241 |
Numerische Singularitäten bei FEM-Analysen / Numerical Singularities in FEM-AnalysesReul, Stefan 10 May 2012 (has links) (PDF)
Der Vortrag beschreibt numerische Singularitäten bei der h- und p-FEM, wie sie erkannt werden und welche Lösungen möglich sind bzw. was nicht vermieden werden kann.
|
242 |
Finite Element Analysis Of Laboratory Model Experiments On Behavior Of Shallow Foundations Under General LoadingOktay, Emre Hasan 01 February 2012 (has links) (PDF)
In this study, a series of laboratory model experiments carried on shallow foundations is intended to be simulated through numerical modeling. The laboratory model tests were conducted by Fukui et al. (2005), over square shaped, shallow surfacial foundations located over air-dried Toyoura sand. Tests included centered vertical and combined loading cases on sand with 60% and 80% relative densities. Plastic limit loads obtained from numerical analyses and available analytical solutions in literature are compared to the laboratory test results and the differences are discussed.
Employment of Mohr - Coulomb yield criterion and linear elasticity, resulting in linear elastic perfectly plastic constitutive law, is one of the most common practices in modeling geotechnical problems. Accuracy of this approach for the modeled experiments is judged by comparison of analyses results with experimental findings and solutions in literature. Finite element method is utilized for modeling purposes, with Mohr-Coulomb yield criterion and linear elastic behavior. Abaqus 6-10.2 is selected as the analysis software, and two and three dimensional models are used in the analyses. Analyses, the results of which are compared with experimental findings, aim employment of associated flow rule. Additional analyses are conducted with varying dilation angles in order to examine the influence of unassociated flow rule on eccentric and concentric loading results.
Differences between the results of numerical analyses and experimental observations varied between 2% and 34%. Main reason of the difference is attributed to employed soil behavior modeling approach in analyses and the eccentric placement of model weight in monotonic horizontal loading experiments. In the case when this eccentric placement is accounted for in numerical models, it is seen that the difference diminished to vary between 8% and 18%, and order of the difference was similar for similar experiment cases. Therefore, based on this condition, it is seen that results of the modeled experiments are consistent, while in general they are somewhat higher than the results obtained from analyses and solutions in literature. Difference between the results of analyses and average of selected solutions in literature in both cases is at most 9%.
Finite element method employing Mohr-Coulomb failure criterion could provide results in close agreement with solutions in literature that inherently assume Mohr-Coulomb failure criterion as well. However, the same accuracy could not be obtained for experiments due to uncertainties involved in the material properties as well as the insufficiencies of the model to represent the behavior precisely. Finite element method has the potential to consider more advanced material models. Nonetheless, employment of Mohr-Coulomb failure criterion provides results with sufficient accuracy for most cases.
|
243 |
Simulation of Residual Stresses in CastingsLora, Ruben, Namjoshi, Jayesh January 2008 (has links)
<p>This work presents a study and implementation of the simulation of residual stresses in castings. The objects of study are a cast iron truck Hub part (provided by the company Volvo 3P) and an optimized version of the Hub resulting from the application of a topology optimization process. The models are solved through an uncoupled thermo-mechanical solidification analysis, performed both in the FE commercial software Abaqus and the FD commercial software Magmasoft and the results are compared. First, a thermal analysis is carried out where the casting is cooled down from a super-heated temperature to room temperature. The thermal history obtained, is then used as an external force to calculate the residual stresses by means of a quasi-static mechanical analysis, using a J2-plasticity model. The simulation procedures are explained through a simplified model of the Hub and then applied to the geometries of interest. A results comparison between the original Hub and its optimized version is also presented. The theoretical base is given in this work as well as detailed implementation procedures. The results shows that the part subjected to the topology optimization process develop less residual stresses than its original version.</p>
|
244 |
Simulation von Lagern - Vergleiche -Reul, Stefan 11 May 2009 (has links) (PDF)
- Allgemeine Problematik bei der FEM-Simulation von Lagern/Gelenken
- Modellierungstechniken in MECHANICA wie z.B. Kontakt-Analysen, Balkenspinnen, gewichtete Verbindungen, orthotropes Material, etc.
