Spelling suggestions: "subject:"abaxter""
11 |
On integrable deformations of semi-symmetric space sigma-models / Deformações integráveis do modelo sigma da supercorda em espaços semi-simétricosRené Negrón Huamán 05 October 2018 (has links)
In this thesis we review some aspects of Yang-Baxter deformations of semi-symmetric space sigma models. We start by giving a short review of the sigma model description of superstrings and then we offer a self contained introduction to the Yang-Baxter deformation technique. We then show how to obtain an integrable deformation of the hybrid sigma model. Also, we show that the gravity dual of beta-deformed ABJM theory can be obtained as a Yang-Baxter deformation. This is done by selecting a convenient combination of Cartan generators in order to construct an Abelian r-matrix satisfying the classical Yang-Baxter equation. / Nesta tese revisamos alguns aspectos das deformações de Yang-Baxter de modelos sigma em espaços semi-simétricos. Damos uma breve revisão do modelo sigma de supercordas e, em seguida, oferecemos uma introdução ao método de deformação de Yang-Baxter. Em seguida, mostramos como obter uma deformação integrável do modelo sigma híbrido. Além disso, mostramos que o dual gravitacional da teoria ABJM beta-deformada pode ser obtida como uma deformação de Yang-Baxter. Isso é feito selecionando-se uma combinação conveniente de geradores de Cartan para construir uma matriz r Abeliana satisfazendo a equação clássica de Yang-Baxter.
|
12 |
Tressages d'espaces de tenseursGrapperon, Thomas 25 November 2008 (has links) (PDF)
Le sujet de cette thèse est l'établissement d'une nouvelle solution de l'équation de Yang-Baxter. Cette équation est présente dans de très nombreux domaines de la physique théorique (systèmes intégrables, mécanique statistique, QISM,...) ou des mathématiques (théorie des nœuds, groupes quantiques,...), mais l'étude de ses solutions est difficile (équations non-linéaires, variables non-commutatives, etc.). Une solution de l'équation de Yang-Baxter est aussi appelée tressage.<br /><br />Dans une première partie, nous présentons des résultats généraux sur le groupe des tresses et son algèbre de groupe. Nous nous intéressons ensuite aux analogues tressés que l'on peut considérer comme des analogues non-commutatifs de q-analogues. Nous présentons entre autres des analogues pour les coefficients binomiaux, les symboles de Pochhammer et les nombres de Fuß-Catalan, ainsi que pour le développent binomial et la convolution de Vandermonde. Ces deux premiers chapitres contiennent des résultats plus ou moins standards et forment l'assise des résultats qui suivent. La définition des nombres de Fuß-Catalan est toutefois originale.<br /><br />Dans une seconde partie, nous abordons les tressages d'espaces de tenseurs. Nous commençons par présenter les équations qui doivent être satisfaites par un tel objet et nous donnons une solution dont nous montrons l'unicité. Dans un dernier chapitre, nous plaçons ce tressage dans un contexte plus général et nous présentons les tressages dits « zébrés » qui prennent en compte une éventuelle cyclicité dans l'ordre des tenseurs sur lesquels ils se projettent. Le contenu de ces deux derniers chapitres est original. Nous fournissons ainsi une nouvelle solution de l'équation de Yang-Baxter et explorons ses propriétés.
|
13 |
Quelques propriétés des algèbres de von Neumann<br />engendrées par des q-GaussiensNou, Alexandre 26 November 2004 (has links) (PDF)
Ce travail est au confluent de la théorie des algèbres d'opérateurs<br />et des probabilités non-commutatives. Nous étudions les propriétés<br />des algèbres de von Neumann, $\Gamma_{q}(H_{\R})$, engendrées par<br />des variables Gaussiennes non-commutatives et $q$-déformées. Ces<br />variables $q$-Gaussiennes sont des opérateurs agissant sur l'espace<br />de Fock $q$-déformé, où sont réalisées les relations de<br />$q$-commutations canoniques.<br /><br />Dans la première partie de ce mémoire, nous établissons des<br />inégalités à coefficients opérateurs de type Khintchine-$L^{\infty}$<br />pour les produits de Wick des algèbres $q$-Gaussiennes. Ces<br />inégalités étendent d'un côté les inégalités scalaires dues à<br />Haagerup dans le cas libre et d'un autre côté les inégalités à<br />coefficients opérateurs, pour les $q$-Gaussiens, dues à Bo\.zejko et<br />Speicher. A l'aide de ces inégalités nous en déduisons que les<br />algèbres $\Gamma_q(H_{\R})$ sont non injectives dès que<br />$\dim_{\R}(H_{\R})\ge 2$.<br /><br />La deuxième partie est dédiée à la construction d'un modèle<br />asymptotique matriciel pour les variables $q$-Gaussiennes.<br />L'existence d'un tel modèle nous permet de prouver que les algèbres<br />$\Gamma_{q}(H_{\R})$ sont QWEP.<br /><br />Chemin faisant, nous traitons également le cas $C^*-$algébrique et<br />étudions diverses généralisations des résultats précédents pour les<br />déformations par opérateur de Yang-Baxter et pour les déformations<br />$q$-Gaussiennes de type $I\!I\!I$.
