• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 12
  • 10
  • Tagged with
  • 42
  • 26
  • 15
  • 14
  • 14
  • 14
  • 13
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Lineare und nichtlineare Analyse hochdynamischer Einschlagvorgänge mit Creo Simulate und Abaqus/Explicit / Linear and Nonlinear Analysis of High Dynamic Impact Events with Creo Simulate and Abaqus/Explicit

Jakel, Roland 23 June 2015 (has links) (PDF)
Der Vortrag beschreibt wie sich mittels der unterschiedlichen Berechnungsverfahren zur Lösung dynamischer Strukturpobleme der Einschlag eines idealisierten Bruchstücks in eine Schutzwand berechnen lässt. Dies wird mittels zweier kommerzieller FEM-Programme beschrieben: a.) Creo Simulate nutzt zur Lösung die Methode der modalen Superposition, d.h., es können nur lineare dynamische Systeme mit rein modaler Dämpfung berechnet werden. Kontakt zwischen zwei Bauteilen lässt sich damit nicht erfassen. Die unbekannte Kraft-Zeit-Funktion des Einschlagvorganges muss also geeignet abgeschätzt und als äußere Last auf die Schutzwand aufgebracht werden. Je dynamischer der Einschlagvorgang, desto eher wird der Gültigkeitsbereich des zugrunde liegenden linearen Modells verlassen. b.) Abaqus/Explicit nutzt ein direktes Zeitintegrationsverfahren zur schrittweisen Lösung der zugrunde liegenden Differentialgleichung, die keine tangentiale Steifigkeitsmatrix benötigt. Damit können sowohl Materialnichtlinearitäten als auch Kontakt geeignet erfasst und damit die Kraft-Zeit-Funktion des Einschlages ermittelt werden. Auch bei extrem hochdynamischen Vorgängen liefert diese Methode ein gutes Ergebnis. Es müssen dafür jedoch weit mehr Werkstoffdaten bekannt sein, um das nichtlineare elasto-plastische Materialverhalten mit Schädigungseffekten korrekt zu beschreiben. Die Schwierigkeiten der Werkstoffdatenbestimmung werden in den Grundlagen erläutert. / The presentation describes how to analyze the impact of an idealized fragment into a stell protective panel with different dynamic analysis methods. Two different commercial Finite Element codes are used for this: a.) Creo Simulate: This code uses the method of modal superposition for analyzing the dynamic response of linear dynamic systems. Therefore, only modal damping and no contact can be used. The unknown force-vs.-time curve of the impact event cannot be computed, but must be assumed and applied as external force to the steel protective panel. As more dynamic the impact, as sooner the range of validity of the underlying linear model is left. b.) Abaqus/Explicit: This code uses a direct integration method for an incremental (step by step) solution of the underlying differential equation, which does not need a tangential stiffness matrix. In this way, matieral nonlinearities as well as contact can be obtained as one result of the FEM analysis. Even for extremely high-dynamic impacts, good results can be obtained. But, the nonlinear elasto-plastic material behavior with damage initiation and damage evolution must be characterized with a lot of effort. The principal difficulties of the material characterization are described.
32

Ein Beitrag zum Einsatz von höherfesten Klebstoffen bei Holz-Glas-Verbundelementen

