21 |
Real-time estimation and diagnosis of vehicle's dynamics states with low-cost sensors in different driving condition / Estimation et diagnostic de la dynamique du véhicule en interaction avec l’environnementJiang, Kun 08 September 2016 (has links)
Le développement des systèmes intelligents pour contrôler la stabilité du véhicule et éviter les accidents routier est au cœur de la recherche automobile. L'expansion de ces systèmes intelligents à l'application réelle exige une estimation précise de la dynamique du véhicule dans des environnements diverses (dévers et pente). Cette exigence implique principalement trois problèmes : ⅰ), extraire des informations non mesurées à partir des capteurs faible coût; ⅱ), rester robuste et précis face aux les perturbations incertaines causées par les erreurs de mesure ou de la méconnaissance de l'environnement; ⅲ), estimer l'état du véhicule et prévoir le risque d'accident en temps réel. L’originalité de cette thèse par rapport à l’existant, consiste dans le développement des nouveaux algorithmes, basés sur des nouveaux modèles du véhicule et des différentes techniques d'observation d'état, pour estimer des variables ou des paramètres incertains de la dynamique du véhicule en temps réel. La première étape de notre étude est le développement de nouveaux modèles pour mieux décrire le comportement du véhicule dans des différentes situations. Pour minimiser les erreurs de modèle, un système d'estimation composé de quatre observateurs est proposé pour estimer les forces verticales, longitudinales et latérales par pneu, ainsi que l'angle de dérive. Trois techniques d'observation non linéaires (EKF, UKF et PF) sont appliquées pour tenir compte des non-linéarités du modèle. Pour valider la performance de nos observateurs, nous avons implémenté en C++ des modules temps-réel qui, embarqué sur le véhicule, estiment la dynamique du véhicule pendant le mouvement. / Enhancing road safety by developing active safety system is the general purpose of this thesis. A challenging task in the development of active safety system is to get accurate information about immeasurable vehicle dynamics states. More specifically, we need to estimate the vertical load, the lateral frictional force and longitudinal frictional force at each wheel, and also the sideslip angle at center of gravity. These states are the key parameters that could optimize the control of vehicle's stability. The estimation of vertical load at each tire enables the evaluation of the risk of rollover. Estimation of tire lateral forces could help the control system reduce the lateral slip and prevent the situation like spinning and drift out. Tire longitudinal forces can also greatly influence the performance of vehicle. The sideslip angle is one of the most important parameter to control the lateral dynamics of vehicle. However, in the current market, very few safety systems are based on tire forces, due to the lack of cost-effective method to get these information. For all the above reasons, we would like to develop a perception system to monitor these vehicle dynamics states by using only low-cost sensor. In order to achieve this objective, we propose to develop novel observers to estimate unmeasured states. However, construction of an observer which could provide satisfactory performance at all condition is never simple. It requires : 1, accurate and efficient models; 2, a robust estimation algorithm; 3, considering the parameter variation and sensor errors. As motivated by these requirements, this dissertation is organized to present our contribution in three aspects : vehicle dynamics modelization, observer design and adaptive estimation. In the aspect of modeling, we propose several new models to describe vehicle dynamics. The existent models are obtained by simplifying the vehicle motion as a planar motion. In the proposed models, we described the vehicle motion as a 3D motion and considered the effects of road inclination. Then for the vertical dynamics, we propose to incorporate the suspension deflection to calculate the transfer of vertical load. For the lateral dynamics, we propose the model of transfer of lateral forces to describe the interaction between left wheel and right wheel. With this new model, the lateral force at each tire can be calculated without sideslip angle. Similarly, for longitudinal dynamics, we also propose the model of transfer of longitudinal forces to calculate the longitudinal force at each tire. In the aspect of observer design, we propose a novel observation system, which is consisted of four individual observers connected in a cascaded way. The four observers are developed for the estimation of vertical tire force, lateral tire force and longitudinal tire force and sideslip angle respectively. For the linear system, the Kalman filter is employed. While for the nonlinear system, the EKF, UKF and PF are applied to minimize the estimation errors. In the aspect of adaptive estimation, we propose the algorithms to improve sensor measurement and estimate vehicle parameters in order to stay robust in presence of parameter variation and sensor errors. Furthermore, we also propose to incorporate the digital map to enhance the estimation accuracy. The utilization of digital map could also enable the prediction of vehicle dynamics states and prevent the road accidents. Finally, we implement our algorithm in the experimental vehicle to realize real-time estimation. Experimental data has validated the proposed algorithm. Read more
