• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 136
  • 43
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 245
  • 245
  • 125
  • 40
  • 39
  • 36
  • 35
  • 33
  • 31
  • 29
  • 26
  • 25
  • 24
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Trustworthy AI: Ensuring Explainability and Acceptance

Davinder Kaur (17508870) 03 January 2024 (has links)
<p dir="ltr">In the dynamic realm of Artificial Intelligence (AI), this study explores the multifaceted landscape of Trustworthy AI with a dedicated focus on achieving both explainability and acceptance. The research addresses the evolving dynamics of AI, emphasizing the essential role of human involvement in shaping its trajectory.</p><p dir="ltr">A primary contribution of this work is the introduction of a novel "Trustworthy Explainability Acceptance Metric", tailored for the evaluation of AI-based systems by field experts. Grounded in a versatile distance acceptance approach, this metric provides a reliable measure of acceptance value. Practical applications of this metric are illustrated, particularly in a critical domain like medical diagnostics. Another significant contribution is the proposal of a trust-based security framework for 5G social networks. This framework enhances security and reliability by incorporating community insights and leveraging trust mechanisms, presenting a valuable advancement in social network security.</p><p dir="ltr">The study also introduces an artificial conscience-control module model, innovating with the concept of "Artificial Feeling." This model is designed to enhance AI system adaptability based on user preferences, ensuring controllability, safety, reliability, and trustworthiness in AI decision-making. This innovation contributes to fostering increased societal acceptance of AI technologies. Additionally, the research conducts a comprehensive survey of foundational requirements for establishing trustworthiness in AI. Emphasizing fairness, accountability, privacy, acceptance, and verification/validation, this survey lays the groundwork for understanding and addressing ethical considerations in AI applications. The study concludes with exploring quantum alternatives, offering fresh perspectives on algorithmic approaches in trustworthy AI systems. This exploration broadens the horizons of AI research, pushing the boundaries of traditional algorithms.</p><p dir="ltr">In summary, this work significantly contributes to the discourse on Trustworthy AI, ensuring both explainability and acceptance in the intricate interplay between humans and AI systems. Through its diverse contributions, the research offers valuable insights and practical frameworks for the responsible and ethical deployment of AI in various applications.</p>
242

Measuring Data Protection: A Causal Artificial Intelligence Modeling Approach

Robert R Morton II (20374230) 05 December 2024 (has links)
<p dir="ltr">The research delves into the intricate challenge of quantifying data protection, a concept that has evolved from ancient ethical codes to the complex landscape of modern cybersecurity. The research underscores the pressing need for a scientific approach to cybersecurity, emphasizing the importance of measurable security properties and a robust theoretical foundation. It highlights the historical evolution of confidentiality, tracing its roots from ancient civilizations to the contemporary digital era, where the proliferation of technology has amplified both the important ortance and complexity of safeguarding sensitive information. The research identifies key challenges in measuring data protection, including the dynamic nature of threats, the gap between theoretical models and real-world implementations, and the difficulty of accurately modeling risks. It also explores societal challenges related to data protection, such as data breaches, surveillance, social media privacy erosion, and the lack of adequate regulations and enforcement.</p><p dir="ltr">The core of the research lies in developing a causal model that examines the interplay of security controls, vulnerabilities,and threats, providing a deeper understanding of the factors influencing data exposure. The model is built upon a comprehensive literature review, synthesizing key findings and establishing a taxonomy of security protections. The research outlines a structured approach to building and utilizing causality models, incorporating essential elements such as identifying key variables, visualizing causal relationships using Directed (A)cyclic Graphs (DAGs), and determining appropriate research methodologies. The model is rigorously validated through various techniques, including assessing model fit, examining confounding factors. The research also explores a general set of experiments for both interventions and counterfactual studies.</p><p dir="ltr">The research concludes by highlighting potential future research directions, particularly emphasizing the need for standardized data protection metrics and the development of adaptive security systems. It underscores the importance of consistent measurements that enable organizations to compare their security performance effectively and adapt to the evolving threat landscape. The development of adaptive security systems, capable of dynamically modifying defense mechanisms in response to new threats, is also identified as a crucial research avenue. The research's contribution lies in providing a systematic approach to studying data protection, from problem identification to model development, validation, and future directions, ultimately aiming to enhance the protection of sensitive information.</p>
243

