• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 9
  • 8
  • 8
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analytical investigations and numerical experiments for singularly perturbed convection-diffusion problems with layers and singularities using a newly developed FE-software

Ludwig, Lars 14 March 2014 (has links) (PDF)
In the field of singularly perturbed reaction- or convection-diffusion boundary value problems the research area of a priori error analysis for the finite element method, has already been thoroughly investigated. In particular, for mesh adapted methods and/or various stabilization techniques, works have been done that prove optimal rates of convergence or supercloseness uniformly in the perturbation parameter epsilon. Commonly, however, it is assumed that the exact solution behaves nicely in that it obeys certain regularity assumptions although in general, e.g. due to corner singularities, these regularity requirements are not satisfied. So far, insufficient regularity has been met by assuming compatibility conditions on the data. The present thesis originated from the question: What can be shown if these rather unrealistic additional assumptions are dropped? We are interested in epsilon-uniform a priori estimates for convergence and superconvergence that include some regularity parameter that is adjustable to the smoothness of the exact solution. A major difficulty that occurs when seeking the numerical error decay is that the exact solution is not known. Since we strive for reliable rates of convergence we want to avoid the standard approach of the "double-mesh principle". Our choice is to use reference solutions as a substitute for the exact solution. Numerical experiments are intended to confirm the theoretical results and to bring further insights into the interplay between layers and singularities. To computationally realize the thereby arising demanding practical aspects of the finite element method, a new software is developed that turns out to be particularly suited for the needs of the numerical analyst. Its design, features and implementation is described in detail in the second part of the thesis.
2

Om egennamns konnotation : i stort mot Russell, i smått mot Kripke / On Connoting Proper Names : in general against Russell, against Kripke in particular

Thorn, Johan January 2015 (has links)
Together with an basic assumption of the main thesis of the theory of singular direct reference, this paper formulates two original theses grounded in the Kripkean notion of proper names. Regarding the assumption of the main thesis, efforts have been made to explicitly explain its essence as a reactionary theory against the description theory of proper names, a theory mainly due to Bertrand Russells (1905) influential article "On Denoting". Grounded in Russell, outlining the fundamental idea of proper names as abbreviated or disguised definite descriptions, this paper moves forward through the critiques of Strawsons (1950) "On Referring", Donnellans (1966) "Reference and Definite Descriptions" and Kripkes (1977) "Speaker's Reference and Semantic Reference". With the historical background in place, in accordance with Salmons (1982) "Reference & Essence" the arguments against the theory of descriptions for proper names are put forward, which leads to the assumption of the mentioned main thesis. Regarding the papers more original theses, the first of these distinguishes between different kinds of proper names depending on whether or not they refer to an object capable of cognitive functioning. The main thrust of this paper is however made through the formulation of the second thesis, as it is being aimed at challenging Kripke's Millian notion of all proper names as being non-connoting. However, in contrast to this view in accordance with the view being put forward in this paper, cognition-referring proper names are connoting. Additionally, a finishing discussion is supplemented concluding descriptions of such connotations as being questions for pragmatism.
3

Numerische Singularitäten bei FEM-Analysen / Numerical Singularities in FEM-Analyses

Reul, Stefan 10 May 2012 (has links) (PDF)
Der Vortrag beschreibt numerische Singularitäten bei der h- und p-FEM, wie sie erkannt werden und welche Lösungen möglich sind bzw. was nicht vermieden werden kann.
4

Analysis and numerics of the singularly perturbed Oseen equations / Analysis und Numerik der singulär gestörten Oseen-Gleichungen