|
14 |
Algèbre de réflexion dynamique et modèles intégrables associées.Filali, Ghali 12 December 2011 (has links) (PDF)
Cette thèse s'inscrit dans le cadre général de la théorie des systèmes intégrables avec bords et le développement des structures algébriques associées. D'une part, nous nous attaquons au problème de la diagonalisation de l'hamiltonien du modèle XXZ avec bords non diagonaux. Nous exhibons les deux ensembles d'états propres et valeurs propres du modèle si les paramètres de bords satisfont deux conditions. D'autre part, nous introduisons un modèle de physique statistique que nous appelons le modèle face avec un bord réfléchissant. Nous calculons exactement sa fonction de partition et nous montrons que cette dernière se représente simplement sous la forme d'un unique déterminant matriciel. Nous montrons que ces deux problèmes sont reliés par la transformation vertex-face et exhibent une structure algébrique commune, l'algèbre de réflexion dynamique. Nous nous intéressons aux aspects mathématiques de cette algèbre dans le cas elliptique général, et nous introduisons deux classes de ces représentations, la représentation de co-module d'évaluation et sa duale. Nous pensons que cette algèbre est la structure clef pour l'analyse des modèles faces avec bords. En particulier, nous montrons à l'aide de twists de Drinfel'd que leur fonction de partition se représente simplement dans le cas général.
|
15 |
Topics in Random Knots and R-Matrices from Frobenius AlgebrasKaradayi, Enver 27 October 2010 (has links)
In this dissertation, we study two areas of interest in knot theory: Random knots in the unit cube, and the Yang-Baxter solutions constructed from Frobenius algebras.
The study of random knots can be thought of as a model of DNA strings situated in confinement. A random knot with n vertices is a polygonal loop formed by selecting n distinct points in the unit cube, for a positive integer n, and connecting these points by straight line segments successively, such that the last point selected is joined with the first one. We present a step by step description of our algorithm and Maple codes for generating random knots in the unit cube, with a given vertex number n. To detect non-trivial knots, we use a knot invariant called the determinant. We present an algorithm and its Maple code for computing the determinant for random knots. For each vertex number n, we generate large number of random knots and form data sets of values of the determinant. Then we analyze our data sets in various ways. For instance, for each vertex number n, we form data sets of the number of p-colorable random knots by finding the set of prime divisors of each determinant output. We define the stick number for p-colorability to be the minimum number of line segments required to form a p-colorable knot. We use our data sets to find upper bounds for stick numbers for p-colorability, for primes p _ 191. We also find distributions of p-colorable knots and small determinant values.
The second topic on random knots is the linking number of random links. A random link is a collection of disjoint random knots produced simultaneously. We present descriptions of our algorithm and its Maple code for constructing random links of two components, and calculating their linking numbers in detail. By running the code for 1000 times, for the vertex number n less than or equal to 30, we obtain data sets of linking numbers for two-component random links such that each component is a random knot with n vertices. Then we find the distribution of linking numbers and calculate upper bounds for the stick number for the linking numbers ` _ 15.