Uso transdisciplinar del análisis sistémico en la ecología y en la creación de arte contemporáneo. Cambios de paradigma en la Valencia del siglo XXI

Méndez Gallart, María José 18 April 2023 (has links)
[ES] La presente investigación ha tenido como objetivo explorar el de modo en que el arte contemporáneo, puede contribuir a la adaptación biológica de los seres humanos desde la transición a la sostenibilidad de los complejos sistemas sociotécnicos. Debido al hecho de que el cerebro siempre está preparando hipótesis a futuro y conociendo en parte, como emerge la conciencia en él, nos preguntamos de qué forma la ciencia en toda su complejidad y las intersecciones que emergen entre diferentes disciplinas al analizarse contextos reales, el uso de las tecnologías y los diferentes sistemas de innovación contribuyen y pueden mejorar la adaptación cognitiva de los seres humanos ante posibles disrupciones sociales y medioambientales en los ecosistemas. En concreto se ha querido conocer de qué modo podemos aportar información de valor, a través de la pedagogía, el modelado de sistemas y la ciencia de sistemas. Al estudiar las estructuras emergentes en la autoorganización social, que intervienen en la continua transformación de los diferentes regímenes del paisaje dominante o Statu Quo del metabolismo socioeconómico global. A través de una triangulación de metodologías la investigación presupone la capacidad creativa de los seres humanos para abstraer la realidad y percibirla como totalidades, desde las que poner conciencia de nuestras interdependencias biológicas con los ecosistemas. Y situar en el contexto de investigación, la creencia de que, la clave de la sostenibilidad está en la organización de lo vivo, en el código orgánico y en las dinámicas relacionales. Creemos que el acceso al conocimiento es un fenómeno dinámico, espontáneo que se crea y se destruye infinitamente, como lo es el fenómeno de la conciencia. Al estudiar el contexto como agente crítico se ha elaborado una propuesta de cambio a nivel institucional, destacando que es posible, a futuro, que la ciencias de la complejidad integren el sistema valenciano de innovación. Para partir de una posición justificada desde un punto de vista de método científico se ha acotado el objeto de investigación y recurrido a la investigación de acción participativa de realismo crítico y como marco de trabajo o enfoque, la perspectiva multinivel (MLP), que estudia la complejidad de la transición a la sostenibilidad de los sistemas sociotécnicos de forma agregada, desde el campo de la sociología y esta se ha anclado como punto de partida en la sociología de los sistemas complejos adaptativos (SACS) / [CA] La present recerca ha tingut com a objectiu explorar la forma en què l'art contemporani, pot contribuir a l'adaptació biològica dels éssers humans des de la transició a la sostenibilitat dels complexos sistemes sociotècnics. Degut al fet fet de que el cervell sempre està preparant hipòtesi a futur i coneixent en part, com emergeix la consciència en ell, ens preguntem de quina forma la ciència en tota la seva complexitat i les interseccions que emergeixen de entreteixir l¿us de diferents disciplines en analitzar-se contextos reals, l'ús de les tecnologies i els diferents sistemes d'innovació contribueixen i poden millorar l'adaptació cognitiva dels éssers humans davant possibles disrupcions socials i mediambientals als ecosistemes. En concret s'ha volgut conèixer de quina manera podem aportar informació de valor, a través de la pedagogia, el modelatge de sistemes i la ciència de sistemas, de dades i la inteligencia artificial. En estudiar les estructures emergents en l'autoorganització social, que intervenen en la contínua transformació dels diferents règims del paisatge dominant o Statu quo del metabolisme socioeconòmic global, a través del nostre contexte local. Emprant una triangulació de metodologies , la recerca pressuposa la capacitat creativa dels éssers humans per a abstreure la realitat i percebre-la com a totalitats, des de les quals posar consciència de les nostres interdependències biològiques amb els ecosistemes. I situar a l'entorn de estudi , la creença, de que la clau de la sostenibilitat està en l'organització del viu, en el codi orgànic, en les dinàmiques relacionals. Creiem que l'accés al coneixement és un fenomen dinàmic, espontani que es crea i es destrueix infinitament, com ho és el fenomen de la consciència. En estudiar el context com a agent crític s'ha elaborat una proposta de canvi a nivell institucional, destacant que és possible, a futur, que la ciències de la complexitat integrin el Sistema Valencià d'Innovació (SVI), i el nacional. Per a partir d'una posició justificada des d'un punt de vista de mètode científic s'ha delimitat l'objecte de recerca i recorregut a la recerca d'acció participativa de realisme crític i com a marc de treball o enfocament, la Perspectiva Multi Nivell (MLP), que estudia la complexitat de forma agregada i com a punt de unió en el campo de estudi de la Sociología dels Sistemes Complexos Adaptatius (SACS) / [EN] The aim of this academic research is to explore how contemporary art can contribute to the biological adaptation of human beings in the transition to sustainability of complex socio-technical systems. Owing to the fact that the brain is always hypothesizing about the future and knowing to some extent how consciousness emerges, the question is raised of how science, technologies and different systems of innovation in all their complexity, and what emerges from the intersections between different disciplines when real contexts are analyzed, can contribute and can improve human beings' cognitive adaptation in the face of social and environmental disruption in ecosystems. Specifically, the intention has been to ascertain how we can contribute information of value in the following ways: By means of pedagogy, systems modelling and systems science. By studying the emerging structures in social self-organization which intervene in the ongoing transformation of the different regimes of the dominant landscape or the Statu quo of the global socio-economic metabolism. By means of the triangulation of methodologies, this study presupposes the creative capacity of human beings to abstract reality and to perceive it as totalities, thereby making us aware of our biological interdependence with ecosystems. This situates in a setting of discovery, the belief, that the key to sustainability is in the organization of the living, the organic code, and relational dynamics. We believe that the access to knowledge is a phenomenon which is both dynamic and spontaneous and which is created and destroyed in one neverending process, as is the phenomenon of consciousness. In the process of studying the context as the critical agent, a proposal for institutional change has been drawn up, a proposal which posits that in the future the Valencian system of innovation could be integrated in the sciences of complexity, a case in point could be UPV and more in particular the experience of a pre-doctoral student. In order to start from a position which can be justified from the point of view of the scientific method the object of this research has been limited, and the approach has been that of participatory action research and critical realism, while the framework or focus adopted was the Multi-Level Perspective (MLP), which studies complexities in aggregate form, connected across Sociology with Adaptative Complex Sytems (SACS) field of study. . / Méndez Gallart, MJ. (2023). Uso transdisciplinar del análisis sistémico en la ecología y en la creación de arte contemporáneo. Cambios de paradigma en la Valencia del siglo XXI [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/192757
244