- Vergleich dieser Techniken und Diskussion der Vor- und Nachteile anhand eines Gleitlagers
- Empfehlungen und Regeln
|
245 |
FE-Analysis of stress variation during diamond cutting of prestressed concrete sleepersSkoog, Adam, Mohamad Alahmad, Yaseen January 2015 (has links)
The manufacturing process ‘long line method’ has shown many advantages when producing prestressed concrete sleepers, such as rapid production and low cost. However, there have been certain difficulties when cutting the 100 m long concrete blocks into sleepers. The sleepers tend to crack when the diamond cutting blade cuts through the last strands. Moreover, the shape and size of the cracks varies from one sleeper to another. Although these cracks may not affect the load carrying capacity, they will not be aesthetically pleasing. No earlier studies within the area have been found, i.e. diamond cutting of prestressed concrete blocks. As a result, there have been certain difficulties when approaching the problem. Finite element analysis has been proven to be a useful tool when analyzing stress variation. Throughout this project, the cutting simulation has been analyzed using the finite element analysis software ABAQUS. To summarize, stress variation has been examined during different cutting depths. The results from the FE model shows that no critical values were reached in the areas expected to have cracks. The true cause of the problem could not be specified. Therefore, further studies are needed yet this thesis could be a good foundation.
|
246 |
Evaluation of Finite Element simulation methods for High Cycle Fatigue on engine components / Utvärdering av simuleringsmetoder för analys av högcykelutmattning på motorkomponenterPacheco Roman, Oscar January 2018 (has links)
This document reflects the results of evaluating three computational methods to analyse the fatigue life of components mounted on the cylinder block; two currently in use at Scania and one that has been further developed from its previous state. Due to the cost of testing and the exponential increase in computational power throughout the years, the cheaper computational analyses have gained in popularity. When a component is mounted in a fairly complex assembly such as an engine, simplifications need to be made in order to make the analysis as less expensive as possible while keeping a high degree of accuracy. The methods of Virtual Vibrations, VROM and VFEM have been evaluated and compared in terms of accuracy, computational cost, user friendliness and general capacities. Additionally, the method VFEM has been further developed and improved from its previous state. A in-depth investigation regarding the differences of the methods has been conducted and improvements to make them more efficient are suggested herein. The reader can also find a decision matrix and recommendations regarding which method to use depending on the general characteristics of the component of interest and other factors. Two components, which differ in complexity and mounting nature, have been used to do the research.
|
247 |
Additively manufactured metallic cellular materials for blast and impact mitigationHarris, Jonathan Andrew January 2018 (has links)
Selective laser melting (SLM) is an additive manufacturing process which enables the creation of intricate components from high performance alloys. This facilitates the design and fabrication of new cellular materials for blast and impact mitigation, where the performance is heavily influenced by geometric and material sensitivities. Design of such materials requires an understanding of the relationship between the additive manufacturing process and material properties at different length scales: from the microstructure, to geometric feature rendition, to overall dynamic performance. To date, there remain significant uncertainties about both the potential benefits and pitfalls of using additive manufacturing processes to design and optimise cellular materials for dynamic energy absorbing applications. This investigation focuses on the out-of-plane compression of stainless steel cellular materials fabricated using SLM, and makes two specific contributions. First, it demonstrates how the SLM process itself influences the characteristics of these cellular materials across a range of length scales, and in turn, how this influences the dynamic deformation. Secondly, it demonstrates how an additive manufacturing route can be used to add geometric complexity to the cell architecture, creating a versatile basis for geometry optimisation. Two design spaces are explored in this work: a conventional square honeycomb hybridised with lattice walls, and an auxetic stacked-origami geometry, manufactured and tested experimentally here for the first time. It is shown that the hybrid lattice-honeycomb geometry outperformed the benchmark metallic square honeycomb in terms of energy absorption efficiency in the intermediate impact velocity regime (approximately 100 m/s). In this regime, the collapse is dominated by dynamic buckling effects, but wave propagation effects have yet to become pronounced. By tailoring the fold angles of the stacked origami material, numerical simulations illustrated how it can be optimised for specific impact velocity regimes between 10-150 m/s. Practical design tools were then developed based on these results.
