Spelling suggestions: "subject:"alternative conergy"" "subject:"alternative coenergy""
421 |
Small Wind Energy Policy Making in the States: Lessons for a Shifting Energy LandscapeWiener, Joshua G. 24 September 2009 (has links)
No description available.
|
422 |
Heteroatom-containing Carbon Nanostructures as Oxygen Reduction Electrocatalysts for PEM and Direct Methanol Fuel Cellsvon Deak, Dieter G. 27 September 2011 (has links)
No description available.
|
423 |
An Improved Model-Based Methodology for Calibration of an Alternative Fueled EngineEverett, Ryan Vincent 15 December 2011 (has links)
No description available.
|
424 |
A practical implementation of a near optimal energy management strategy based on the Pontryagin's minimum principle in a PHEVSharma, Oruganti Prashanth 22 June 2012 (has links)
No description available.
|
425 |
Growth of Titania Nanowires by Thermal OxidationDinan, Benjamin J. 22 June 2012 (has links)
No description available.
|
426 |
A Study of Field-Oriented Control of a Permanent Magnet Synchronous Generator and Hysteresis Current Control for Wind Turbine ApplicationBaktiono, Surya 27 June 2012 (has links)
No description available.
|
427 |
Probing the Dynamics of Conduction Band Electrons and Adsorbed-CO2 Ionic Species through Infrared SpectroscopyKing, Jaelynne Alaya-Louise 28 July 2022 (has links)
No description available.
|
428 |
Wave-Cavity Resonator: Experimental Investigation of an Alternative Energy DeviceReaume, Jonathan Daniel 21 December 2015 (has links)
A wave cavity resonator (WCR) is investigated to determine the suitability of the
device as an energy harvester in rivers or tidal flows. The WCR consists of coupling
between self-excited oscillations of turbulent flow of water in an open channel along the
opening of a rectangular cavity and the standing gravity wave in the cavity. The device
was investigated experimentally for a range of inflow velocities, cavity opening lengths,
and characteristic depths of the water. Determining appropriate models and empirical
relations for the system over a range of depths allows for accuracy when designing
prototypes and tools for determining the suitability of a particular river or tidal flow as a
potential WCR site. The performance of the system when coupled with a wave
absorber/generator is also evaluated for a range piston strokes in reference to cavity wave
height. Video recording of the oscillating free-surface inside the resonator cavity in
conjunction with free-surface elevation measurements using a capacitive wave gauge
provides representation of the resonant wave modes of the cavity as well as the degree of
the flow-wave coupling in terms of the amplitude and the quality factor of the associated
spectral peak. Moreover, application of digital particle image velocimetry (PIV) provides
insight into the evolution of the vortical structures that form across the cavity opening.
Coherent oscillations were attainable for a wide range of water depths. Variation of the
water depth affected the degree of coupling between the shear layer oscillations and the
gravity wave as well as the three-dimensionality of the flow structure. In terms of the
power investigation, conducted with the addition of a load cell and linear table-driven
piston, the device is likely limited to running low power instrumentation unless it can be
up-scaled. Up-scaling of the system, while requiring additional design considerations, is
not unreasonable; large-scale systems of resonant water waves and the generation of large
scale vortical structures due to tidal or river flows are even observed naturally. / Graduate / 0547 / 0548 / reaumejd@uvic.ca
|
429 |
Unruly energies : provocations of renewable energy development in a northern German villageCarlson, Jennifer D. 23 October 2014 (has links)
This dissertation asks how inhabitants of a sustainable village are living out Germany’s transition from nuclear to renewable energy. The sustainable village remains a locus of optimistic attachments for renewable energy advocates, who argue that a decentralized power grid will enable people to more directly participate in power production and politics as “energy citizens.” Yet while rural areas have become sites of speculation, innovation and growth, few rural-dwellers are enfranchised in (or profiting from) the technoscientific projects in their midst. I draw upon 13 months of fieldwork in a northern German village transformed by wind turbines, photovoltaics and biofuels to consider why, asking what kinds of public life flourish in the absence of democratic engagement with renewable technologies. This ethnography engages the village as multiply constituted across domains of everyday life, including transit, farming, waste management, domestic life, and social gatherings. I found that environmental policy, everyday practices, and the area’s material histories combined to produce ontologies—senses of what exists—that circumscribe citizen participation in the energy sector, affording more formal opportunities to men than to women, and privileging farmers’ interests in plans that impacted the larger community. These findings illuminate how many villagers become ambivalent toward the project