied in various fields. In particular, its applications for wideband spectrum sensing for cognitive radios and spectrum analysis in RF tests are discussed in this work.
|
236 |
Mobile TV Antenna DesignsLai, Jeng-wen 07 June 2004 (has links)
The research of this thesis is on the mobile TV antenna designs. There are three antenna designs proposed in this thesis. The first two designs are for portable TV sets. They are different from the traditional straight monopole antenna because the two proposed designs can be built-in with the portable TV set. The third one is for laptop applications. It can be stored inside a laptop when the antenna is not in use, and can be pulled out of the laptop when in operation. Thus the proposed antenna will not affect the appearance of the laptop.
|
237 |
Ultra WideBand Impulse Radio in Multiple Access Wireless CommunicationsLai, Weei-Shehng 25 July 2004 (has links)
Ultra-Wideband impulse radio (UWB-IR) technology is an attractive method on multi-user for high data rate transmitting structures. In this thesis, we use the ultra wideband (UWB) signal that is modulated by the time-hopping spread spectrum technique in a wireless multiple access environments, and discuss the influences of multiple access interference. We discuss two parts of the influences of multiple access interference in this thesis. The first, we analyze the multiple access interferences on the conventional correlation receiver, and discuss the influences by using the time hopping code on different multiple access structures. The second, we know that the performances of user detection and system capacity would be degraded by the conventional correlation receiver in the multiple access channels. The Probabilistic Data Association(PDA) multi-user detection technology can eliminate multiple access interferences in this part. We will use this method to verify the system performance through the computer simulations, and compare to other multi-user detectors with convention correlation receivers. Finally, the simulation results show that the performance of the PDA multi-user detections is improved when the system is full loaded.
|
238 |
Reducing Timing Jitter Error by Using Self-tuning Based MPI- DLL in UWB SystemsWu, Seng-wen 03 August 2005 (has links)
Ultra-Wideband ¡}UWB¡~Communication Technology is one of the potential technologies in indoor wireless communication
applications. Because of the property of fine resolution of transmitted signal by UWB, it is powerful on indoor location applications. In the first place, we need to estimate the time of arrival based on the wireless location applications. Whether synchronization between the template signals and received signals affects directly the SNR of the estimator output and decreases the ranging accuracy. Because of the transmitted signal is the type of impulse radio for UWB system, it is more important on the time accuracy of the internal oscillator. In the thesis, we utilize the Delay-Locked Loop ¡}DLL¡~ structure with Self-tuning function to reduce the timing jitter in the internal oscillator. We can improve the stability in the tracking loop and utilize multipath canceller to cancel the multipath interference in the indoor environment. When reaching synchronization between the template signal and received signal by using the tracking loop, we can improve ranging accuracy and increase location precision according to the received signal.
|
239 |
Distributed TDOA/AOA Location and Data Fusion Methods with NLOS Mitigation in UWB SystemsHsueh, Chin-sheng 25 July 2006 (has links)
Ultra Wideband (UWB) signal can offer an accurate location service in wireless sensor networks because its high range resolution. Target tracking by multiple sensors can provide better performance, but the centralized algorithms are not suitable for wireless sensor networks. In additional, the non line of sight (NLOS) propagation error leads to severe degradation of the accuracy in location systems. In this thesis, NLOS identification and mitigation technique utilizing modified biased Kalman filter (KF) is proposed to reduce the NLOS time of arrival (TOA) errors in UWB environments. We combine the modified biased Kalman filter with sliding window to identify and mitigate different degree of NLOS errors immediately.
In order to deal with the influence of inaccurate NLOS angle of arrival (AOA) measurements, we also had a discussion on AOA selection and fusion methods. In the distributed location structure, we used the extended Information filter (EIF) to process the formulated time difference of arrival (TDOA) and AOA measurements for the target positioning and tracking. Instead of using extended Kalman filter, extended Information filter can assimilate selected AOA easily without dynamic dimensions. The sensors are divided into different groups for distributed TDOA/AOA location to reduce computation and then each group can assimilate information from other groups easily to maintain precise location.
The simulation results show that the proposed architecture can mitigate NLOS errors effectively and improve the accuracy of target positioning and tracking from distributed location and data fusion in wireless sensor networks.
|
240 |
Simulation and Fabrication of All-Fiber Polarization Beamsplitter CouplersLiu, Jiann-Huai 08 July 2003 (has links)
A single-mode fused biconical 2¡Ñ2 coupler for polarization beamsplitting is fabricated in this thesis. We use simple fused and tapered method to fabricate the polarization beamsplitter(PBS) stably, and then we can get polarization maintaining in the output fibers. Without changing the manufacturing process, we design the device with special combination of fabrication parameters. We have achieved an extinction ratio of 25.78dB at the throughput port and 27.16dB at the coupled port. A usable spectral window as broad as 37nm and 27nm with an extinction ratio larger than 15dB for both ports is obtained. The excess loss is about 0.3dB. Based on a full-wave numerical approach, the performance of the PBS can be well modeled. We get good agreement between the measured and simulated results.
|
Page generated in 0.0399 seconds