Nicklisch, Felix 15 March 2016 (has links)
Bestärkt durch das gesellschaftliche und wirtschaftliche Interesse an nachhaltigen und ressourcenschonenden Formen des Bauens gewinnen Holzkonstruktionen wieder unverkennbar an Bedeutung. Mit dieser Entwicklung bilden sich neue Konstruktionsprinzipien und Materialkombinationen im Bauwesen heraus, zu deren ingenieurtechnischer Beurteilung zum Teil keine ausreichenden Erkenntnisse vorliegen. Verbundkonstruktionen aus Holz und Glas sind eine innovative Bauweise, die zu einer höheren Materialeffizienz in Fassaden beiträgt, deren Wirkungsweise aber noch nicht ausreichend hinterfragt wurde. Werden Holz und Glas durch eine tragende Klebung verbunden, lässt sich das vielfach ungenutzte Tragpotenzial ausschöpfen, das eine in Scheibenebene belastete Verglasung aufweist. Die Qualität der Klebung entscheidet dabei über die Eigenschaften und das Leistungsvermögen des Bauteils. Die üblicherweise an dieser Schnittstelle eingesetzten Silikonklebstoffe weisen eine hohe Nachgiebigkeit und eine vergleichsweise geringe Festigkeit auf. Wenn die Verbundelemente als Aussteifung mitwirken sollen, bleibt ihr Einsatz deswegen auf Gebäude mit höchstens zwei Geschossen limitiert. Die vorliegende Arbeit trägt entscheidend zur Erweiterung der baulichen Möglichkeiten bei, indem sie der Anwendbarkeit von hochfesten Klebstoffen, die für den Einsatz im Bauwesen nur wenig erforscht sind, auf vielschichtige Weise nachgeht. Im Fokus stehen aussteifende Holz-Glas-Verbundelemente für die Fassade. Weder die Bauart noch das Bauprodukt Klebstoff sind derzeit in Deutschland in einer Norm erfasst. Das Klären der baurechtlichen Rahmenbedingungen ist daher unerlässlich und erfolgt mit engem Bezug zum konstruktiven Glasbau. Zusätzlich zur wissenschaftlichen Interpretation wird dadurch eine praxisnahe Bewertung der Versuchsergebnisse möglich, was ein Alleinstellungsmerkmal dieser Arbeit darstellt. Das Verformungsvermögen des Klebstoffs spielt eine zentrale Rolle bei der Materialauswahl und Gestaltung der Holz-Glas-Verbundelemente. Der Einfluss der Klebstoffsteifigkeit auf das Tragverhalten eines Einzelelements und auf dessen Interaktion mit den anderen Bestandteilen des Tragwerks wird an einem Modellgebäude untersucht. Auf Basis dieser Parameterstudie lassen sich drei Steifigkeitsbereiche definieren, auf die sich die Klebstoffauswahl für die weiteren Untersuchungen stützt. Der experimentelle Teil der Arbeit beginnt mit der ausführlichen Charakterisierung von sieben Klebstoffen. Davon werden zwei höherfeste Klebstoffe als geeignet identifiziert. Ein Silikonklebstoff wird als Referenzmaterial zur aktuellen Anwendungspraxis festgelegt. Das Hauptaugenmerk der folgenden Experimente richtet sich auf Aspekte der Alterungsbeständigkeit und des zeitabhängigen Materialverhaltens unter langandauernder mechanischer Beanspruchung. In labormaßstäblichen Alterungsprüfungen werden die Klebstoffproben unterschiedlichen Schadeinwirkungen ausgesetzt, die im Glas- und Fassadenbau relevant sind. Darüber hinaus erfolgen Kriechversuche an kleinen und großen Scherprüfkörpern. Letztere stellen einen besonderen Mehrwert dar, da sie eine realistische Klebfugengeometrie aufweisen und die Ergebnisse dadurch dem tatsächlichen Bauteilverhalten nahekommen. Für diese Zeitstandversuche wurde eine bislang einzigartige Versuchsanlage aus sechs Prüfrahmen mit Gasdruckfederbelastung entwickelt. Im Ergebnis zeigt sich, dass mit den gewählten höherfesten Klebstoffen die Festigkeit der nicht gealterten Klebschichten erwartungsgemäß gesteigert werden kann. Der Bruch des Fügepartners Holz wird zum maßgebenden Versagenskriterium. Die Verformungen des Verbundelements reduzieren sich gegenüber einer Silikonklebung deutlich. Allerdings offenbaren sich in einzelnen Alterungsszenarien und unter langandauernder Belastung auch Schwachstellen dieser Klebstoffe. Ihre Verwendung kann daher nur mit konstruktiven Kompensationsmaßnahmen oder durch Abschirmen der kritischen Einwirkungsgrößen empfohlen werden. Entsprechende Vorschläge werden bei der abschließenden Bewertung der Ergebnisse unterbreitet. Verfahren und Beurteilungsmethoden, die in dieser Arbeit angewendet und entwickelt werden, erleichtern die zukünftige Bewertung weiterer aussichtsreicher Klebstoffe für den Holz-Glas-Verbund.:1 Einleitung 13 1.1 Motivation 13 1.2 Zielsetzung 18 1.3 Abgrenzung 20 1.4 Vorgehensweise 21 2 Die Holz-Glas-Verbundbauweise 25 2.1 Tragprinzip und Wirkungsweise 25 2.2 Forschungsschwerpunkte und Anwendungen 27 2.2.1 Geklebte Verglasungssysteme für Fenster 27 2.2.2 Träger 28 2.2.3 Wandscheiben und Schubfelder 32 2.2.4 Verbundplatten 36 2.3 Tragendes Glas im Verbund 37 2.3.1 Relevanz für Holz-Glas-Verbundlösungen 37 2.3.2 Historische Vorbilder 37 2.3.3 Verbundglas und Verbund-Sicherheitsglas 38 2.3.4 Verbundträger 40 2.3.5 Wandscheiben aus Glas 43 2.4 Konstruktionsprinzipien von tragenden Wand und Fassadenelementen aus Holz und Glas 46 2.4.1 Aufbau 46 2.4.2 Verglasung 