• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 339
  • 63
  • 26
  • 12
  • 5
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 483
  • 483
  • 205
  • 77
  • 75
  • 67
  • 58
  • 52
  • 50
  • 48
  • 48
  • 47
  • 44
  • 40
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
431

Srovnání rurálních a urbánních oblastí v Jihočeském regionu podle využití podpory EU pro alternativní zdroje energie / Confrotation of an alternative energy in rural and urban teritorry in south bohemia region

GLASER, Tomáš January 2011 (has links)
This diploma work refers to the subject the Confrotation of an alternative energy in rural and urban teritorry in south bohemia region and the real potential of EU support for the use of alternative sources of alternative energy. Comparing the situation in urban and rural population and the strategy of alternative energy sources.
432

Microstructure Design And Interfacial Effects On Thermoelectric Properties Of Bi-Sb-Te System

Femi, Olu Emmanuel 06 1900 (has links) (PDF)
Climate change is a subject of deep distress in today’s world. Over dependence on hydrocarbon has resulted in serious environmental problems. Rising sea level, global warming and ozone layer depletion are the mainstream of any discuss world over. The collective goal of cutting carbon emission by the year 2020has prompted the search for clean, alternative energy sources. This effort are already yielding good reward as other forms of energy such as solar, wind, nuclear and hydro have received huge investment and renew interest over the past decade. Thermoelectric materials over the past decades have been tipped to replace conventional means of power generations as these materials have the ability to convert heat to electrical energy and vice versa. They are simple, have no moving parts and use no greenhouse gases. But the major drawback of these materials is their low conversion efficiency. Hence there is a need to enhance the efficiency of thermoelectric material to fulfill their undeniable potentials. A parameter called the thermoelectric figure of merit, ZT defines the efficiency of a thermoelectric material. ZT relates three non-mutually exclusive transport properties namely Seebeck coefficient, electrical conductivity and thermal conductivity. Efficient thermoelectric material should possess high Seebeck coefficient, high electrical conductivity and low thermal conductivity. Hence, one of the interesting ideas in the area of thermoelectric research is the concept of designing a bulk material with high density of phonon scattering centers so has to reduce the lattice contribution to thermal conductivity but at the same time have minimum impact oncharge carriers. This is usually achieved by utilizing interphase and grain boundaries which are localized defects to scatter phonons. The volume fraction of the grain/interphase boundaries can be control through phase modification and microstructure design. This thesis is centered on Bi-Sb-Te systems which are the present room temperature state of the earth thermoelectric material. The investigation revolves around developing a new kind of microstructure in the well-studied Bi-Sb-Te system that shows tremendous potential as a means to reduce lattice contribution to thermal conductivity. The idea of having both p and n-type thermoelectric material preferably from the same material was also a motivation in our investigation. The thesis isdivided into six chapters. The first chapter introduces the concept of thermoelectricity i.e. the direct conversion of thermal energy into electricity. The physics involved and contribution of individual to the science of thermoelectricity were enumerated. Efficiency, optimization and material selection for better thermoelectric performance were briefly enumerated. Prospective materials that are currently been investigated for better thermoelectric properties were also mentioned. The structure of the Bi-Sb-Te system which is the focus of this thesis is present in this chapter including doping effect on the thermoelectric performance of the system as well as the various methods present been employed to improve the thermoelectric properties of the system. Finally the chapter enumerates the scope and object of the present thesis. The different experimental procedures adopted in the present thesis arediscussed in chapter 2. The details of different processing routes followed to synthesize flame-melted ingots, flame-melted + low temperature milled (cryo milling) + spark plasma sintering (SPS) alloy and flame-melted + melt spinning + spark plasma sintering (SPS) alloy, are discussed followed by the various structural and functional characterization techniques. The unique advantage of the spark plasma sintering techniques over the conventional sintering method was talked out in detail. The structural characterizations performed on the synthesized alloys include XRD, SEM and whilethe functional characterizations comprised of Hall measurement, Seebeck coefficient, electrical resistivity and thermal conductivity measurements. Thermoelectric properties of selected composition of Bi-Sb-Te synthesized via flame-melting are presented in chapter 3.Detail study of four analyzed compositions namelyBi24Sb20Te56, Bi20Sb12Te69, Bi16Sb5Te79 and Bi29Sb11Te60resulted in four unique microstructure and different volume fraction of primary and secondary phases. The resultant morphologies of the microstructure were observed to have influence the thermoelectric behavior corresponding to each composition. The sole influence of anti-structural defects on the conductivity type and the role of microstructure morphologies and length scale were understood in this chapter. Samples with segregated Te and a solid solution BiSbTe3(eutectic morphology) form an n-type thermoelectric material while samples with only solid solution BiSbTe3 forms a p-type thermoelectric material. Pair of n-type and p-type material was obtained without the introduction of external dopant.The pair shows good compatibility factorsuitable for thermoelectric device. In chapter 4, the thermoelectric properties of four selected composition of Bi-Sb-Te synthesized via low temperature milling plus spark plasma sintering is addressed. The analyzed compositions are as follows Bi24Sb20Te56, Bi18Sb11Te71, Bi17Sb6Te77, and Bi28Sb15Te57 respectively. The effect of low temperature milling combine with the prospect of minimum grain growth of spark plasma sintering on the thermoelectric properties of the selected compositions were determined. Samples with eutectic morphology which would otherwise scatter charge carriers were observed to have the highest carrier mobility as a result of high volume fraction of Te phase which serves as a donor injecting excess electrons into the system. The impact of small grain size was observed on the transport properties of the sample Bi28Sb15Te57 with the highest electrical resistivity, the best Seebeck coefficient and the lowest thermal conductivity. Pair of n-type and p-type material was obtained without the introduction of external doping elements. The pairshows good compatibility factor suitable for segmented thermoelectric device. Chapter 5 narrates the thermoelectric properties of four compositions namely Bi30Sb13Te58, Bi23Sb13Te65, Bi18Sb5Te77 and Bi23Sb20Te58subjected to melt spinning plus spark plasma sintering.High cooling rate obtained during melt spinning process was observed in this chapter to cause a shift of composition which resulted in a microstructure morphology with eutectic colonies that is predominantly Te rich. These Te rich colonies in the sample Bi30Sb13Te58 was observed to change the conductivity type of the sample from an otherwise p-type to n-type while also aiding bipolar conduction which was detrimental to the overall thermoelectric performance of the alloy. Segregated Te in the form of eutectic morphology helps to inject excess electron into the bulk of the sample Bi23Sb13Te65 and Bi18Sb5Te77hereby increases the observed electrical conductivity which by virtue of the microstructure morphology is expected to be low. As a result of the processing routes, all four compositions in this chapter shown-type conductivity. Chapter 6 presents the summary of the important conclusions drawn from this work.
433