The second area we investigate is applications of Fobenius algebras to knot theory. Chain complexes and Yang-Baxter solutions (R-matrices) are constructed by the skein theoretic approach using Frobenius algebras, and deformed R-matrices are constructed by using 2-cocyles. We compute cohomology groups, Yang-Baxter solutions and their cocycle deformations for group algebras, polynomial algebras and complex numbers. We construct knot and link invariants using these R-matrices from Frobenius algebras via Turaev’s criteria. Then a series of skein relations of the invariant are introduced for oriented knot or link diagrams. We also present calculations of the Frobenius skein invariant for various knots and links.
|
16 |
Matrizes de reflexão com simetria [osp(2|2)(2)]Vieira, Ricardo Soares 16 March 2012 (has links)
Made available in DSpace on 2016-06-02T20:16:50Z (GMT). No. of bitstreams: 1
4881.pdf: 414637 bytes, checksum: 041da44884b7633aa3ab49c8d8b0d020 (MD5)
Previous issue date: 2012-03-16 / Universidade Federal de Minas Gerais / In this thesis we present solutions of the graded boundary YANG-BAXTER equations for vertex models with [osp(2|2)(2)] symmethy. / Nesta dissertação apresentamos soluções graduadas das equações de YANG-BAXTER
com fronteiras associadas aos modelos de vértices com simetria [osp(2|2)(2)].
|
17 |
Yangian symmetric correlators, R operators and amplitudesKirschner, Roland 09 August 2022 (has links)
Yangian symmetric correlators can be constructed by the action of Yang-Baxter
R operators on trivial basic correlators. The example of a four-point correlator is given in two
representations and the construction of the completely connected N point correlator is described.
The helicity representation is dicussed and the relation of the four-point correlator to tree-level
scattering amplitudes is shown.
|
18 |
Differential calculus on h-deformed spaces / Calcul différentiel sur des espaces h-déformésHerlemont, Basile 16 November 2017 (has links)
L'anneau $\Diff(n)$ des opérateurs différentiels $\h$-déformés apparaît dans la théorie des algèbres de réduction.Dans cette thèse, nous construisons les anneaux des opérateurs différentiels généralisés sur les espaces vectoriels $\h$-déformés de type $\gl$. Contrairement aux espaces vectoriels $q$-déformés pour lequel l'anneau des opérateurs différentiels est unique \`a isomorphisme pr\`es, l'anneau généralisé des opérateurs différentiels $\h$-déformés $\Diffs(n)$ est indexée par une fonction rationnelle $\sigma$ en $n$ variables, solution d'un syst\`eme d\'eg\'en\'er\'e d'\'equations aux diff\'erences finies. Nous obtenons la solution g\'en\'erale de ce syst\`eme. Nous montrons que le centre de $\Diffs(n)$ est un anneau des polynômes en $n$ variables. Nous construisons un isomorphisme entre des localisations de l'anneau $\Diffs(n)$ et de l’algèbre de Weyl $\text{W}_n$ l’étendue par $n$ indéterminés. Nous présentons des conditions irréductibilité des modules de dimension fini de $\Diffs(n)$. Finalement, nous discutons des difficultés a trouver les constructions analogues pour l'anneau $\Diff(n,N)$ correspondant \`a $N$ copies de $\Diff(n)$. / The ring $\Diff(n)$ of $\h$-deformed differential operators appears in the theory of reduction algebras. In this thesis, we construct the rings of generalized differential operators on the $\h$-deformed vector spaces of $\gl$-type. In contrast to the $q$-deformed vector spaces for which the ring of differential operators is unique up to an isomorphism, the general ring of $\h$-deformed differential operators $\Diffs(n)$ is labeled by a rational function $\sigma$ in $n$ variables, satisfying an over-determined system of finite-difference equations. We obtain the general solution of the system. We show that the center of $\Diffs(n)$ is a ring of polynomials in $n$ variables. We construct an isomorphism between certain localizations of $\Diffs(n)$ and the Weyl algebra $\W_n$ extended by $n$ indeterminates. We present some conditions for the irreducibility of the finite dimensional $\Diffs(n)$-modules. Finally, we discuss difficulties for finding analogous constructions for the ring $\Diff(n, N)$ formed by several copies of $\Diff(n)$.
