• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 3
  • 1
  • 1
  • Tagged with
  • 57
  • 33
  • 32
  • 29
  • 27
  • 23
  • 19
  • 18
  • 17
  • 16
  • 16
  • 16
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Enhancing Simulated Sonar Images With CycleGAN for Deep Learning in Autonomous Underwater Vehicles / Djupinlärning, maskininlärning, sonar, simulering, GAN, cycleGAN, YOLO-v4, gles data, osäkerhetsanalys

Norén, Aron January 2021 (has links)
This thesis addresses the issues of data sparsity in the sonar domain. A data pipeline is set up to generate and enhance sonar data. The possibilities and limitations of using cycleGAN as a tool to enhance simulated sonar images for the purpose of training neural networks for detection and classification is studied. A neural network is trained on the enhanced simulated sonar images and tested on real sonar images to evaluate the quality of these images.The novelty of this work lies in extending previous methods to a more general framework and showing that GAN enhanced simulations work for complex tasks on field data.Using real sonar images to enhance the simulated images, resulted in improved classification compared to a classifier trained on solely simulated images. / Denna rapport ämnar undersöka problemet med gles data för djupinlärning i sonardomänen. Ett dataflöde för att generera och höja kvalitén hos simulerad sonardata sätts upp i syfte att skapa en stor uppsättning data för att träna ett neuralt nätverk. Möjligheterna och begränsningarna med att använda cycleGAN för att höja kvalitén hos simulerad sonardata studeras och diskuteras. Ett neuralt nätverk för att upptäcka och klassificera objekt i sonarbilder tränas i syfte att evaluera den förbättrade simulerade sonardatan.Denna rapport bygger vidare på tidigare metoder genom att generalisera dessa och visa att metoden har potential även för komplexa uppgifter baserad på icke trivial data.Genom att träna ett nätverk för klassificering och detektion på simulerade sonarbilder som använder cycleGAN för att höja kvalitén, ökade klassificeringsresultaten markant jämfört med att träna på enbart simulerade bilder.
12

Real-time Human Detection using Convolutional Neural Networks with FMCW RADAR RGB data / Upptäckt av människor i real-tid med djupa faltningsnät samt FMCW RADAR RGB data

Phan, Anna, Medina, Rogelio January 2022 (has links)
Machine learning has been employed in the automotive industry together with cameras to detect objects in surround sensing technology. You Only Look Once is a state-of-the-art object detection algorithm especially suitable for real-time applications due to its speed and relatively high accuracy compared to competing methods. Recent studies have investigated whether radar data can be used as an alternative to camera data with You Only Look Once, seeing as radars are more robust to changing environments such as various weather and lighting conditions. These studies have used 3D data from radar consisting of range, angle, and velocity, transformed into a 2D image representation, either in the Range-Angle or Range-Doppler domain. Furthermore, the processed radar image can use either a Cartesian or a polar coordinate system for the rendering. This study will combine previous studies, using You Only Look Once with Range-Angle radar images and examine which coordinate system of Cartesian or polar is most optimal. Additionally, evaluating the localization and classification performance will be done using a combination of concepts and evaluation metrics. Ultimately, the conclusion is that the Cartesian coordinate system prevails with asignificant improvement compared to polar. / Maskininlärning har sedan länge använts inom fordinsindustrin tillsammans med kameror för att upptäcka föremål och få en ökad överblick över omgivningar. You Only Look Once är en toppmodern objektdetekteringsalgoritm särskilt lämplig för realtidsapplikationer tack vare dess hastighet och relativt höga noggrannhet jämfört med konkurrerande metoder. Nyligen genomförda studier har undersökt om radardata kan användas som ett alternativ till kameradata med You Only Look Once, eftersom radar är mer robusta för ändrade miljöer så som olika väder- och ljusförhållanden. Dessa studier har utnyttjat 3D data från radar bestående av avstånd, vinkel och hastighet, som transformerats till en 2D bildrepresentation, antingen i domänen Range-Angle eller Range-Doppler. Vidare kan den bearbetade radarbilden använda antingen ett kartesiskt eller ett polärt koordinatsystem för framställningen. Denna studie kommer att kombinera tidigare studier om You Only Look Once med Range-Angle radarbilder och undersöka vilket koordinatsystem, kartesiskt eller polärt, som är mest optimalt att använda för människodetektering med radar. Dessutom kommer en utvärdering av lokaliserings- och klassificeringsförmåga att göras med hjälp av en blandning av koncept och olika mått på prestanda. Slutsatsen gjordes att det kartesiska koordinatsystemet är det bättre alternativet med en betydligt högre prestanda jämfört med det polära koordinatsystemet.
13