|
22 |
Automatic Stereoscopic 3D Chroma-Key Matting Using Perceptual Analysis and PredictionYin, Ling January 2014 (has links)
This research presents a novel framework for automatic chroma keying and the optimizations for real-time and stereoscopic 3D processing. It first simulates the process of human perception on isolating foreground elements in a given scene by perceptual analysis, and then predicts foreground colours and alpha map based on the analysis results and the restored clean background plate rather than direct sampling. Besides, an object level depth map is generated through stereo matching on a carefully determined feature map. In addition, three prototypes on different platforms have been implemented according to their hardware capability based on the proposed framework. To achieve real-time performance, the entire procedures are optimized for parallel processing and data paths on the GPU, as well as heterogeneous computing between GPU and CPU. The qualitative comparisons between results generated by the proposed algorithm and other existing algorithms show that the proposed one is able to generate more acceptable alpha maps and foreground colours especially in those regions that contain translucencies and details. And the quantitative evaluations also validate our advantages in both quality and speed. Read more
|
23 |
PROBABLY APPROXIMATELY CORRECT BOUNDS FOR ESTIMATING MARKOV TRANSITION KERNELSImon Banerjee (17555685) 06 December 2023 (has links)
<p dir="ltr">This thesis presents probably approximately correct (PAC) bounds on estimates of the transition kernels of Controlled Markov chains (CMC’s). CMC’s are a natural choice for modelling various industrial and medical processes, and are also relevant to reinforcement learning (RL). Learning the transition dynamics of CMC’s in a sample efficient manner is an important question that is open. This thesis aims to close this gap in knowledge in literature.</p><p dir="ltr">In Chapter 2, we lay the groundwork for later chapters by introducing the relevant concepts and defining the requisite terms. The two subsequent chapters focus on non-parametric estimation. </p><p dir="ltr">In Chapter 3, we restrict ourselves to a finitely supported CMC with d states and k controls and produce a general theory for minimax sample complexity of estimating the transition matrices.</p><p dir="ltr">In Chapter 4 we demonstrate the applicability of this theory by using it to recover the sample complexities of various controlled Markov chains, as well as RL problems.</p><p dir="ltr">In Chapter 5 we move to a continuous state and action spaces with compact supports. We produce a robust, non-parametric test to find the best histogram based estimator of the transition density; effectively reducing the problem into one of model selection based on empricial processes.</p><p dir="ltr">Finally, in Chapter 6 we move to a parametric and Bayesian regime, and restrict ourselves to Markov chains. Under this setting we provide a PAC-Bayes bound for estimating model parameters under tempered posteriors.</p> Read more
|
24 |
Resampling-based tuning of ordered model selectionWillrich, Niklas 02 December 2015 (has links)
In dieser Arbeit wird die Smallest-Accepted Methode als neue Lepski-Typ Methode für Modellwahl im geordneten Fall eingeführt. In einem ersten Schritt wird die Methode vorgestellt und im Fall von Schätzproblemen mit bekannter Fehlervarianz untersucht. Die Hauptkomponenten der Methode sind ein Akzeptanzkriterium, basierend auf Modellvergleichen für die eine Familie von kritischen Werten mit einem Monte-Carlo-Ansatz kalibriert wird, und die Wahl des kleinsten (in Komplexität) akzeptierten Modells. Die Methode kann auf ein breites Spektrum von Schätzproblemen angewandt werden, wie zum Beispiel Funktionsschätzung, Schätzung eines linearen Funktionals oder Schätzung in inversen Problemen. Es werden allgemeine Orakelungleichungen für die Methode im Fall von probabilistischem Verlust und einer polynomialen Verlustfunktion gezeigt und Anwendungen der Methode in spezifischen Schätzproblemen werden untersucht. In einem zweiten Schritt wird die Methode erweitert auf den Fall einer unbekannten, möglicherweise heteroskedastischen Fehlerstruktur. Die Monte-Carlo-Kalibrierung wird durch eine Bootstrap-basierte Kalibrierung ersetzt. Eine neue Familie kritischer Werte wird eingeführt, die von den (zufälligen) Beobachtungen abhängt. In Folge werden die theoretischen Eigenschaften dieser Bootstrap-basierten Smallest-Accepted Methode untersucht. Es wird gezeigt, dass unter typischen Annahmen unter normalverteilten Fehlern für ein zugrundeliegendes Signal mit Hölder-Stetigkeits-Index s > 1/4 und log(n) (p^2/n) klein, wobei n hier die Anzahl der Beobachtungen und p die maximale Modelldimension bezeichnet, die Anwendung der Bootstrap-Kalibrierung anstelle der Monte-Carlo-Kalibrierung theoretisch gerechtfertigt ist. / In this thesis, the Smallest-Accepted method is presented as a new Lepski-type method for ordered model selection. In a first step, the method is introduced and studied in the case of estimation problems with known noise variance. The main building blocks of the method are a comparison-based acceptance criterion relying on Monte-Carlo calibration of a set of critical values and the choice of the model as the smallest (in complexity) accepted model. The method can be used on a broad range of estimation problems like function estimation, estimation of linear functionals and inverse problems. General oracle results are presented for the method in the case of probabilistic loss and for a polynomial loss function. Applications of the method to specific estimation problems are studied. In a next step, the method is extended to the case of an unknown possibly heteroscedastic noise structure. The Monte-Carlo calibration step is now replaced by a bootstrap-based calibration. A new set of critical values is introduced, which depends on the (random) observations. Theoretical properties of this bootstrap-based Smallest-Accepted method are then studied. It is shown for normal errors under typical assumptions, that the replacement of the Monte-Carlo step by bootstrapping in the Smallest-Accepted method is valid, if the underlying signal is Hölder-continuous with index s > 1/4 and log(n) (p^2/n) is small for a sample size n and a maximal model dimension p. Read more
|
25 |
Adaptation via des inéqualités d'oracle dans le modèle de regression avec design aléatoire / Adaptation via oracle inequality in regression model with random designNguyen, Ngoc Bien 21 May 2014 (has links)
À partir des observations Z(n) = {(Xi, Yi), i = 1, ..., n} satisfaisant Yi = f(Xi) + ζi, nous voulons reconstruire la fonction f. Nous évaluons la qualité d'estimation par deux critères : le risque Ls et le risque uniforme. Dans ces deux cas, les hypothèses imposées sur la distribution du bruit ζi serons de moment borné et de type sous-gaussien respectivement. En proposant une collection des estimateurs à noyau, nous construisons une procédure, qui est initié par Goldenshluger et Lepski, pour choisir l'estimateur dans cette collection, sans aucune condition sur f. Nous prouvons ensuite que cet estimateur satisfait une inégalité d'oracle, qui nous permet d'obtenir les estimations minimax et minimax adaptatives sur les classes de Hölder anisotropes. / From the observation Z(n) = {(Xi, Yi), i = 1, ..., n} satisfying Yi = f(Xi) + ζi, we would like to approximate the function f. This problem will be considered in two cases of loss function, Ls-risk and uniform risk, where the condition imposed on the distribution of the noise ζi is of bounded moment and of type sub-gaussian, respectively. From a proposed family of kernel estimators, we construct a procedure, which is initialized by Goldenshluger and Lepski, to choose in this family a final estimator, with no any assumption imposed on f. Then, we show that this estimator satisfies an oracle inequality which implies the minimax and minimax adaptive estimation over the anisotropic Hölder classes. Read more
|
26 |
Low-order coupled map lattices for estimation of wake patterns behind vibrating flexible cablesBalasubramanian, Ganapathi Raman 08 September 2003 (has links)
"Fluid-structure interaction arises in a wide array of technological applications including naval and marine hydrodynamics, civil and wind engineering and flight vehicle aerodynamics. When a fluid flows over a bluff body such as a circular cylinder, the periodic vortex shedding in the wake causes fluctuating lift and drag forces on the body. This phenomenon can lead to fatigue damage of the structure due to large amplitude vibration. It is widely believed that the wake structures behind the structure determine the hydrodynamic forces acting on the structure and control of wake structures can lead to vibration control of the structure. Modeling this complex non-linear interaction requires coupling of the dynamics of the fluid and the structure. In this thesis, however, the vibration of the flexible cylinder is prescribed, and the focus is on modeling the fluid dynamics in its wake. Low-dimensional iterative circle maps have been found to predict the universal dynamics of a two-oscillator system such as the rigid cylinder wake. Coupled map lattice (CML)models that combine a series of low-dimensional circle maps with