Höhne, Katharina 16 November 2015 (has links) (PDF)
Be it in the weather forecast or while swimming in the Baltic Sea, in almost every aspect of every day life we are confronted with flow phenomena. A common model to describe the motion of viscous incompressible fluids are the Navier-Stokes equations. These equations are not only relevant in the field of physics, but they are also of great interest in a purely mathematical sense. One of the difficulties of the Navier-Stokes equations originates from a non-linear term. In this thesis, we consider the Oseen equations as a linearisation of the Navier-Stokes equations. We restrict ourselves to the two-dimensional case. Our domain will be the unit square. The aim of this thesis is to find a suitable numerical method to overcome known instabilities in discretising these equations. One instability arises due to layers of the analytical solution. Another instability comes from a divergence constraint, where one gets poor numerical accuracy when the irrotational part of the right-hand side of the equations is large. For the first cause, we investigate the layer behaviour of the analytical solution of the corresponding stream function of the problem. Assuming a solution decomposition into a smooth part and layer parts, we create layer-adapted meshes in Chapter 3. Using these meshes, we introduce a numerical method for equations whose solutions are of the assumed structure in Chapter 4. To reduce the instability caused by the divergence constraint, we add a grad-div stabilisation term to the standard Galerkin formulation. We consider Taylor-Hood elements and elements with a discontinous pressure space. We can show that there exists an error bound which is independent of our perturbation parameter and get information about the convergence rate of the method. Numerical experiments in Chapter 5 confirm our theoretical results.
5

Analytical investigations and numerical experiments for singularly perturbed convection-diffusion problems with layers and singularities using a newly developed FE-software

Ludwig, Lars 04 March 2014 (has links)
In the field of singularly perturbed reaction- or convection-diffusion boundary value problems the research area of a priori error analysis for the finite element method, has already been thoroughly investigated. In particular, for mesh adapted methods and/or various stabilization techniques, works have been done that prove optimal rates of convergence or supercloseness uniformly in the perturbation parameter epsilon. Commonly, however, it is assumed that the exact solution behaves nicely in that it obeys certain regularity assumptions although in general, e.g. due to corner singularities, these regularity requirements are not satisfied. So far, insufficient regularity has been met by assuming compatibility conditions on the data. The present thesis originated from the question: What can be shown if these rather unrealistic additional assumptions are dropped? We are interested in epsilon-uniform a priori estimates for convergence and superconvergence that include some regularity parameter that is adjustable to the smoothness of the exact solution. A major difficulty that occurs when seeking the numerical error decay is that the exact solution is not known. Since we strive for reliable rates of convergence we want to avoid the standard approach of the "double-mesh principle". Our choice is to use reference solutions as a substitute for the exact solution. Numerical experiments are intended to confirm the theoretical results and to bring further insights into the interplay between layers and singularities. To computationally realize the thereby arising demanding practical aspects of the finite element method, a new software is developed that turns out to be particularly suited for the needs of the numerical analyst. Its design, features and implementation is described in detail in the second part of the thesis.
6