of the energy transition and disenfranchised from its implementation. Yet many who were excluded from formal participation also engaged with renewable technologies as they sensed out their worlds, using tropes of sustainable energy and technoscientific materials to place themselves in this emerging energy polity. Their everyday worldmaking brimmed with what I call unruly energies, structures of feeling that registered more as affects than as discourse. In the village, these took form as sensory disturbances, disquiet among neighbors, technoscientific optimism and skepticism toward environmental policy. These affective modes of attention, investment and participation were vital aspects of public life that shaped the transition’s unfolding. They exceeded liberal models of renewable energy citizenship, which presume that socioeconomic interest and environmental commitment are universal among citizens. In this way, unruly energies compel more nuanced attention to the multiple, contingent, site-specific ways in which citizenship takes form in the making of eco-capitalist energy infrastructure. / text
|
430 |
Estudo do sombreamento parcial em módulos fotovoltaicos através da resistência série e das redes neurais artificiaisFaria, Waltenir Alves de 09 May 2014 (has links)
Given the scenarios of increasing world population, the concentration of CO2, fuel costs, global consumption of energy and climate change, there was a need to search for alternative energy sources. In this context, solar photovoltaic, the result of research and investments over the past five decades, had a great impact in the last decade, recording a significant increase in the production of photovoltaic cells and modules and installations of photovoltaic systems worldwide. One of the goals of this work was to study the behavior of PV modules by partial shading situations in different conditions of temperature and solar radiation. Within this partial shading scenario that impacts virtually all electrical parameters of a module, the study and calculation of the series resistance of the modules was done in conditions of partial shading proposals to verify the relationship between the value of the series resistance and the state of shading partial, allowing identification of a possible state of shading from monitoring the resistance series. Another objective of this work was to apply Artificial Intelligence (AI) resources in the form of Artificial Neural Networks (ANN) to, after the proper training and learning of ANN from the database collected in the field under conditions of partial shade, they can identify the parameters of the PV modules within the various conditions of partial shading proposals. To pursue the objectives of this work four photovoltaic modules were used, two with 40 W nominal power with over fifteen years of manufacturing, assigned by the Instituto Federal de Goiás (IFGoiano) Urutaí Campus, at the city of Urutaí-GO and two new without any use of 75 W nominal power assigned by the Center for Research on Alternative Energy Sources, School of Electrical Engineering, Universidade Federal de Uberlândia (UFU). / Diante dos cenários de aumento da população mundial, da concentração de CO2 ,dos custos dos combustíveis, do consumo mundial de energia e das alterações climáticas, surgiu a necessidade de se buscar por fontes de energias alternativas. Neste contexto, a energia solar fotovoltaica, fruto de investigações e investimentos realizados nas últimas cinco décadas, teve um grande impacto na última década, registrando um aumento significativo na produção de células e módulos fotovoltaicos e instalações de sistemas fotovoltaicos no mundo todo. Um dos objetivos deste trabalho foi estudar o comportamento de módulos fotovoltaicos mediante situações de sombreamento parcial em diferentes condições de temperatura e radiação solar. Dentro deste cenário de sombreamento parcial que causa impacto praticamente em todos os parâmetros elétricos de um módulo, foi feito o estudo e cálculo da resistência série dos módulos nas condições de sombreamento parcial propostas para verificar a relação entre o valor da resistência série e o estado de sombreamento parcial, possibilitando uma possível identificação do estado de sombreamento a partir do monitoramento da resistência série. Outro objetivo deste trabalho foi aplicar recursos de Inteligência Artificial (IA) na modalidade de Redes Neurais Artificiais (RNAs) para, após o devido treinamento e aprendizado das RNAs a partir do banco de dados colhidos em campo sob condições de sombreamento parcial, elas poderem identificar os parâmetros do módulo fotovoltaico dentro das diversas condições de sombreamento parcial propostas. Para a busca dos objetivos deste trabalho foram utilizados quatro módulos fotovoltaicos sendo dois de 40 W de potência nominal com mais de quinze anos de fabricação, cedidos pelo Instituto Federal Goiano (IFGoiano) Campus Urutaí, da cidade de Urutaí-GO e dois novos e sem uso, de 75 W de potência nominal cedidos pelo Núcleo de Pesquisa em Fontes Alternativas de Energia da Faculdade de Engenharia Elétrica da Universidade Federal de Uberlândia (UFU). / Mestre em Ciências
|
Page generated in 0.1196 seconds