a diffusion model have previously predicted qualitative features of wake patterns behind freely vibrating cables at low Reynolds number. However, the simple nature of the CML models implies that there will always be unmodelled wake dynamics if a detailed, quantitative comparison is made with laboratory or simulated wake flows. Motivated by a desire to develop an improved CML model, we incorporate self-learning features into a new CML that is trained to precisely estimate wake patterns from target numerical simulations and experimental wake flows. The eventual goal is to have the CML learn from a laboratory flow in real time. A real-time self-learning CML capable of estimating experimental wake patterns could serve as a wake model in a future anticipated feedback control system designed to produce desired wake patterns. A new convective-diffusive map that includes additional wake dynamics is developed. Two different self-learning CML models, each capable of precisely estimating complex wake patterns, have been developed by considering additional dynamics from the convective-diffusive map. The new self-learning CML models use adaptive estimation schemes which seek to precisely estimate target wake patterns from numerical simulations and experiments. In the first self-learning CML, the estimator scheme uses a multi-variable least-squares algorithm to adaptively vary the spanwise velocity distribution in order to minimize the state error (difference between modeled and target wake patterns). The second self-learning model uses radial basis function neural networks as online approximators of the unmodelled dynamics. Additional unmodelled dynamics not present in the first self-learning CML model are considered here. The estimator model uses a combination of a multi-variable normalized least squares scheme and a projection algorithm to adaptively vary the neural network weights. Studies of this approach are conducted using wake patterns from spectral element based NEKTAR simulations of freely vibrating cable wakes at low Reynolds numbers on the order of 100. It is shown that the self-learning models accurately and efficiently estimate the simulated wake patterns within several shedding cycles. Next, experimental wake patterns behind different configurations of rigid cylinders were obtained. The self-learning CML models were then used for off-line estimation of the stored wake patterns. With the eventual goal of incorporating low-order CML models into a wake pattern control system in mind, in a related study control terms were added to the simple CML model in order to drive the wake to the desired target pattern of shedding. Proportional, adaptive proportional and non-linear control techniques were developed and their control efficiencies compared." Read more
|
27 |
Adaptive Estimation and Control with Application to Vision-based Autonomous Formation FlightSattigeri, Ramachandra Jayant 17 May 2007 (has links)
The role of vision as an additional sensing mechanism has received a lot of attention in recent years in the context of autonomous flight applications. Modern Unmanned Aerial Vehicles (UAVs) are equipped with vision sensors because of their light-weight, low-cost characteristics and also their ability to provide a rich variety of information of the environment in which the UAVs are navigating in. The problem of vision based autonomous flight is very difficult and challenging since it requires bringing together concepts from image processing and computer vision, target tracking and state estimation, and flight guidance and control.
This thesis focuses on the adaptive state estimation, guidance and control problems involved in vision-based formation flight. Specifically, the thesis presents a composite adaptation approach to the partial state estimation of a class of nonlinear systems with unmodeled dynamics. In this approach, a linear time-varying Kalman filter is the nominal state estimator which is augmented by the output of an adaptive neural network (NN) that is trained with two error signals. The benefit of the proposed approach is in its faster and more accurate adaptation to the modeling errors over a conventional approach.
The thesis also presents two approaches to the design of adaptive guidance and control (G&C) laws for line-of-sight formation flight. In the first approach, the guidance and autopilot systems are designed separately and then combined together by assuming time-scale separation. The second approach is based on integrating the guidance and autopilot design process. The developed G&C laws using both approaches are adaptive to unmodeled leader aircraft acceleration and to own aircraft aerodynamic uncertainties.
The thesis also presents theoretical justification based on Lyapunov-like stability analysis for integrating the adaptive state estimation and adaptive G&C designs. All the developed designs are validated in nonlinear, 6DOF fixed-wing aircraft simulations.