Analysis and numerics of the singularly perturbed Oseen equations

Höhne, Katharina 05 November 2015 (has links)
Be it in the weather forecast or while swimming in the Baltic Sea, in almost every aspect of every day life we are confronted with flow phenomena. A common model to describe the motion of viscous incompressible fluids are the Navier-Stokes equations. These equations are not only relevant in the field of physics, but they are also of great interest in a purely mathematical sense. One of the difficulties of the Navier-Stokes equations originates from a non-linear term. In this thesis, we consider the Oseen equations as a linearisation of the Navier-Stokes equations. We restrict ourselves to the two-dimensional case. Our domain will be the unit square. The aim of this thesis is to find a suitable numerical method to overcome known instabilities in discretising these equations. One instability arises due to layers of the analytical solution. Another instability comes from a divergence constraint, where one gets poor numerical accuracy when the irrotational part of the right-hand side of the equations is large. For the first cause, we investigate the layer behaviour of the analytical solution of the corresponding stream function of the problem. Assuming a solution decomposition into a smooth part and layer parts, we create layer-adapted meshes in Chapter 3. Using these meshes, we introduce a numerical method for equations whose solutions are of the assumed structure in Chapter 4. To reduce the instability caused by the divergence constraint, we add a grad-div stabilisation term to the standard Galerkin formulation. We consider Taylor-Hood elements and elements with a discontinous pressure space. We can show that there exists an error bound which is independent of our perturbation parameter and get information about the convergence rate of the method. Numerical experiments in Chapter 5 confirm our theoretical results.:Acknowledgement III Notation IV 1 Introduction 1 1.1 Existence of solutions 2 1.2 Transformation into a fourth-order problem 4 2 Asymptotic analysis 6 2.1 A fourth-order problem in 1D 6 2.2 A fourth-order problem in 2D 14 2.2.1 Asymptotic expansion 19 2.2.2 Estimation of the residual 26 2.2.3 Asymptotic expansion without compatibility conditions 30 3 Solution decomposition and layer-adapted meshes 32 3.1 Solution decomposition 32 3.2 Layer-adapted meshes 33 3.3 Interpolation errors on layer-adapted meshes 36 4 Galerkin method and stabilisation 41 4.1 Discrete problem and stabilised formulation 41 4.2 A priori error estimates 44 5 Numerical results 48 5.1 Numerical evaluation of inf-sup constants 48 5.1.1 Theoretical aspects 48 5.1.2 Numerical results for β0 and B0 50 5.2 Convergence studies 53 5.2.1 Uniformity in ε 54 5.2.2 Convergence order 55 5.2.3 Necessity of stabilisation 56 5.2.4 Further experiments without known exact solution 56 6 Conclusions and outlook 60 A Numerical study of the stability estimate (2.35) 62 Bibliography 67
7

Optimal Control Problems with Singularly Perturbed Differential Equations as Side Constraints: Analysis and Numerics / Optimale Steuerung mit singulär gestörten Differentialgleichungen als Nebenbedingung: Analysis und Numerik

Reibiger, Christian 27 March 2015 (has links) (PDF)
It is well-known that the solution of a so-called singularly perturbed differential equation exhibits layers. These are small regions in the domain where the solution changes drastically. These layers deteriorate the convergence of standard numerical algorithms, such as the finite element method on a uniform mesh. In the past many approaches were developed to overcome this difficulty. In this context it was very helpful to understand the structure of the solution - especially to know where the layers can occur. Therefore, we have a lot of analysis in the literature concerning the properties of solutions of such problems. Nevertheless, this field is far from being understood conclusively. More recently, there is an increasing interest in the numerics of optimal control problems subject to a singularly perturbed convection-diffusion equation and box constraints for the control. However, it is not much known about the solutions of such optimal control problems. The proposed solution methods are based on the experience one has from scalar singularly perturbed differential equations, but so far, the analysis presented does not use the structure of the solution and in fact, the provided bounds are rather meaningless for solutions which exhibit boundary layers, since these bounds scale like epsilon^(-1.5) as epsilon converges to 0. In this thesis we strive to prove bounds for the solution and its derivatives of the optimal control problem. These bounds show that there is an additional layer that is weaker than the layers one expects knowing the results for scalar differential equation problems, but that weak layer deteriorates the convergence of the proposed methods. In Chapter 1 and 2 we discuss the optimal control problem for the one-dimensional case. We consider the case without control constraints and the case with control constraints separately. For the case without control constraints we develop a method to prove bounds for arbitrary derivatives of the solution, given the data is smooth enough. For the latter case we prove bounds for the derivatives up to the second order. Subsequently, we discuss several discretization methods. In this context we use special Shishkin meshes. These meshes are piecewise equidistant, but have a very fine subdivision in the region of the layers. Additionally, we consider different ways of discretizing the control constraints. The first one enforces the compliance of the constraints everywhere and the other one enforces it only in the mesh nodes. For each proposed algorithm we prove convergence estimates that are independent of the parameter epsilon. Hence, they are meaningful even for small values of epsilon. As a next step we turn to the two-dimensional case. To be able to adapt the proofs of Chapter 2 to this case we require bounds for the solution of the scalar differential equation problem for a right hand side f only in W^(1,infty). Although, a lot of results for this problem can be found in the literature but we can not apply any of them, because they require a smooth right hand side f in C^(2,alpha) for some alpha in (0,1). Therefore, we dedicate Chapter 3 to the analysis of the scalar differential equations problem only using a right hand side f that is not very smooth. In Chapter 4 we strive to prove bounds for the solution of the optimal control problem in the two dimensional case. The analysis for this problem is not complete. Especially, the characteristic layers induce subproblems that are not understood completely. Hence, we can not prove sharp bounds for all terms in the solution decomposition we construct. Nevertheless, we propose a solution method. Numerical results indicate an epsilon-independent convergence for the considered examples - although we are not able to prove this.
8