46 2.4.3 Ausbildung der Klebfuge 48 2.4.4 Marktreife Systeme mit Koppelleiste 49 2.4.5 Identifizieren geeigneter Tragsysteme 52 2.4.6 Skelett-, Tafel- und Massivholzbauweise 53 2.5 Zusammenfassung wesentlicher Erkenntnisse 55 3 Klebverbindungen im Glasbau 57 3.1 Fügen von Glas 57 3.1.1 Besondere Merkmale des Fügewerkstoffs 57 3.1.2 Wirkprinzip und Fügeverfahren 60 3.1.3 Vor- und Nachteile von Klebverbindungen 61 3.1.4 Glasoberfläche 65 3.2 Typische Anwendungsbeispiele im Glasbau 67 3.2.1 Klassifizierung 67 3.2.2 Einordung der Holz-Glas-Verbundbauweise 69 3.2.3 Structural Sealant Glazing 71 3.2.4 Ganzglaskonstruktionen 74 3.3 Planungsstrategien 76 3.3.1 Sicheres Bauteilversagen 76 3.3.2 Redundanz und Versagensszenarien 78 3.3.3 Besonderheiten bei geklebten Verglasungen 80 3.4 Baurechtliche Rahmenbedingungen 82 3.4.1 Normung und Verfahrensweise in Deutschland 82 3.4.2 Harmonisierung auf europäischer Ebene 84 3.4.3 ETAG 002 – Leitlinie für Structural Glazing 86 3.4.4 Der Weg zur geklebten Glaskonstruktion 88 4 Einfluss der Klebstoffsteifigkeit auf aussteifende Holz-Glas-Verbundtragwerke 91 4.1 Aussteifung von Holzbauten 91 4.2 Berechnungsverfahren 92 4.2.1 Begründung der Auswahl der Verfahren 92 4.2.2 Verteilung von Horizontallasten auf die Wandscheiben eines Aussteifungssystems 93 4.2.3 Wandscheibe als Schubfeld 95 4.2.4 Federmodelle 97 4.3 Randbedingungen für die Analyse 101 4.3.1 Modellgebäude 101 4.3.2 Konstruktive Gestaltung 103 4.3.3 Lastannahmen 104 4.4 Parameterstudie 107 4.4.1 Nachgiebigkeit der Kernwände 107 4.4.2 Nachgiebigkeit eines Verbundelements 108 4.4.3 Auswirkung der Elementanordnung 112 4.4.4 Lastumlagerung bei Ausfall von Elementen 114 4.4.5 Horizontallastanteil auf Fassade und Kern 116 4.5 Rückschlüsse auf die Tragsystemgestaltung und die Klebstoffauswahl 120 5 Materialauswahl und -charakterisierung 123 5.1 Untersuchungsprogramm 123 5.2 Materialeigenschaften der Fügeteile 124 5.2.1 Glas 124 5.2.2 Holz und Holzwerkstoffe 126 5.3 Klebstoffe 128 5.3.1 Auswahlkriterien für Holz-Glas-Klebungen 128 5.3.2 Vorauswahl der Klebstoffsysteme 130 5.4 Experimentelle Methoden zur Charakterisierung der Klebstoffe 134 5.4.1 Dynamisch-mechanische Analyse 134 5.4.2 Einaxialer Zugversuch 135 5.4.3 Scherversuch 138 5.5 Versuchsergebnisse 141 5.5.1 Glasübergangstemperatur 141 5.5.2 Spannungs-Dehnungs-Beziehung 145 5.5.3 Einpunktkennwerte 150 5.5.4 Scherfestigkeit und Bruchbildanalyse 151 5.6 Klebstoffauswahl für die Hauptuntersuchungen 155 6 Experimentelle Untersuchungen an Klebverbindungen im Labormaßstab 157 6.1 Methodik 157 6.1.1 Untersuchungsgegenstand 157 6.1.2 Beurteilungsgrundlagen 158 6.1.3 Untersuchungsprogramm 159 6.1.4 Auswertungsmethoden 162 6.2 Geometrie und Herstellung der Prüfkörper 164 6.2.1 Prüfkörper zum Bestimmen der Haftfestigkeit vor und nach künstlicher Alterung 164 6.2.2 Scherprüfkörper für Kriechversuche 165 6.2.3 Vorbereiten und Konditionieren der Proben 166 6.3 Verfahren zur mechanischen Prüfung und zur künstlichen Alterung 168 6.3.1 Zug- und Scherversuche 168 6.3.2 Lagerung unter UV-Bestrahlung 170 6.3.3 Lagerung in Reinigungsmittellösung 171 6.3.4 Holzfeuchtewechsel bei +20 °C 172 6.3.5 Lagerung in schwefeldioxidhaltiger Atmosphäre 173 6.3.6 Kriechversuche 174 6.4 Auswertung der Versuchsergebnisse 176 6.4.1 Anfangsfestigkeit im Scherversuch 176 6.4.2 Anfangsfestigkeit im Zugversuch 181 6.4.3 Sichtbare Veränderungen der Klebschicht 183 6.4.4 Restfestigkeit nach Alterung 185 6.4.5 Analyse der Versagensmuster 189 6.4.6 Kriechverhalten 192 6.4.7 Restfestigkeit nach Vorbelastung 198 7 Experimentelle Untersuchungen an bauteilähnlichen Prüfkörpern 201 7.1 Untersuchungsprogramm und Methodik 201 7.1.1 Ziel der Untersuchungen 201 7.1.2 Materialien 202 7.1.3 Großer Scherprüfkörper 203 7.1.4 Herstellung der Prüfkörper 205 7.1.5 Versuchsprogramm – Bauteilversuche 207 7.2 Entwicklung eines Kriechprüfstands 210 7.2.1 Prüfrahmen 210 7.2.2 Lasteinleitung 211 7.2.3 Belastungsvorgang 212 7.2.4 Messtechnik und Monitoring 213 7.2.5 Modifikation für Kurzzeitversuche 214 7.3 Große Scherversuche unter Kurz- und Langzeiteinwirkung 215 7.3.1 Tragfähigkeit bei kurzzeitiger Lasteinwirkung 215 7.3.2 Spannungsverteilung im Glas 219 7.3.3 Kriechversuche mit 1000 Stunden Laufzeit 221 7.3.4 Verlängerte Kriechversuche am Klebstoff mit mittlerer Steifigkeit 226 7.3.5 Tragfähigkeit nach Vorbelastung 230 8 Bewertung und Handlungsempfehlung 231 8.1 Alterungsverhalten 231 8.2 Korrelation der Ergebnisse aus Fügeteil- und 233 Bauteilversuchen 8.2.1 Versuche bei kurzzeitiger Lasteinwirkung 233 8.2.2 Versuche bei langandauernder Lasteinwirkung 235 8.3 Der Vorzugsklebstoff und seine Einsatzgrenzen 238 8.4 Konstruktion 241 9 Zusammenfassung und Ausblick 243 9.1 Zusammenfassung 243 9.2 Ausblick 249 10 Literatur 253 11 Abbildungsverzeichnis 263 12 Tabellenverzeichnis 267 13 Bezeichnungen 268 Anhang A Materialkennwerte zur Klebstoffauswahl 271 B Klebverbindungen im Labormaßstab 287 C Bauteilähnliche