Applying Artificial Neural Networks to Reduce the Adaptation Space in Self-Adaptive Systems : an exploratory work

Buttar, Sarpreet Singh January 2019 (has links)
Self-adaptive systems have limited time to adjust their configurations whenever their adaptation goals, i.e., quality requirements, are violated due to some runtime uncertainties. Within the available time, they need to analyze their adaptation space, i.e., a set of configurations, to find the best adaptation option, i.e., configuration, that can achieve their adaptation goals. Existing formal analysis approaches find the best adaptation option by analyzing the entire adaptation space. However, exhaustive analysis requires time and resources and is therefore only efficient when the adaptation space is small. The size of the adaptation space is often in hundreds or thousands, which makes formal analysis approaches inefficient in large-scale self-adaptive systems. In this thesis, we tackle this problem by presenting an online learning approach that enables formal analysis approaches to analyze large adaptation spaces efficiently. The approach integrates with the standard feedback loop and reduces the adaptation space to a subset of adaptation options that are relevant to the current runtime uncertainties. The subset is then analyzed by the formal analysis approaches, which allows them to complete the analysis faster and efficiently within the available time. We evaluate our approach on two different instances of an Internet of Things application. The evaluation shows that our approach dramatically reduces the adaptation space and analysis time without compromising the adaptation goals.
245

Classifiers for Discrimination of Significant Protein Residues and Protein-Protein Interaction Using Concepts of Information Theory and Machine Learning / Klassifikatoren zur Unterscheidung von Signifikanten Protein Residuen und Protein-Protein Interaktion unter Verwendung von Informationstheorie und maschinellem Lernen

Asper, Roman Yorick 26 October 2011 (has links)
No description available.

Page generated in 0.0683 seconds