|
248 |
Abordagem micromecânica da resistência de meios porosos / Micromechanics approach the resistance of porous mediaDantas, David Anderson Cardoso 28 March 2013 (has links)
This works presents a study about effective properties of porous solids with nonlinear elastic and elastoplastic matrix. For macroscopic mechanics properties evaluation, micromechanics models are used with effective strain concept relative to the modified second method. The porous are assumed as randomly distributed in the matrix, which presents a constitutive law with linear behavior in dilatation and nonlinear in shear. The results are compared with those provided by finite element methods program ABAQUS, assuming porous with spherical geometry for three dimensional solids. Numerical results from ABAQUS were obtained by an implementation of an external subroutine which incorporates at analysis the nonlinear constitutive law. / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico / Este trabalho apresenta um estudo sobre as propriedades efetivas de sólidos porosos com matriz elástica não linear e elastoplástica. Na avaliação das propriedades mecânicas macroscópicas empregam-se modelos micromecânicos lineares em conjunto com o conceito de deformação efetiva correspondente ao método secante modificado. Os poros são admitidos como distribuídos randomicamente na matriz, a qual apresenta uma lei constitutiva caracterizada por um comportamento linear em dilatação e não linear em cisalhamento. Os resultados obtidos são confrontados com aqueles fornecidos pelo programa comercial de elementos finitos ABAQUS, admitindo-se que os poros exibem geometrias esféricas para sólidos tridimensionais. A geração dos resultados numéricos oriundos do programa ABAQUS foi viabilizada mediante a implementação de uma sub-rotina externa que incorpora a relação constitutiva não linear considerada nas análises.
|
249 |
Determination of fracture mechanics behavior of polyethylene sheetsJin, Min January 2017 (has links)
Polyethylene is a widely-used material in package industries. The fracture behavior of this material has not been studied in the plastic region in many years. In this thesis work, the J-Integral which is one material property used to represent the plastic material strength is calculated through the numerical analysis. To build a correct numerical model, the material behavior is summarized from previous uniaxial tensile test. The result from the fracture experiment for variable initial crack length is used to validate the reliability of the numerical model. The numerical analysis is done by the software ABAQUS which has the function to get the value of J-Integral directly. The final result contains the comparison between experiments and numerical analysis and the value of J-Integral at the crack initiation.
|
250 |
Riot helmet shells with continuous reinforcement for improved protectionZahid, Bilal January 2011 (has links)
The present research aims to develop a novel technique for creation of composite riot helmet shells with reinforcing fibre continuity for better protection against low velocity impacts. In this research an innovative, simple and effective method of making a single-piece continuously textile reinforced helmet shell by vacuum bagging has been established and discussed. This technique also includes the development of solid collapsible moulding apparatus from non-woven fibres. Angle-interlock fabric due to its good mouldability, low shear rigidity and ease of production is used in this research. Several wrinkle-free single- piece composite helmet shells have been manufactured. Low-velocity impact test on the continuously reinforced helmet shells has been carried out. For this purpose an in-house helmet shell testing facility has been developed. Test rig has been designed in such a way that the impact test can be carried out at different locations at the riot helmet shell. Low-velocity impact test has been successfully conducted on the developed test rig. The practical experimentation and analysis revealed that the helmet shell performance against impact is dependent on the impact location. The helmet shell top surface has better impact protection as compared to helmet shell side and back location. Moreover, the helmet shell side is the most at risk location for the wearer. Finite Element models were created and simulated in Abaqus software to investigate the impact performance of single-piece helmet shells at different impact locations. Models parts have been designed in Rhinoceros software. Simulated results are validated by the experimental result which shows that the helmet top position is the safest position against an impact when it is compared to helmet back and helmet side positions.
|
Page generated in 0.0449 seconds