|
19 |
Algèbre de Yang-Baxter dynamique et fonctions de corrélation du modèle SOS intégrable / Dynamical Yang-Baxter algebra and correlation functions of the integrable SOS modelLevy-Bencheton, Damien 22 October 2013 (has links)
Un défi toujours actuel dans le domaine des systèmes intégrables quantiques est le calcul exact et explicite des fonctions de corrélation. Dans le cas de modèles simples tels que la chaîne de Heisenberg XXZ de spins 1/2, des progrès significatifs ont été réalisés ces dernières années. Les méthodes développées utilisent les symétries des modèles en volume infini (algèbre quantique affine) ou fini (algèbre de Yang-Baxter). L'objet de cette thèse est d'étendre le champ d'application de ce dernier type d'approche dans le cas où l'algèbre de Yang-Baxter sous-jacente est de type dynamique. C'est typiquement le cas du modèle de physique statistique solid-on-solid (SOS) qui décrit les interactions d'un paramètre de hauteur autour des faces d'un réseau bidimensionnel, avec des poids statistiques donnés par une matrice R elliptique solution de l'équation de Yang-Baxter dynamique.L'étude des fonctions de corrélation du modèle SOS est abordée dans le cadre de l'ansatz de Bethe algébrique et de la méthode de séparation des variables. Des représentations en termes de déterminants de fonctions usuelles sont obtenues par les deux méthodes pour les produits scalaires entre états et pour les facteurs de forme des opérateurs locaux en volume fini. Les formules obtenues dans le cadre de l'ansatz de Bethe algébrique sont ensuite utilisées pour représenter la fonction de corrélation à deux points sous la forme d'intégrales multiples, ainsi que pour le calcul de diverses quantités physiques à la limite thermodynamique, telles que les polarisations spontanées ou les probabilités de hauteurs locales. Ces dernières s'expriment sous forme d'intégrales multiples similaires à celles du modèle XXZ. / A current challenge in the field of quantum integrable systems is the exact and explicit computation of correlation functions. In simple models such as the XXZ spin 1/2 Heisenberg chain, some significant results have been obtained during the last years. The developed methods essentially use the symmetries of the models in infinite volume (quantum affine algebra) or finite volume (Yang-Baxter algebra). The aim of this thesis is to generalize the scope of the latter approaches to the case where the underlying Yang-Baxter algebra is of dynamical type. This is typically the case of the statistical mechanics solid-on-solid (SOS) model which describes the interactions of a height parameter around faces of a bidimensional lattice, and whose statistical weights are given by an elliptic R-matrix which is solution of the dynamical Yang-Baxter equation.The study of correlation functions of the SOS model is discussed in the framework of the algebraic Bethe ansatz and the separation of variables. Representations in terms of determinants of usual functions are obtained by these two methods for the scalar products of states and for form factors of local operators in finite volume. The obtained formula in the framework of the algebraic Bethe ansatz are then used to represent the two-point function as multiple integrals, and also to compute various physical quantities at the thermodynamic limit, such as the spontaneous polarizations or the local height probabilities. The latter can be expressed in terms of multiple integrals of contour, which are really similar to the ones obtained in the XXZ model.
|
20 |
Séparation des variables et facteurs de forme des modèles intégrables quantiquesGrosjean, Nicolas 25 June 2013 (has links) (PDF)
Les facteurs de forme et les fonctions de corrélation déterminent les quantités dynamiques mesurables associées aux modèles de théorie des champs et de mécanique statistique. Dans le cas de modèles intégrables en dimension 2, au-delà des propriétés du spectre ou de la fonction de partition, un des grands défis actuels concerne le calcul exact des facteurs de forme et des fonctions de corrélation.Le but de cette thèse est de développer une approche permettant de résoudre ce problème dans le cadre de la méthode de séparation des variables quantique de Skyanin. Cette méthode généralise au cas quantique et pour des systèmes avec un grand nombre de degrés de liberté la méthode de Hamilton-Jacobi en mécanique analytique. Le Hamiltonien est exprimé avec des opérateurs séparés, son spectre et ses états propres caractérisés par un système d'équations de Baxter résultant des structures algébriques de Yang-Baxter, caractéristiques de l'intégrabilité de ces modèles.Cette thèse a permis, pour les modèles de sine-Gordon (théorie des champs quantique) et de Potts chiral (modèle de physique statistique), le calcul des produits scalaires entre états propres du Hamiltonien, la résolution du problème inverse, i. e. l'expression des opérateurs du modèle en termes des variables séparées, ainsi que le calcul en termes de déterminants des facteurs de forme, i. e. des éléments de matrice des opérateurs locaux du modèle dans la base propre du Hamiltonien, ce qui constitue un pas important vers le calcul des fonctions de corrélation de ces modèles.
|
Page generated in 0.0547 seconds