Deep YOLO-Based Detection of Breast Cancer Mitotic-Cells in Histopathological Images

Maisun Mohamed, Al Zorgani,, Irfan, Mehmood,, Hassan,Ugail,, Al Zorgani, Maisun M., Mehmood, Irfan, Ugail, Hassan 25 March 2022 (has links)
yes / Coinciding with advances in whole-slide imaging scanners, it is become essential to automate the conventional image-processing techniques to assist pathologists with some tasks such as mitotic-cells detection. In histopathological images analysing, the mitotic-cells counting is a significant biomarker in the prognosis of the breast cancer grade and its aggressiveness. However, counting task of mitotic-cells is tiresome, tedious and time-consuming due to difficulty distinguishing between mitotic cells and normal cells. To tackle this challenge, several deep learning-based approaches of Computer-Aided Diagnosis (CAD) have been lately advanced to perform counting task of mitotic-cells in the histopathological images. Such CAD systems achieve outstanding performance, hence histopathologists can utilise them as a second-opinion system. However, improvement of CAD systems is an important with the progress of deep learning networks architectures. In this work, we investigate deep YOLO (You Only Look Once) v2 network for mitotic-cells detection on ICPR (International Conference on Pattern Recognition) 2012 dataset of breast cancer histopathology. The obtained results showed that proposed architecture achieves good result of 0.839 F1-measure.
14

Detekce a klasifikace létajících objektů / Detection and classification of flying objects

Jurečka, Tomáš January 2021 (has links)
The thesis deals with the detection and classification of flying objects. The work can be divided into three parts. The first part describes the creation of dataset of flying objects. The reverse image search is used to create the dataset. The next part is a research of algorithms for detection, tracking and classification. Subsequently, the individual algorithms are applied and evaluated. In the last part, the design of hardware components is performed.
15

Localization of UAVs Using Computer Vision in a GPS-Denied Environment

Aluri, Ram Charan 05 1900 (has links)
The main objective of this thesis is to propose a localization method for a UAV using various computer vision and machine learning techniques. It plays a major role in planning the strategy for the flight, and acts as a navigational contingency method, in event of a GPS failure. The implementation of the algorithms employs high processing capabilities of the graphics processing unit, making it more efficient. The method involves the working of various neural networks, working in synergy to perform the localization. This thesis is a part of a collaborative project between The University of North Texas, Denton, USA, and the University of Windsor, Ontario, Canada. The localization has been divided into three phases namely object detection, recognition, and location estimation. Object detection and position estimation were discussed in this thesis while giving a brief understanding of the recognition. Further, future strategies to aid the UAV to complete the mission, in case of an eventuality, like the introduction of an EDGE server and wireless charging methods, was also given a brief introduction.
16

DETECTION AND SEGMENTATION OF DEFECTS IN X-RAY COMPUTED TOMOGRAPHY IMAGE SLICES OF ADDITIVELY MANUFACTURED COMPONENT USING DEEP LEARNING

Acharya, Pradip 01 June 2021 (has links)
Additive manufacturing (AM) allows building complex shapes with high accuracy. The X-ray Computed Tomography (XCT) is one of the promising non-destructive evaluation techniques for the evaluation of subsurface defects in an additively manufactured component. Automatic defect detection and segmentation methods can assist part inspection for quality control. However, automatic detection and segmentation of defects in XCT data of AM possess challenges due to contrast, size, and appearance of defects. In this research different deep learning techniques have been applied on publicly available XCT image datasets of additively manufactured cobalt chrome samples produced by the National Institute of Standards and Technology (NIST). To assist the data labeling image processing techniques were applied which are median filtering, auto local thresholding using Bernsen’s algorithm, and contour detection. A convolutional neural network (CNN) based state-of-art object algorithm YOLOv5 was applied for defect detection. Defect segmentation in XCT slices was successfully achieved applying U-Net, a CNN-based network originally developed for biomedical image segmentation. Three different variants of YOLOv5 which are YOLOv5s, YOLOv5m, and YOLOV5l were implemented in this study. YOLOv5s achieved defect detection mean average precision (mAP) of 88.45 % at an intersection over union (IoU) threshold of 0.5. And mAP of 57.78% at IoU threshold 0.5 to 0.95 using YOLOv5M was achieved. Additionally, defect detection recall of 87.65% was achieved using YOLOv5s, whereas a precision of 71.61 % was found using YOLOv5l. YOLOv5 and U-Net show promising results for defect detection and segmentation respectively. Thus, it is found that deep learning techniques can improve the automatic defect detection and segmentation in XCT data of AM.
17

