Spelling suggestions: "subject:"abaxter""
21 |
The Drinfeld Double of Dihedral Groups and Integrable SystemsPeter Finch Unknown Date (has links)
A little over 20 years ago Drinfeld presented the quantum (or Drinfeld) double construction. This construction takes any Hopf algebra and embeds it in a larger quasi-triangular Hopf algebra, which contains an algebraic solution to the constant Yang–Baxter equation. One such class of algebras consists of the Drinfeld doubles of finite groups, which are currently of interest due to their connections with non-Abelian anyons. The smallest non-commutative Drinfeld double of a finite group algebra is the Drinfeld double of D3 , the dihedral group of order six, which was recently used to construct solutions to the Yang–Baxter equation cor- responding to 2-state and 3-state integrable spin chains with periodic boundary conditions. In this thesis we construct R-matrices from the Drinfeld double of dihedral group algebras, D(Dn) and consider their associated integrable systems. The 3-state spin chain from D(D3) is generalised to include open boundaries and it is also shown that there exists a more general R-matrix for this algebra. For general D(Dn) an R-matrix is constructed as a descendant of the zero-field six-vertex model.
|
22 |
The Drinfeld Double of Dihedral Groups and Integrable SystemsPeter Finch Unknown Date (has links)
A little over 20 years ago Drinfeld presented the quantum (or Drinfeld) double construction. This construction takes any Hopf algebra and embeds it in a larger quasi-triangular Hopf algebra, which contains an algebraic solution to the constant Yang–Baxter equation. One such class of algebras consists of the Drinfeld doubles of finite groups, which are currently of interest due to their connections with non-Abelian anyons. The smallest non-commutative Drinfeld double of a finite group algebra is the Drinfeld double of D3 , the dihedral group of order six, which was recently used to construct solutions to the Yang–Baxter equation cor- responding to 2-state and 3-state integrable spin chains with periodic boundary conditions. In this thesis we construct R-matrices from the Drinfeld double of dihedral group algebras, D(Dn) and consider their associated integrable systems. The 3-state spin chain from D(D3) is generalised to include open boundaries and it is also shown that there exists a more general R-matrix for this algebra. For general D(Dn) an R-matrix is constructed as a descendant of the zero-field six-vertex model.
|
23 |
Solução de um modelo de vértices assimétrico de três estados.Melo, Cláudio Silva de 29 March 2005 (has links)
Made available in DSpace on 2016-06-02T20:16:53Z (GMT). No. of bitstreams: 1
DissCSM.pdf: 484363 bytes, checksum: 6bab9f79ffe781bb395554a32cdd0754 (MD5)
Previous issue date: 2005-03-29 / Universidade Federal de Minas Gerais / In this work we first review some of the techniques relevant to the theory of two-dimensional integrable models. We apply the Quantum Inverse Scattering approach to a class of three-state vertex model with both closed and open boundaries. The respective transfer matrices eigenvalues and eigenvectors are determined by the algebraic Bethe ansatz method. / Nesta dissertação descrevemos primeiramente os conceitos e técnicas matemáticas relevantes a teoria dos modelos integráveis bidimensionais. O formalismo do Método do Espalhamento Inverso Quântico é aplicado a um modelo de vértices assimétricos de três estados com condições de contorno fechado e aberto. Determinamos então os autovalores e autovetores das respectivas matrizes de transferência pelo método do ansatz de Bethe algébrico.
|
24 |
Modelos de mecânica estatística exatamente solúveis em duas dimensões / Exactly solvable models of statistical mechanics in two dimensionsRoberto Nicolau Onody 11 December 1984 (has links)
Neste trabalho nós estudamos alguns sistemas de spins e vértices exatamente solúveis em duas dimensões. A solubilidade exata está ligada ao fato de existirem soluções não triviais das equações de fatorização, o que nos permite obter a energia livre no limite termodinâmico. Introduzimos e resolvemos pelo método de espalhamento inverso, um modelo de dez vértices assimétrico com dois e três estados nas ligações. Obtemos o diagrama de fases e mostramos que o sistema exibe uma transição de fase de primeira ordem. Analisamos um modelo de oito vértices de férmions livres e propomos uma nova relação funcional que nos permite calcular a energia livre por vértice. Mostramos que este sistema de vértices corresponde ao modelo de Ising na rede Union Jack. Apresentamos um método de solução de modelos de spin em redes triangulares a partir da solução do mesmo modelo na rede quadrada. O método se aplica sempre que o modelo de spins envolver interação de primeiros vizinhos e satisfizer a relação triângulo-estrela. Estendemos para a rede triangular, as soluções autoduais de Fateev e Zamolodchikov para a rede quadrada, de modelos de spin com simetria Z(N). Analisamos as conjecturas existentes sobre a criticalidade do modelo de Potts definido na rede de Kagomé. Baseados na simetria e nas degenerescências dessa rede conjecturamos uma expressão para a sua linha crítica. / We study some spin and vertex systems which are exactly solvable in two dimensions. The exact solubility is connected to the existence of non trivial solutions of the factorization equations which allow us to determine the free energy in the thermodynamic limit. We introduce and solve by the inverse scattering method, a ten vertex model with two and three states on the links. We get the phase diagram of the system and show that it exhibits a first order phase transition. Analysing a free fermion eight vertex model, we propose a new functional relation which permit us to get the free energy per vertex. We also show that this system is equivalent to the Ising model in a Union Jack lattice. We present a method to solve spin models on triangular lattices from the known solution of the same model on square lattices. The method applies whenever the model involves first neighbours interactions and satisfies the star triangle relation. We extend to the triangular lattice the self dual solutions of Fateev and Zamolodchikov for Z(N) invariant spin systems. We also analyse the conjectures made before for the critical Potts model on a Kagomé lattice. Based on symmetry and on the collapses of this lattice we conjecture an expression for their critical line.