Prüfkörper 373 / Wooden constructions are on the rise again – encouraged by a strong public and economic trend towards sustainable and resource efficient buildings. Spurred by this growing interest novel design principles and material assemblies in architecture and the building industry evolve. These developments require further research due to the absence of evaluation tools and insufficient knowledge about their design. Load-bearing timber-glass composite elements could contribute to a more efficient use of materials in façade constructions. In this case a linear adhesive bond connects the glass pane to the timber substructure. This enables an in-plane loading of the glass whose capacity is not used to its full potential in conventional façades as it is solely applied as an infill panel. The quality of the adhesive bond defines the characteristics and the performance of the whole structural component. Structural sealants such as silicones, which are typically used for the joint, provide a high flexibility and only a low load-bearing capacity. Considering such elements being part of a bracing system, the mentioned characteristics limit the application range to buildings with not more than two stories. This thesis widens the scope with an in-depth examination of high-modulus adhesives, which have not yet been evaluated for their use in building constructions. Timber-glass composite elements used as a bracing component in façades are the focus of this work. Neither the full structural component nor the adhesive have yet been included into German building standards. Hence it is essential to assess the general requirements of their application. The relevant aspects are clarified in the context of glass constructions. In addition to the scientific discussion of the results, this approach facilitates also a practical evaluation of the findings, which is a unique feature of this work. The deformability of the adhesive becomes a crucial criterion when selecting the individual materials and designing the timber-glass composite elements. A case study assesses the influence of the adhesive stiffness on the behavior of a single element and its interaction with other members of the structural system. Based on the results, three different stiffness classes are introduced to support the selection process of the adhesives to be examined in further investigations. The experimental part of this work is initiated by a comprehensive characterization of seven shortlisted adhesives. The results enable a further differentiation of suitable materials. Two adhesives qualified as suitable for the main experiments. A silicone adhesive complements the test series to serve as a reference material to the current practice. In the next phase attention is drawn to the ageing stability and on the time-dependent material behavior of the adhesives under long-term loading. Small-scale specimens made from adhesively joint timber and glass pieces are exposed to different ageing scenarios which relate to the impacts typically encountered in façades. Beyond that, creep tests are carried out on small and large shear specimen. The latter provide extra benefit as they comprise long linear adhesive joints resembling virtually the situation in a real-size element. A specific long-term test rig was developed for this purpose comprising a loading unit with gas pressurized springs. Based on the results it can be concluded that joints with adhesives of high and intermediate stiffness enable an increase of characteristic failure loads and a significant reduction of deformation. With the stiffer joint near-surface rupture of timber fibers becomes the prevailing failure mechanism. The timber strength limits further loading of the adhesive joint. However, ageing and creep testing reveal also shortcomings of the adhesives. Their application can only be recommended if redundant compensation measures are taken or the joint is protected against critical environmental impacts. Appropriate solutions are proposed with the final recommendations of this work. Methods and assessment tools that have been developed and tested for this work offer the possibility of a more straight-forward evaluation of further promising adhesives and their use in load-bearing timber-glass composites.:1 Einleitung 13 1.1 Motivation 13 1.2 Zielsetzung 18 1.3 Abgrenzung 20 1.4 Vorgehensweise 21 2 Die Holz-Glas-Verbundbauweise 25 2.1 Tragprinzip und Wirkungsweise 25 2.2 Forschungsschwerpunkte und Anwendungen 27 2.2.1 Geklebte Verglasungssysteme für Fenster 27 2.2.2 Träger 28 2.2.3 Wandscheiben und Schubfelder 32 2.2.4 Verbundplatten 36 2.3 Tragendes Glas im Verbund 37 2.3.1 Relevanz für Holz-Glas-Verbundlösungen 37 2.3.2 Historische Vorbilder 37 2.3.3 Verbundglas und Verbund-Sicherheitsglas 38 2.3.4 Verbundträger 40 2.3.5 Wandscheiben aus Glas 43 2.4 Konstruktionsprinzipien von tragenden Wand und Fassadenelementen aus Holz und Glas 46 2.4.1 Aufbau 46 2.4.2 Verglasung 46 2.4.3 