Finally, the thesis presents a decentralized coordination strategy for vision-based multiple-aircraft formation control. In this approach, each aircraft in formation regulates range from up to two nearest neighboring aircraft while simultaneously tracking nominal desired trajectories common to all aircraft and avoiding static obstacles. Read more
|
28 |
Nonparametric Methods in Spot Volatility Estimation / Nichtparametrische Methoden für das Schätzen der Spot-VolatilitätSchmidt-Hieber, Anselm Johannes 26 October 2010 (has links)
No description available.
|
29 |
Estimation of the mincerian wage model addressing its specification and different econometric issuesBhatti, Sajjad Haider 03 December 2012 (has links) (PDF)
In the present doctoral thesis, we estimated Mincer's (1974) semi logarithmic wage function for the French and Pakistani labour force data. This model is considered as a standard tool in order to estimate the relationship between earnings/wages and different contributory factors. Despite of its vide and extensive use, simple estimation of the Mincerian model is biased because of different econometric problems. The main sources of bias noted in the literature are endogeneity of schooling, measurement error, and sample selectivity. We have tackled the endogeneity and measurement error biases via instrumental variables two stage least squares approach for which we have proposed two new instrumental variables. The first instrumental variable is defined as "the average years of schooling in the family of the concerned individual" and the second instrumental variable is defined as "the average years of schooling in the country, of particular age group, of particular gender, at the particular time when an individual had joined the labour force". Schooling is found to be endogenous for the both countries. Comparing two said instruments we have selected second instrument to be more appropriate. We have applied the Heckman (1979) two-step procedure to eliminate possible sample selection bias which found to be significantly positive for the both countries which means that in the both countries, people who decided not to participate in labour force as wage worker would have earned less than participants if they had decided to work as wage earner. We have estimated a specification that tackled endogeneity and sample selectivity problems together as we found in respect to present literature relative scarcity of such studies all over the globe in general and absence of such studies for France and Pakistan, in particular. Differences in coefficients proved worth of such specification. We have also estimated model semi-parametrically, but contrary to general norm in the context of the Mincerian model, our semi-parametric estimation contained non-parametric component from first-stage schooling equation instead of non-parametric component from selection equation. For both countries, we have found parametric model to be more appropriate. We found errors to be heteroscedastic for the data from both countries and then applied adaptive estimation to control adverse effects of heteroscedasticity. Comparing simple and adaptive estimations, we prefer adaptive specification of parametric model for both countries. Finally, we have applied quantile regression on the selected model from mean regression. Quantile regression exposed that different explanatory factors influence differently in different parts of the wage distribution of the two countries. For both Pakistan and France, it would be the first study that corrected both sample selectivity and endogeneity in single specification in quantile regression framework Read more
|
30 |
Reconstruction adaptative des signaux par optimisation convexe / Adaptive signals recovery by convex optimizationOstrovskii, Dmitrii 11 January 2018 (has links)
Nous considérons le problème de débruitage d'un signal ou d'une image observés dans le bruit gaussien. Dans ce problème les estimateurs linéaires classiques sont quasi-optimaux quand l'ensemble des signaux, qui doit être convexe et compact, est connu a priori. Si cet ensemble n'est pas spécifié, la conception d'un estimateur adaptatif qui ``ne connait pas'' la structure cachée du signal reste un problème difficile. Dans cette thèse, nous étudions une nouvelle famille d'estimateurs des signaux satisfaisant certains propriétés d'invariance dans le temps. De tels signaux sont caractérisés par leur structure harmonique, qui est généralement inconnu dans la pratique.Nous proposons des nouveaux estimateurs capables d'exploiter la structure harmonique inconnue du signal è reconstruire. Nous démontrons que ces estimateurs obéissent aux divers "inégalités d'oracle," et nous proposons une implémentation algorithmique numériquement efficace de ces estimateurs basée sur des algorithmes d'optimisation de "premier ordre." Nous évaluons ces estimateurs sur des données synthétiques et sur des signaux et images réelles. / We consider the problem of denoising a signal observed in Gaussian noise.In this problem, classical linear estimators are quasi-optimal provided that the set of possible signals is convex, compact, and known a priori. However, when the set is unspecified, designing an estimator which does not ``know'' the underlying structure of a signal yet has favorable theoretical guarantees of statistical performance remains a challenging problem. In this thesis, we study a new family of estimators for statistical recovery of signals satisfying certain time-invariance properties. Such signals are characterized by their harmonic structure, which is usually unknown in practice. We propose new estimators which are capable to exploit the unknown harmonic structure of a signal to reconstruct. We demonstrate that these estimators admit theoretical performance guarantees, in the form of oracle inequalities, in a variety of settings.We provide efficient algorithmic implementations of these estimators via first-order optimization algorithm with non-Euclidean geometry, and evaluate them on synthetic data, as well as some real-world signals and images. Read more
|
Page generated in 0.1083 seconds