|
25 |
Résultats exacts sur les modèles de boucles en deux dimensionsIkhlef, Yacine 27 September 2007 (has links) (PDF)
En utilisant les méthodes analytiques et numériques de la Physique Statistique bidimensionnelle (matrice de transfert, invariance conforme, gaz de Coulomb, équations de Yang-Baxter, Ansatz de Bethe, Monte-Carlo), nous abordons des problèmes qui n'entrent pas dans le cadre du modèle gaussien compact : modèle de Potts antiferromagnétique critique, modèle de boucles de Brauer. Ces modèles présentent des propriétés critiques originales, comme l'apparition de degrés de liberté non-compacts. Ces propriétés apparaissent quand on introduit, dans le modèle de boucles sur réseau, des intersections entre les boucles ou une alternance des poids de Boltzmann entre les sous-réseaux. Dans le cas du modèle de Potts antiferromagnétique, nous développons l'étude de la structure issue des équations de Yang-Baxter, et nous identifions une famille d'états de Bethe associés aux degrés de liberté non-compacts. Les calculs numériques sur de grandes tailles de système permettent de conjecturer la loi d'échelle du rayon de compactification effectif. Dans le cas du modèle de Brauer avec une fugacité de boucles n = 0, nous proposons un modèle de chemin d'échappement invariant d'échelle, et nous déterminons ses propriétés critiques par des méthodes numériques. En tant qu'observable (non-locale), le chemin d'échappement caractérise les points communs et différences avec les marches aléatoires.
|
26 |
Algèbre de Yang-Baxter dynamique et fonctions de corrélation du modèle SOS intégrableLevy-Bencheton, Damien 22 October 2013 (has links) (PDF)
Un défi toujours actuel dans le domaine des systèmes intégrables quantiques est le calcul exact et explicite des fonctions de corrélation. Dans le cas de modèles simples tels que la chaîne de Heisenberg XXZ de spins 1/2, des progrès significatifs ont été réalisés ces dernières années. Les méthodes développées utilisent les symétries des modèles en volume infini (algèbre quantique affine) ou fini (algèbre de Yang-Baxter). L'objet de cette thèse est d'étendre le champ d'application de ce dernier type d'approche dans le cas où l'algèbre de Yang-Baxter sous-jacente est de type dynamique. C'est typiquement le cas du modèle de physique statistique solid-on-solid (SOS) qui décrit les interactions d'un paramètre de hauteur autour des faces d'un réseau bidimensionnel, avec des poids statistiques donnés par une matrice R elliptique solution de l'équation de Yang-Baxter dynamique.L'étude des fonctions de corrélation du modèle SOS est abordée dans le cadre de l'ansatz de Bethe algébrique et de la méthode de séparation des variables. Des représentations en termes de déterminants de fonctions usuelles sont obtenues par les deux méthodes pour les produits scalaires entre états et pour les facteurs de forme des opérateurs locaux en volume fini. Les formules obtenues dans le cadre de l'ansatz de Bethe algébrique sont ensuite utilisées pour représenter la fonction de corrélation à deux points sous la forme d'intégrales multiples, ainsi que pour le calcul de diverses quantités physiques à la limite thermodynamique, telles que les polarisations spontanées ou les probabilités de hauteurs locales. Ces dernières s'expriment sous forme d'intégrales multiples similaires à celles du modèle XXZ.
|
27 |
Matrix Quantum Mechanics And Integrable SystemsPehlivan, Yamac 01 July 2004 (has links) (PDF)
In this thesis we improve and extend an algebraic technique pioneered by M. Gaudin. The technique is based on an infinite dimensional Lie algebra and a related family of mutually commuting Hamiltonians. In order to find energy eigenvalues of such Hamiltonians one has to solve the equations of Bethe ansatz. However, in most cases analytical solutions are not available. In this study we examine a special case for which analytical solutions of Bethe ansatz equations are not needed. Instead, some special properties of these equations are utilized to evaluate the energy eigenvalues. We use this method to find exact expressions for the energy eigenvalues of a class of interacting boson models.
In addition to that, we also introduce a q-deformation of the algebra of Gaudin. This deformation leads us to another family of mutually commuting Hamiltonians which we diagonalize using algebraic Bethe ansatz technique. The motivation for this deformation comes from a relationship between Gaudin algebra and a spin extension of the integrable model of F. Calogero. Observing this relation, we then consider a well known periodic version of Calogero' / s model which is due to B. Sutherland. The search for a Gaudin-like algebraic structure which is in a similar relationship with the spin extension of Sutherland' / s model naturally leads to the above mentioned q-deformation of Gaudin algebra. The deformation parameter q and the periodicity d of the Sutherland model are related by the formula q=i{pi}/d.
|
28 |
Equations fonctionnelles et algèbres de LiePetracci, Emanuela 14 January 2003 (has links) (PDF)
Dans cette thèse on a étudié plusieurs problèmes<br />algébriques relatifs à une superalgèbre de Lie qui peuvent être<br />réduits à la résolution d'une équation fonctionnelle. Cette<br />technique a permis d'obtenir des résultats qui sont nouveaux<br />aussi pour une algèbre de Lie ordinaire et qui sont indépendants<br />de la classification des algèbres de Lie.
|
Page generated in 0.0454 seconds