Ausbildung der Klebfuge 48 2.4.4 Marktreife Systeme mit Koppelleiste 49 2.4.5 Identifizieren geeigneter Tragsysteme 52 2.4.6 Skelett-, Tafel- und Massivholzbauweise 53 2.5 Zusammenfassung wesentlicher Erkenntnisse 55 3 Klebverbindungen im Glasbau 57 3.1 Fügen von Glas 57 3.1.1 Besondere Merkmale des Fügewerkstoffs 57 3.1.2 Wirkprinzip und Fügeverfahren 60 3.1.3 Vor- und Nachteile von Klebverbindungen 61 3.1.4 Glasoberfläche 65 3.2 Typische Anwendungsbeispiele im Glasbau 67 3.2.1 Klassifizierung 67 3.2.2 Einordung der Holz-Glas-Verbundbauweise 69 3.2.3 Structural Sealant Glazing 71 3.2.4 Ganzglaskonstruktionen 74 3.3 Planungsstrategien 76 3.3.1 Sicheres Bauteilversagen 76 3.3.2 Redundanz und Versagensszenarien 78 3.3.3 Besonderheiten bei geklebten Verglasungen 80 3.4 Baurechtliche Rahmenbedingungen 82 3.4.1 Normung und Verfahrensweise in Deutschland 82 3.4.2 Harmonisierung auf europäischer Ebene 84 3.4.3 ETAG 002 – Leitlinie für Structural Glazing 86 3.4.4 Der Weg zur geklebten Glaskonstruktion 88 4 Einfluss der Klebstoffsteifigkeit auf aussteifende Holz-Glas-Verbundtragwerke 91 4.1 Aussteifung von Holzbauten 91 4.2 Berechnungsverfahren 92 4.2.1 Begründung der Auswahl der Verfahren 92 4.2.2 Verteilung von Horizontallasten auf die Wandscheiben eines Aussteifungssystems 93 4.2.3 Wandscheibe als Schubfeld 95 4.2.4 Federmodelle 97 4.3 Randbedingungen für die Analyse 101 4.3.1 Modellgebäude 101 4.3.2 Konstruktive Gestaltung 103 4.3.3 Lastannahmen 104 4.4 Parameterstudie 107 4.4.1 Nachgiebigkeit der Kernwände 107 4.4.2 Nachgiebigkeit eines Verbundelements 108 4.4.3 Auswirkung der Elementanordnung 112 4.4.4 Lastumlagerung bei Ausfall von Elementen 114 4.4.5 Horizontallastanteil auf Fassade und Kern 116 4.5 Rückschlüsse auf die Tragsystemgestaltung und die Klebstoffauswahl 120 5 Materialauswahl und -charakterisierung 123 5.1 Untersuchungsprogramm 123 5.2 Materialeigenschaften der Fügeteile 124 5.2.1 Glas 124 5.2.2 Holz und Holzwerkstoffe 126 5.3 Klebstoffe 128 5.3.1 Auswahlkriterien für Holz-Glas-Klebungen 128 5.3.2 Vorauswahl der Klebstoffsysteme 130 5.4 Experimentelle Methoden zur Charakterisierung der Klebstoffe 134 5.4.1 Dynamisch-mechanische Analyse 134 5.4.2 Einaxialer Zugversuch 135 5.4.3 Scherversuch 138 5.5 Versuchsergebnisse 141 5.5.1 Glasübergangstemperatur 141 5.5.2 Spannungs-Dehnungs-Beziehung 145 5.5.3 Einpunktkennwerte 150 5.5.4 Scherfestigkeit und Bruchbildanalyse 151 5.6 Klebstoffauswahl für die Hauptuntersuchungen 155 6 Experimentelle Untersuchungen an Klebverbindungen im Labormaßstab 157 6.1 Methodik 157 6.1.1 Untersuchungsgegenstand 157 6.1.2 Beurteilungsgrundlagen 158 6.1.3 Untersuchungsprogramm 159 6.1.4 Auswertungsmethoden 162 6.2 Geometrie und Herstellung der Prüfkörper 164 6.2.1 Prüfkörper zum Bestimmen der Haftfestigkeit vor und nach künstlicher Alterung 164 6.2.2 Scherprüfkörper für Kriechversuche 165 6.2.3 Vorbereiten und Konditionieren der Proben 166 6.3 Verfahren zur mechanischen Prüfung und zur künstlichen Alterung 168 6.3.1 Zug- und Scherversuche 168 6.3.2 Lagerung unter UV-Bestrahlung 170 6.3.3 Lagerung in Reinigungsmittellösung 171 6.3.4 Holzfeuchtewechsel bei +20 °C 172 6.3.5 Lagerung in schwefeldioxidhaltiger Atmosphäre 173 6.3.6 Kriechversuche 174 6.4 Auswertung der Versuchsergebnisse 176 6.4.1 Anfangsfestigkeit im Scherversuch 176 6.4.2 Anfangsfestigkeit im Zugversuch 181 6.4.3 Sichtbare Veränderungen der Klebschicht 183 6.4.4 Restfestigkeit nach Alterung 185 6.4.5 Analyse der Versagensmuster 189 6.4.6 Kriechverhalten 192 6.4.7 Restfestigkeit nach Vorbelastung 198 7 Experimentelle Untersuchungen an bauteilähnlichen Prüfkörpern 201 7.1 Untersuchungsprogramm und Methodik 201 7.1.1 Ziel der Untersuchungen 201 7.1.2 Materialien 202 7.1.3 Großer Scherprüfkörper 203 7.1.4 Herstellung der Prüfkörper 205 7.1.5 Versuchsprogramm – Bauteilversuche 207 7.2 Entwicklung eines Kriechprüfstands 210 7.2.1 Prüfrahmen 210 7.2.2 Lasteinleitung 211 7.2.3 Belastungsvorgang 212 7.2.4 Messtechnik und Monitoring 213 7.2.5 Modifikation für Kurzzeitversuche 214 7.3 Große Scherversuche unter Kurz- und Langzeiteinwirkung 215 7.3.1 Tragfähigkeit bei kurzzeitiger Lasteinwirkung 215 7.3.2 Spannungsverteilung im Glas 219 7.3.3 Kriechversuche mit 1000 Stunden Laufzeit 221 7.3.4 Verlängerte Kriechversuche am Klebstoff mit mittlerer Steifigkeit 226 7.3.5 Tragfähigkeit nach Vorbelastung 230 8 Bewertung und Handlungsempfehlung 231 8.1 Alterungsverhalten 231 8.2 Korrelation der Ergebnisse aus Fügeteil- und 233 Bauteilversuchen 8.2.1 Versuche bei kurzzeitiger Lasteinwirkung 233 8.2.2 Versuche bei langandauernder Lasteinwirkung 235 8.3 Der Vorzugsklebstoff und seine Einsatzgrenzen 238 8.4 Konstruktion 241 9 Zusammenfassung und Ausblick 243 9.1 Zusammenfassung 243 9.2 Ausblick 249 10 Literatur 253 11 Abbildungsverzeichnis 263 12 Tabellenverzeichnis 267 13 Bezeichnungen 268 Anhang A Materialkennwerte zur Klebstoffauswahl 271 B Klebverbindungen im Labormaßstab 287 C Bauteilähnliche Prüfkörper 373
33