ERROR DETECTION IN PRODUCTION LINES VIA DEPENDABLE ARCHITECTURES IN CONVOLUTIONAL NEURAL NETWORKS

Olsson, Erik January 2023 (has links)
The need for products has increased during the last few years, this high demand needs to bemet with higher means of production. The use of neural networks can be the key to increasedproduction without having to compromise product quality or human workers well being. This thesislooks into the concept of reliable architectures in convolutional neural networks and how they canbe implemented. The neural networks are trained to recognize the features in images to identifycertain objects, these recognition is then compared to other models to see which of them had the bestprediction. Using multiple models creates a reliable architecture from which results can be produced,these results can then be used in combinations with algorithms to improve prediction certainty. Theaim of implementing the networks with these algorithms are to improve the results without havingto change the networks configurations.
18

DRIVING-SCENE IMAGE CLASSIFICATION USING DEEP LEARNING NETWORKS: YOLOV4 ALGORITHM

Rahman, Muhammad Tamjid January 2022 (has links)
The objective of the thesis is to explore an approach of classifying and localizing different objects from driving-scene images using YOLOv4 algorithm trained on custom dataset.  YOLOv4, a one-stage object detection algorithm, aims to have better accuracy and speed. The deep learning (convolutional) network based classification model was trained and validated on a subject of SODA10M dataset annotated with six different classes of objects (Car, Cyclist, Truck, Bus, Pedestrian, and Tricycle), which are the most seen objects on the road. Another model based on YOLOv3 (the previous version of YOLOv4) will be trained on the same dataset and the performance will be compared with the YOLOv4 model. Both algorithms are fast but have difficulty detecting some objects, especially the small objects. Larger quantities of properly annotated training data can improve the algorithm's performance accuracy.
19

AUTONOMOUS SAFE LANDING ZONE DETECTION FOR UAVs UTILIZING MACHINE LEARNING

Nepal, Upesh 01 May 2022 (has links)
One of the main challenges of the integration of unmanned aerial vehicles (UAVs) into today’s society is the risk of in-flight failures, such as motor failure, occurring in populated areas that can result in catastrophic accidents. We propose a framework to manage the consequences of an in-flight system failure and to bring down the aircraft safely without causing any serious accident to people, property, and the UAV itself. This can be done in three steps: a) Detecting a failure, b) Finding a safe landing spot, and c) Navigating the UAV to the safe landing spot. In this thesis, we will look at part b. Specifically, we are working to develop an active system that can detect landing sites autonomously without any reliance on UAV resources. To detect a safe landing site, we are using a deep learning algorithm named "You Only Look Once" (YOLO) that runs on a Jetson Xavier NX computing module, which is connected to a camera, for image processing. YOLO is trained using the DOTA dataset and we show that it can detect landing spots and obstacles effectively. Then by avoiding the detected objects, we find a safe landing spot. The effectiveness of this algorithm will be shown first by comprehensive simulations. We also plan to experimentally validate this algorithm by flying a UAV and capturing ground images, and then applying the algorithm in real-time to see if it can effectively detect acceptable landing spots.
20

How Safe Is Machine Vision? : An Evaluation of the AMLAS Process in a Machine Vision Environment

Hamnert, Josef, Hägglund, Daniel January 2022 (has links)
This thesis evaluates the AMLAS methodology. To support the evaluation, literature studies are conducted and a machine learning dependent system that detects people and helmets is implemented. The practical work is performed according to the documentation of AMLAS. Alongside this work, a user interface is developed. The user interface and the machine learning component is merged to create the complete system. The results show that AMLAS contributes with safety, structure and reliability to the system. However, the findings show that AMLAS is missing some aspects. / <p>Examensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska fakulteten, Linköpings universitet</p>

Page generated in 0.0473 seconds