Experiments And Analysis on Wood Gasification in an Open Top Downdraft Gasifier

Mahapatra, Sadhan January 2016 (has links) (PDF)
The thesis, through experimental and numerical investigations reports on the work related to packed bed reactors in co-current configuration for biomass gasification. This study has extensively focused on the gasification operating regimes and addressing the issues of presence of tar, an undesirable component for engine application. Systematically, the influence of fuel properties on the gasification process has been studied using single particle analysis and also in packed bed reactors. Studies related to the effect of fuel properties - size, surface area volume ratio and density on the reactor performance are addressed. The influence of these parameters on the propagation rate which indirectly influences the residence time, tar generation, gas compositions is explicitly elucidated. Most of the reported work in literature primarily focuses on counter-current configurations and analysis on propagation flame front/ignition mass flux and temperature profiles mostly under the combustion regime. In this work, flame propagation front movement, bed movement and effective movement for a co-current packed bed reactor of different reactor capacities and a generalized approach towards establishing ‘effective propagation rate’ has been proposed. The work also reports on the importance of particle size and sharing of air from the top and through nozzles on tar generation in the open top down draft reactor configuration. Firstly, pyrolysis, an important component of the thermochemical conversion process has been studied using the flaming time for different biomass samples having varying size, shape and density. The elaborate experiments on the single particle study provides an insight into the reasons for high tar generation for wood flakes/coconut shells and also identifies the importance of the fuel particle geometry related to surface area and volume ratio. Effect of density by comparing the flaming rate of wood flakes and coconut shells with the wood sphere for an equivalent diameter is highlighted. It is observed that the tar level in the raw gas is about 80% higher in the case of wood flakes and similar values for coconut shells compared with wood pieces. The analysis suggests that the time for pyrolysis is lower with a higher surface area particle and is subjected to nearly fast pyrolysis process resulting in higher tar fraction with low char yield. Similarly, time for pyrolysis increases with density as observed from the experimental measurements by using coconut shells and wood flakes and concludes the influence on the performance of packed bed reactors. Studies on co-current reactor under various operating conditions from closed top reactor to open top reburn configuration suggests improved residence time reduces tar generation. This study establishes, increased residence time with staged air flow has a better control on residence time and yields lower tar in the raw gas. Studies on the influence of air mass flux on the propagation rate, peak temperature, and gas quality, establishes the need to consider bed movement in the case of co-current packed bed reactor. It is also observed that flame front propagation rate initially increases as the air mass flux is increased, reaches a peak and subsequently decreases. With increase in air mass flux, fuel consumption increases and thereby the bed movement. The importance of bed movement and its effect on the propagation front movement has been established. To account for variation in the fuel density, normalized propagation rate or the ignition mass flux is a better way to present the result. The peak flame front propagation rates are 0.089 mm/s for 10 % moist wood at an air mas flux of 0.130 kg/m2-s and while 0.095 mm/s for bone-dry wood at an air mass flux of 0.134 kg/m2-s. These peak propagation rates occur with the air mass flux in the range of 0.130 to 0.134 kg/m2-s. The present results compare well with those available in the literature on the effective propagation rate with the variation of air mass flux, and deviations are linked to fuel properties. The propagation rate correlates with mass flux as ̇ . during the increasing regime of the front movement. The extinction of flame propagation or the front receding has been established both experimentally supported from the model analysis and is found to be at an air mass flux of 0.235 kg/m2-s. The volume fraction of various gaseous species at the reactor exits obtained from the experiment is 14.89±0.28 % CO2, 15.75±0.43 % CO and 11.09±1.99 % H2 respectively with the balance being CH4 and N2. The model analysis using an in-house program developed for packed bed reactor provide a comprehensive understanding with respect to the performance of packed bed reactor under gasification conditions. The model addresses the dependence on air mass flux on gas composition and propagation rate and is used to validate the experimental results. Based on the energy balance in the reaction front, the analysis clearly identifies the reasons for stable propagation front and receding front in a co-current reactor. From the experiments and modelling studies, it is evident that turn-down ratio of a downdraft gasification system is scientifically established. Both the experimental and the numerical studies presented in the current work establishes that the physical properties of the fuel have an impact on the performance of the co-current reactor and for the first time, the importance of bed movement on the propagation rate is identified.
434