Lineare und nichtlineare Analyse hochdynamischer Einschlagvorgänge mit Creo Simulate und Abaqus/Explicit / Linear and Nonlinear Analysis of High Dynamic Impact Events with Creo Simulate and Abaqus/Explicit

Jakel, Roland 23 June 2015 (has links)
Der Vortrag beschreibt wie sich mittels der unterschiedlichen Berechnungsverfahren zur Lösung dynamischer Strukturpobleme der Einschlag eines idealisierten Bruchstücks in eine Schutzwand berechnen lässt. Dies wird mittels zweier kommerzieller FEM-Programme beschrieben: a.) Creo Simulate nutzt zur Lösung die Methode der modalen Superposition, d.h., es können nur lineare dynamische Systeme mit rein modaler Dämpfung berechnet werden. Kontakt zwischen zwei Bauteilen lässt sich damit nicht erfassen. Die unbekannte Kraft-Zeit-Funktion des Einschlagvorganges muss also geeignet abgeschätzt und als äußere Last auf die Schutzwand aufgebracht werden. Je dynamischer der Einschlagvorgang, desto eher wird der Gültigkeitsbereich des zugrunde liegenden linearen Modells verlassen. b.) Abaqus/Explicit nutzt ein direktes Zeitintegrationsverfahren zur schrittweisen Lösung der zugrunde liegenden Differentialgleichung, die keine tangentiale Steifigkeitsmatrix benötigt. Damit können sowohl Materialnichtlinearitäten als auch Kontakt geeignet erfasst und damit die Kraft-Zeit-Funktion des Einschlages ermittelt werden. Auch bei extrem hochdynamischen Vorgängen liefert diese Methode ein gutes Ergebnis. Es müssen dafür jedoch weit mehr Werkstoffdaten bekannt sein, um das nichtlineare elasto-plastische Materialverhalten mit Schädigungseffekten korrekt zu beschreiben. Die Schwierigkeiten der Werkstoffdatenbestimmung werden in den Grundlagen erläutert. / The presentation describes how to analyze the impact of an idealized fragment into a stell protective panel with different dynamic analysis methods. Two different commercial Finite Element codes are used for this: a.) Creo Simulate: This code uses the method of modal superposition for analyzing the dynamic response of linear dynamic systems. Therefore, only modal damping and no contact can be used. The unknown force-vs.-time curve of the impact event cannot be computed, but must be assumed and applied as external force to the steel protective panel. As more dynamic the impact, as sooner the range of validity of the underlying linear model is left. b.) Abaqus/Explicit: This code uses a direct integration method for an incremental (step by step) solution of the underlying differential equation, which does not need a tangential stiffness matrix. In this way, matieral nonlinearities as well as contact can be obtained as one result of the FEM analysis. Even for extremely high-dynamic impacts, good results can be obtained. But, the nonlinear elasto-plastic material behavior with damage initiation and damage evolution must be characterized with a lot of effort. The principal difficulties of the material characterization are described.
34

