• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparison between four commonly used methods for detection of small M-components in plasma

Jonsson, Susanne January 2008 (has links)
<p>Analysis of M-components is an important part of the diagnosis of monoclonal gammopathies and for the evaluation of disease response during treatment. In this project, two widely used electrophoresis methods and their corresponding immunotyping method were compared to evaluate the sensitivity of each method for the detection of small M-components. The project included 30 plasma samples from patients with identified M-components; 10 samples containing each IgG, IgA and IgM, respectively. All samples were diluted with normal EDTA plasma to achieve M-components of 5,00g/L. The samples were then serially diluted to achieve M-component concentrations of; 5,00, 2,50, 1,25, 0,63, 0,31 and 0,16g/L. All 180 samples were analysed with agarose gel electrophoresis and capillary electrophoresis. The dilutions above and below the detection level of each method were then analysed with immunofixation and immunosubtraction. The results showed good agreement between agarose gel electrophoresis and capillary electrophoresis in the highest concentrations of IgG and IgM. With agarose gel electrophoresis, IgA was detected in the same location as transferrin and the lowest concentration detected were therefore 1,25g/L. Besides the samples containing IgG, immunofixation was the most sensitive method.</p>
2

Comparison between four commonly used methods for detection of small M-components in plasma

Jonsson, Susanne January 2008 (has links)
Analysis of M-components is an important part of the diagnosis of monoclonal gammopathies and for the evaluation of disease response during treatment. In this project, two widely used electrophoresis methods and their corresponding immunotyping method were compared to evaluate the sensitivity of each method for the detection of small M-components. The project included 30 plasma samples from patients with identified M-components; 10 samples containing each IgG, IgA and IgM, respectively. All samples were diluted with normal EDTA plasma to achieve M-components of 5,00g/L. The samples were then serially diluted to achieve M-component concentrations of; 5,00, 2,50, 1,25, 0,63, 0,31 and 0,16g/L. All 180 samples were analysed with agarose gel electrophoresis and capillary electrophoresis. The dilutions above and below the detection level of each method were then analysed with immunofixation and immunosubtraction. The results showed good agreement between agarose gel electrophoresis and capillary electrophoresis in the highest concentrations of IgG and IgM. With agarose gel electrophoresis, IgA was detected in the same location as transferrin and the lowest concentration detected were therefore 1,25g/L. Besides the samples containing IgG, immunofixation was the most sensitive method.
3

Photoluminescence Spectroscopy Of Bioconjugated Quantum Dots And Their Application For Early Cancer Detection

Chornokur, Ganna 19 March 2009 (has links)
Most of the bio-applications of semiconductor quantum dots (QDs) show and utilize their superior optical properties over organic fluorophores. An estimated 3-35% of all cancer deaths could be avoided through early detection, therefore, there is a critical need to develop sensitive probes. The objectives of this work are: Research the phenomena of "blue" photoluminescence (PL) spectral shift on the dried bioconjugated QDs and develop the relevant mechanism; Develop a methodology that will allow successful confirmation of the bioconjugation reaction between biomolecules and QDs; Propose a modification of an existent method or approach to employ the "blue" spectral shift of bioconjugated QDs for early cancer detection. Results indicated that the "blue" spectral shift, observed for dried on the silicon substrates bioconjugated QDs, is increased with the time of storage and reaches 30-40nm in 14 days. It is accelerated at elevated temperatures and slowed down at lower temperatures. Larger size QDs generate spectral shifts of larger magnitudes, and the spectral shift is positively correlated with the biomolecule's size/weight. This phenomenon is explained by elastic and compression stress due to nonhomogenious drying of the QD droplet and the reaction with the solid surface. Agarose gel electrophoresis technique, optimized with organic dye fluorescamine, is suitable for bioconjugation verification. The optimal running parameters were found to be 2% agarose gel, 1.5V working voltage, 0.5X TBE as a running buffer, and about 120 mins running time. The spectral shift was implemented for improving the sensitivity of Prostate Specific Antigen (PSA) Enzyme-Linked ImmunoSorbent Assay (ELISA). It was found that QD ELISA could be as much, as 100 times more sensitive than the regular commercial ELISA, based on the enzymatic detection. The results of this work show that QDs may be very useful for early detection of several types of cancers, including prostate cancer in men and breast/ovarian/uterine cancers in women.
4