How Literate Responses to Technical Communication Can Promote Practical Responses to Environmental Change

Le Rouge, Mary Frances 03 June 2021 (has links)
No description available.
435

Energy Harvesting Power Supply for MEMS Applications / Energy Harvesting Power Supply for MEMS Applications

Smilek, Jan January 2018 (has links)
Tato práce se zabývá vývojem nezávislého elektrického zdroje pro moderní nízkopříkonové elektrické aplikace. Protože tradiční řešení napájení drobných spotřebičů s využitím baterií či akumulátorů snižuje uživatelský komfort kvůli potřebě pravidelné údržby, navrhovaný zdroj využívá principu energy harvesting. Tento princip spočívá v získávání energie přímo z okolního prostředí napájené aplikace a její přeměně na energii elektrickou, která je dále využita pro na-pájení moderních MEMS (mikroelektromechanických) zařízení. Potenciální aplikací vyvíjeného zdroje je především moderní nositelná elektronika a biomedicínské senzory. Tato oblast využití ovšem klade zvýšené nároky na parametry generátoru, který musí zajistit dostatečný generovaný výkon z energie, dostupné v okolí lidského těla, a to při zachování prakticky využitelné velikosti a hmotnosti. Po stanovení předběžných požadavků a provedení analýz vhodnosti dostupných zdrojů energie ke konverzi byla k využití vybrána kinetická energie lidských aktivit. Byla provedena série měření zrychlení na lidském těle, především v místě předpokládaného umístění generátoru, aby bylo možno analyzovat a generalizovat hodnoty energie dostupné ke konverzi v daném umístění. V návaznosti na tato měření a analýzy byl vyvinut inovativní kinetický energy harvester, který byl následně vyroben jako funkční vzorek. Tento vzorek byl pak testován v reálných podmínkách pro verifikaci simulačního modelu a vyhodnocení reálné použitelnosti takového zařízení. Kromě samotného vývoje generátoru je v práci popsán i originální způsob zvýšení generovaného výkonu pro kinetické energy harvestery a jsou prezentována statistická data a modely pro predikci využitelnosti kinetických harvesterů pro získávání energie z lidské aktivity.
436

Experimental and Simulated Analysis of Voltage Stress Within a Bar-Wound Synchronous Machine Excited by a Silicon Carbide Inverter

Kelly, Brennan James 06 October 2021 (has links)
No description available.
437

Cuprous Bromide Electrochemistry and its Application in a Flow Battery

Stricker, Elizabeth Ann 23 May 2019 (has links)
No description available.
438

Analysis and Design of Stable and Optimal Energy Management Strategies for Hybrid Electric Vehicles

Sampathnarayanan, Balaji January 2012 (has links)
No description available.
439

Developing a Focal Firm’s Sustainable Supply Chain Framework: Drivers, Orientation, Practices and Performance Outcomes

Yang, Ma Ga 30 May 2013 (has links)
No description available.
440

A Battery Management System Using an Active Charge Equalization Yechnique Based on DC-DC Converter Topology

Yarlagadda, Sriram 23 June 2011 (has links)
No description available.

Page generated in 0.0719 seconds