Tailored Silica Polymer Composites and ABA Type Copolymers: Polymerization Kinetics, Structural Design, and Mechanical Properties / Maßgeschneiderte Silica Polymer-Komposite und ABA-Blockcopolymere: Polymerisationskinetik, Strukturelles Design und Mechanische Eigenschaften

Rotzoll, Robert 18 July 2011 (has links)
No description available.
35

Tagungsband zum 4. BIH-Treffen 2019: Interdisziplinäre Forschung - Chancen und Herausforderungen: Fachtagung für wissenschaftlich Beschäftigte und Nachwuchskräfte an Bauingenieur-Institutionen deutscher Hochschulen

Löwe, Benedict, Käßler, Daniel, Köllner, Florian, Kunze, Stefanie, Heinen, Bernd, Vogt, Isabelle, Freyer, Lola, Dridiger, Andreas, Weiler, Simon, Schönfeld, Larissa, Spörl, Sebastian 04 September 2019 (has links)
Forschung und Wissenschaft sind wichtige Standbeine einer modernen Hochschule. Sie stellen eine Grundlage für die primäre Aufgabe der Hochschulen dar, die praxisnahe und berufsbefähigende Lehre auf dem aktuellen Stand der Technik und Wissenschaft. Mittlerweile widmen sich auch die Hochschulen der Ausbildung von wissenschaftlichem Nachwuchs. Prosperierende Forschungsarbeit ist dafür ein unverzichtbarer Bestandteil. Der Leitgedanke „Interdisziplinäre Forschung – Chancen und Herausforderungen“ des BIH-Treffens 2019 soll zum fachübergreifenden Austausch von Know-how in Forschungs- und Lehrmethoden anregen. Eine große Bandbreite an Fachbeiträgen bietet spannende Einblicke in die Arbeit der Kolleginnen und Kollegen in den unterschiedlichen Fachbereichen des Bauwesens der zahlreichen deutschen Hochschulen. Dazu gehören Beiträge zu modernen Messmethoden in der Geotechnik und dem Bahnbau ebenso wie Forschungsergebnisse aus dem konstruktiven Ingenieurbau, der Baukonstruktion, der Haustechnik und der Verkehrsplanung und nicht zuletzt Erfahrungen zu interdisziplinären Lehrmethoden.:Einfluss der Nachverdichtung granularer Böden auf die Phasengeschwindigkeiten von Rayleighwellen Sommerliche Überhitzung in Wohngebäuden – Baukonstruktive und haustechnische Anpassungsmaßnahmen Die „Hochschulweite Interdisziplinäre Projektwoche (HIP)“ an der TH Köln – andere Welten kennenlernen! Forschungsprojekt „Duale Radlösung“ – Wahlfreie Führung als Mittel der Radverkehrslösung Zwang in Hochbaudecken aus Stahlbeton (Kooperative Promotion) Robustheit und Vulnerabilität der Wasserstraßeninfrastruktur Vergleichbarkeit der Messsysteme an Zug- und Biegeproben aus den Werkstoffen Stahl und Holz Entwicklung einer Messmethodik zur Bestimmung der Schienenbewegung unter dem rollenden Rad / Research and science are important mainstay of a modern university. They provide a basis for the primary task of the universities, the practical and occupational teaching on the current state of technology and science. In the meantime, the universities are also dedicating themselves to the training of junior scientists. Prospering research is an indispensable part of this. The guiding idea 'Interdisciplinary Research - Opportunities and Challenges' of the BIH meeting 2019 is intended to stimulate the interdisciplinary exchange of expertise in research and teaching methods. A wide range of specialist contributions provides exciting insights into the work of colleagues in the various specialized fields of civil engineering at numerous German universities. This includes papers to modern measuring methods in geotechnical engineering and railway construction, as well as research results from structural engineering, building construction, building technology and traffic planning, and last but not least, experience in interdisciplinary teaching methods.:Einfluss der Nachverdichtung granularer Böden auf die Phasengeschwindigkeiten von Rayleighwellen Sommerliche Überhitzung in Wohngebäuden – Baukonstruktive und haustechnische Anpassungsmaßnahmen Die „Hochschulweite Interdisziplinäre Projektwoche (HIP)“ an der TH Köln – andere Welten kennenlernen! Forschungsprojekt „Duale Radlösung“ – Wahlfreie Führung als Mittel der Radverkehrslösung Zwang in Hochbaudecken aus Stahlbeton (Kooperative Promotion) Robustheit und Vulnerabilität der Wasserstraßeninfrastruktur Vergleichbarkeit der Messsysteme an Zug- und Biegeproben aus den Werkstoffen Stahl und Holz Entwicklung einer Messmethodik zur Bestimmung der Schienenbewegung unter dem rollenden Rad
36

Numerische Simulation von thermisch gekoppelten Gesteinszerstörungsprozessen mittels Diskreter Elemente

Morgenstern, Roy 10 July 2024 (has links)
In den letzten Jahren intensivierten sich die Bemühungen, anisotropes Verhalten von Gesteinen in numerischen Modellen abzubilden. Für ein tiefgreifendes Verständnis dieser Prozesse sind numerische Modelle gut geeignet, da hier die Rand- und Anfangsbedingungen sehr exakt vorgegeben werden können, um das Verhalten eines pkysikalischen Systems unter vollständig kontrollierbaren Bedingungen zu studieren. Am Beispiel von Gneis wird ein numerisches Modell für die Modellierung einaxialer Druck- und Spaltzugversuche vorgestellt. Dieses nutzt den Diskreten-Element-Code 3DEC der Fa. Itasca Consulting Group, Inc. um gekoppeltes nichtlinear-anisotropes thermo-mechanisches Materialverhalten zu simulieren. In dieser Arbeit wird sowohl der Modellaufbau anhand eines GBM gezeigt, als auch ein Stoffgesetz zur Simulation eines nichtlinearen orthotropen thermischen Expansionsverhaltens entwickelt. Die dafür benötigten Modellparameter werden anhand von durchgeführten Laborversuchen kalibriert. Das entwickelte Modell wird dann angewendet, um die Modellierung einaxialer Druck- und Spaltzugversuchen für ein anisotropes Material (Gneis) durchzuführen, um das Modell zu validieren. Am Ende der Arbeit wird eine praktische Anwendung des Modells in Form eines Schneidversuchs gezeigt. / In recent years, efforts have intensified to simulate the anisotropic behavior of rocks in numerical models. Numerical models are well suited for a profound understanding of these processes, since the boundary and initial conditions can be specified very precisely in order to study the behavior of a physical system under fully controllable conditions. Using the example of gneiss, a numerical model is presented for the modeling of uniaxial compression and Brazilian tensile tests. The discrete element code 3DEC from the company Itasca Consulting Group, Inc. is used to simulate coupled nonlinear- anisotropic thermo-mechanical material behavior. In this thesis the model generation is shown using Grain-Based Models and a material law for the simulation of a nonlinear orthotropic thermal expansion behavior is developed. The model parameters required for this are calibrated based on performed laboratory tests. The developed model is then applied to perform modeling of uniaxial compression and Brazilian tensile tests for an anisotropic material (gneiss) to validate the model. Lastly, a practical application of the model is shown in the form of a cutting test.
37

Beitrag zu hochbelasteten Krafteinleitungselementen für Faserverbundbauteile / Excerpt to heavy load force translation components for fibre composite elements

Schievenbusch, Florian 19 September 2003 (has links) (PDF)
Fibre reinforced plastics (FRP) are increasingly employed in structural parts of the automotive, aviation and aerospace as well as railway industries. For those applications a heavily loaded, as well as crash and safety relevant force translation component is developed. This Hybrid-Insert consists of SMC and a metal insert, and is based on modular assembly through standard elements. The galvanic insulation of the metal insert by the SMC provides an excellent corrosion protection. The couplingstrength of the metal insert moulded into the SMC fulfills the tensile requirements of a M10 10.9 screw fit by VDI 2230 standards. Additionally the component provides a high degree of energy absorption and a gradual failure process. / Faserverstärkte Kunststoffe (FVK) werden zunehmend in Strukturbauteilen der Automobil-,der Luft- und Raumfahrt- sowie der Schienenfahrzeugindustrie eingesetzt. Für diese Anwendungen wird ein hochbelastetes sowie crash- und sicherheitsrelevantes Krafteinleitungselement entwickelt. Dieses Hybrid-Insert, bestehend aus SMC und einem Metalleinsatz, ist modular aus Standardkomponenten aufgebaut. Die galvanische Isolation des Metalleinsatzes durch das SMC bietet für diesen einen hervorragenden Korrosionsschutz. Die Verankerungsfestigkeit des Metalleinsatzes im SMC genügt den Anforderungen einer M10 10.9 Verschraubung nach VDI 2230. Zusätzlich zeichnet sich das Krafteinleitungselement durch eine hohe Energieabsorption und ein gutmütiges Versagen aus.
38