Numerische Singularitäten bei FEM-Analysen

Reul, Stefan 10 May 2012 (has links)
Der Vortrag beschreibt numerische Singularitäten bei der h- und p-FEM, wie sie erkannt werden und welche Lösungen möglich sind bzw. was nicht vermieden werden kann.
9

Optimal Control Problems with Singularly Perturbed Differential Equations as Side Constraints: Analysis and Numerics

Reibiger, Christian 09 March 2015 (has links)
It is well-known that the solution of a so-called singularly perturbed differential equation exhibits layers. These are small regions in the domain where the solution changes drastically. These layers deteriorate the convergence of standard numerical algorithms, such as the finite element method on a uniform mesh. In the past many approaches were developed to overcome this difficulty. In this context it was very helpful to understand the structure of the solution - especially to know where the layers can occur. Therefore, we have a lot of analysis in the literature concerning the properties of solutions of such problems. Nevertheless, this field is far from being understood conclusively. More recently, there is an increasing interest in the numerics of optimal control problems subject to a singularly perturbed convection-diffusion equation and box constraints for the control. However, it is not much known about the solutions of such optimal control problems. The proposed solution methods are based on the experience one has from scalar singularly perturbed differential equations, but so far, the analysis presented does not use the structure of the solution and in fact, the provided bounds are rather meaningless for solutions which exhibit boundary layers, since these bounds scale like epsilon^(-1.5) as epsilon converges to 0. In this thesis we strive to prove bounds for the solution and its derivatives of the optimal control problem. These bounds show that there is an additional layer that is weaker than the layers one expects knowing the results for scalar differential equation problems, but that weak layer deteriorates the convergence of the proposed methods. In Chapter 1 and 2 we discuss the optimal control problem for the one-dimensional case. We consider the case without control constraints and the case with control constraints separately. For the case without control constraints we develop a method to prove bounds for arbitrary derivatives of the solution, given the data is smooth enough. For the latter case we prove bounds for the derivatives up to the second order. Subsequently, we discuss several discretization methods. In this context we use special Shishkin meshes. These meshes are piecewise equidistant, but have a very fine subdivision in the region of the layers. Additionally, we consider different ways of discretizing the control constraints. The first one enforces the compliance of the constraints everywhere and the other one enforces it only in the mesh nodes. For each proposed algorithm we prove convergence estimates that are independent of the parameter epsilon. Hence, they are meaningful even for small values of epsilon. As a next step we turn to the two-dimensional case. To be able to adapt the proofs of Chapter 2 to this case we require bounds for the solution of the scalar differential equation problem for a right hand side f only in W^(1,infty). Although, a lot of results for this problem can be found in the literature but we can not apply any of them, because they require a smooth right hand side f in C^(2,alpha) for some alpha in (0,1). Therefore, we dedicate Chapter 3 to the analysis of the scalar differential equations problem only using a right hand side f that is not very smooth. In Chapter 4 we strive to prove bounds for the solution of the optimal control problem in the two dimensional case. The analysis for this problem is not complete. Especially, the characteristic layers induce subproblems that are not understood completely. Hence, we can not prove sharp bounds for all terms in the solution decomposition we construct. Nevertheless, we propose a solution method. Numerical results indicate an epsilon-independent convergence for the considered examples - although we are not able to prove this.

Page generated in 0.0608 seconds