Some Characteristics of Human Prostasomes and Their Relationship to Prostate Cancer

Ronquist, Göran January 2009 (has links)
Background: The secretory epithelial cells of the prostate gland use sophisticated vehicles named prostasomes to relay important information to sperm cells in semen. This prostasome-forming and secretory ability of the epithelial cells is also preserved in poorly differentiated prostate cancer cells. Aim: The aim of this thesis was to examine different characteristics of prostasomes, especially those derived from malignant prostate cells, linked to their potential role in diagnosis and prognostication of prostate cancer. Results: Serum samples of prostate cancer patients contained autoantibodies against seminal prostasomes in a higher concentration than did control sera. These autoantibodies were most frequently directed against 25 prostasome-associated proteins, but no one was prostate specific. Clusterin was one of the most frequently occurring prostasomal proteins. Elevated titers were however seen in both patients´ and control sera. Clusterin turned out to be a major antigen of seminal prostasomes. No prostate specific or prostate cancer specific protein was discovered upon proteomic analysis of prostasomes deriving from malignant cells of vertebral metastases of prostate cancer patients. Human chromosomal DNA was identified in both seminal prostasomes and PC-3 cell prostasomes and strong evidence existed that the DNA was localized inside the prostasomes. Four out of 13 DNA clones of seminal prostasomes featured gene sequences (31%). The corresponding figures for PC-3 cell prostasomes were 4 out of 16 clones (25%). Conclusions: Prostasomes are immunogenic and give rise to serum autoantibodies. The most frequently occurring autoantibodies were directed against 25 prostasomal proteins but none of these was exclusively prostate specific. Thirty different proteins were identified in prostate cancer metastasis-derived prostasomes but none of these proteins was prostate cancer specific. Human chromosomal DNA was identified in prostasomes of both normal and malignant cell origin.
5

The Characterisation of Putative Nuclear Pore-Anchoring Proteins in Arabidopsis thaliana

Collins, Patrick January 2013 (has links)
The nuclear pore complex (NPC) is perhaps the largest protein complex in the eukaryotic cell, and controls the movement of molecules across the nuclear envelope. The NPC is composed of up to 30 proteins termed nucleoporins (Nups), each grouped in different sub-complexes. The transmembrane ring sub-complex is composed of Nups responsible for anchoring the NPC to the nuclear envelope. Bioinformatic analysis has traced all major sub-complexes of the NPC back to the last eukaryotic common ancestor, meaning that the nuclear pore structure and function is conserved amongst all eukaryotes. In this study Arabidopsis T-DNA knockout lines for these genes were investigated to characterise gene function. Differences in plant growth and development were observed for the ndc1 knockout line compared to wild-type but gp210 plants showed no phenotypic differences. The double knockout line gp210 ndc1 was generated through crosses to observe plant response to the knockout of two anchoring-Nup genes. No synergistic affect from this double knockout was observed, suggesting that more, as yet unidentified Nups function the transmembrane ring in plants. The sensitivity to nuclear export inhibitor leptomycin B (LMB) was tested also for knockout lines, although growth sensitivity to the drug was not observed. Nucleocytoplasmic transport of knockout lines was measured in cells transformed by particle bombardment. To express fluorescent protein constructs actively transported through the NPC, localisation of protein determined the nucleocytoplasmic transport of the cell. The ndc1single knockout and the double knockout gp210 ndc1 exhibited decreased nuclear export. Further experiments in determining NDC1 localisation and identification of other Nups in the transmembrane ring sub-complex would bring a more comprehensive understanding to the plant NPC.

Page generated in 0.4893 seconds