Beitrag zu hochbelasteten Krafteinleitungselementen für Faserverbundbauteile

Schievenbusch, Florian 11 August 2003 (has links)
Fibre reinforced plastics (FRP) are increasingly employed in structural parts of the automotive, aviation and aerospace as well as railway industries. For those applications a heavily loaded, as well as crash and safety relevant force translation component is developed. This Hybrid-Insert consists of SMC and a metal insert, and is based on modular assembly through standard elements. The galvanic insulation of the metal insert by the SMC provides an excellent corrosion protection. The couplingstrength of the metal insert moulded into the SMC fulfills the tensile requirements of a M10 10.9 screw fit by VDI 2230 standards. Additionally the component provides a high degree of energy absorption and a gradual failure process. / Faserverstärkte Kunststoffe (FVK) werden zunehmend in Strukturbauteilen der Automobil-,der Luft- und Raumfahrt- sowie der Schienenfahrzeugindustrie eingesetzt. Für diese Anwendungen wird ein hochbelastetes sowie crash- und sicherheitsrelevantes Krafteinleitungselement entwickelt. Dieses Hybrid-Insert, bestehend aus SMC und einem Metalleinsatz, ist modular aus Standardkomponenten aufgebaut. Die galvanische Isolation des Metalleinsatzes durch das SMC bietet für diesen einen hervorragenden Korrosionsschutz. Die Verankerungsfestigkeit des Metalleinsatzes im SMC genügt den Anforderungen einer M10 10.9 Verschraubung nach VDI 2230. Zusätzlich zeichnet sich das Krafteinleitungselement durch eine hohe Energieabsorption und ein gutmütiges Versagen aus.
39

Grundlagen der Elasto-Plastizität in Creo Simulate - Theorie und Anwendung / Basics of Elasto-Plasticity in Creo Simulate - Theory and Application

Jakel, Roland 10 May 2012 (has links) (PDF)
Der Vortrag beschreibt die Grundlagen der Elasto-Plastizität sowie die softwaretechnische Anwendung mit dem FEM-Programm Creo Simulate bzw. Pro/MECHANICA von PTC. Der erste Teil des Vortrages beschreibt die Charakteristika plastischen Verhaltens, unterschiedliche plastische Materialgesetze, Fließkriterien bei mehrachsiger Beanspruchung und unterschiedliche Verfestigungsmodelle. Im zweiten Vortragsteil werden Möglichkeiten und Grenzen der Berechnung elasto-plastischer Probleme mit der Software dargestellt sowie Anwendungstipps gegeben. Im dritten Vortragsteil schließlich werden verschiedene Beispiele vorgestellt, davon besonders ausführlich das Verhalten einer einachsigen elasto-plastischen Zugprobe vor und nach dem Eintreten der Einschnürdehnung. / This presentation describes the basics of elasto-plasticity and its application with the finite element software Creo Simulate (formerly Pro/MECHANICA) from PTC. The first part describes the characteristics of plastic behavior, different plastic material laws, yield criteria for multiaxial stress states and different hardening models. In the second part, the opportunities and limitations of analyzing elasto-plastic problems with the FEM-code are described and user information is provided. The last part finally presents different examples. Deeply treated is the behavior of a uniaxial tensile test specimen before and after elongation with necking appears.
40

Grundlagen der Elasto-Plastizität in Creo Simulate - Theorie und Anwendung / Basics of Elasto-Plasticity in Creo Simulate - Theory and Application

Jakel, Roland 10 May 2012 (has links)
Der Vortrag beschreibt die Grundlagen der Elasto-Plastizität sowie die softwaretechnische Anwendung mit dem FEM-Programm Creo Simulate bzw. Pro/MECHANICA von PTC. Der erste Teil des Vortrages beschreibt die Charakteristika plastischen Verhaltens, unterschiedliche plastische Materialgesetze, Fließkriterien bei mehrachsiger Beanspruchung und unterschiedliche Verfestigungsmodelle. Im zweiten Vortragsteil werden Möglichkeiten und Grenzen der Berechnung elasto-plastischer Probleme mit der Software dargestellt sowie Anwendungstipps gegeben. Im dritten Vortragsteil schließlich werden verschiedene Beispiele vorgestellt, davon besonders ausführlich das Verhalten einer einachsigen elasto-plastischen Zugprobe vor und nach dem Eintreten der Einschnürdehnung. / This presentation describes the basics of elasto-plasticity and its application with the finite element software Creo Simulate (formerly Pro/MECHANICA) from PTC. The first part describes the characteristics of plastic behavior, different plastic material laws, yield criteria for multiaxial stress states and different hardening models. In the second part, the opportunities and limitations of analyzing elasto-plastic problems with the FEM-code are described and user information is provided. The last part finally presents different examples. Deeply treated is the behavior of a uniaxial tensile test specimen before and after elongation with necking appears.

Page generated in 0.056 seconds