• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 20
  • 18
  • 12
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 146
  • 146
  • 39
  • 36
  • 34
  • 33
  • 32
  • 31
  • 31
  • 24
  • 24
  • 23
  • 20
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Development of Advanced Thin Films by PECVD for Photovoltaic Applications

Tian, Lin 17 January 2013 (has links)
Compared to wafer based solar cells, thin film solar cells greatly reduce material cost and thermal budget due to low temperature process. Monolithically manufacturing allows large area fabrication and continuous processing. In this work, several photovoltaic thin films have been developed by rf-PECVD including a-Si:H and μc-Si, both intrinsic and doped on Corning 4 inch glass substrate at low temperature. The conductivity of n type and p type μc-Si at 180ºC was 17S/cm and 7.1E-2S/cm, respectively. B dopants either in a-Si:H or μc-Si films require higher plasma power to get active doping. The B2H6-to-SiH4 flow ratio for p type μc-Si lies from 0.01 to 0.025. Chamber conditions have critical effect on film quality. Repeatable and superior results require a well-established cleaning passivation procedure. Moreover, μc-Si films have been deposited from pure silane on glass substrate by modified rf-ICP-CVD. The deposition rate has been dramatically increased to 5Å/s due to little H2 dilution with crystalline fraction was around 69%, and 6.2Å/s with crystalline fraction 45%. Microstructure started to form at 150ºC with a thin incubation layer on the glass substrate, and became fully dense conical conglomerates around 300nm where conductivity and crystallinity saturated. Additionally, a-SiGe:H films have been developed by modified rf-ICP-CVD. The optical band gaps have been varied from 1.25 to 1.63eV by changing SiH4-to-GeH4 ratio. Also high temperature resulted in low bandgap. Cross-section TEM showed some microcrystllites appeared near interface region. Heterojunction solar cells on p type c-Si wafer have been fabricated using films developed in this thesis. Interference fringes in EQE disappeared on either textured substrate or cells with lift-off contacts. Maximum EQE was 87% around 700nm. I-V curves have also been studied where the interesting kink suggests a counter-diode has formed between emitter region and contacts.
82

Dynamic variation of hydrogen dilution during hot-wire chemical vapour deposition of silicon thin films

Towfie, Nazley January 2013 (has links)
>Magister Scientiae - MSc / This study reports on the effects of hydrogen dilution and deposition time on six silicon thin films deposited at six specific deposition regimes. The thin film properties are investigated via X-Ray diffraction analysis, raman spectroscopy, fourier transform infra-red spectroscopy, elastic recoil detection analysis, scanning and transmission electron microscopy and UV-visible spectroscopy. This investigation revealed the dominating etching effect of atomic hydrogen with the increase in hydrogen dilution and a bonded hydrogen content (CH) exceeding 10 at.% for each of the six thin films. The optically determined void volume fraction and static refractive index remain constant, for each thin film, with the change in CH
83

Amorphous Silicon Contacts for Silicon and Cadmium Telluride Solar Cells

January 2018 (has links)
abstract: Achieving high efficiency in solar cells requires optimal photovoltaics materials for light absorption and as with any electrical device—high-quality contacts. Essentially, the contacts separate the charge carriers—holes at one terminal and electrons at the other—extracting them to an external circuit. For this purpose, the development of passivating and carrier-selective contacts that enable low interface defect density and efficient carrier transport is critical for making high-efficiency solar cells. The recent record-efficiency n-type silicon cells with hydrogenated amorphous silicon (a-Si:H) contacts have demonstrated the usefulness of passivating and carrier-selective contacts. However, the use of a-Si:H contacts should not be limited in just n-type silicon cells. In the present work, a-Si:H contacts for crystalline silicon and cadmium telluride (CdTe) solar cells are developed. First, hydrogen-plasma-processsed a-Si:H contacts are used in n-type Czochralski silicon cell fabrication. Hydrogen plasma treatment is used to increase the Si-H bond density of a-Si:H films and decrease the dangling bond density at the interface, which leads to better interface passivation and device performance, and wider temperature-processing window of n-type silicon cells under full spectrum (300–1200 nm) illumination. In addition, thickness-varied a-Si:H contacts are studied for n-type silicon cells under the infrared spectrum (700–1200 nm) illumination, which are prepared for silicon-based tandem applications. Second, the a-Si:H contacts are applied to commercial-grade p-type silicon cells, which have much lower bulk carrier lifetimes than the n-type silicon cells. The approach is using gettering and bulk hydrogenation to improve the p-type silicon bulk quality, and then applying a-Si:H contacts to enable excellent surface passivation and carrier transport. This leads to an open-circuit voltage of 707 mV in p-type Czochralski silicon cells, and of 702 mV, the world-record open-circuit voltage in p-type multi-crystalline silicon cells. Finally, CdTe cells with p-type a-Si:H hole-selective contacts are studied. As a proof of concept, p-type a-Si:H contacts enable achieving the highest reported open-circuit voltages (1.1 V) in mono-crystalline CdTe devices. A comparative study of applying p-type a-Si:H contacts in poly-crystalline CdTe solar cells is performed, resulting in absolute voltage gain of 53 mV over using the standard tellurium contacts. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2018
84

Propriedades ópticas de filmes finos de silício amorfo hidrogenado dopados com érbio / Optical properties of Er-doped hydrogenated amorphous silicon thin films

Victor Inacio de Oliveira 20 September 2005 (has links)
Em função de suas potenciais aplicações tecnológicas (células solares, TFT- transistores de filme fino, etc.), o estudo de semicondutores amorfos tem despertado o interesse da comunidade científica desde o final da década de 70. Mais recentemente, este interesse foi renovado com a perspectiva de se produzirem dispositivos emissores de luz totalmente baseados no silício e em sua bem estabelecida tecnologia (micro-)eletrônica. Dentre as principais abordagens adotadas para a obtenção de materiais luminescentes à base de silício, destaca-se aquela envolvendo sua dopagem com íons terra-rara e/ou metais de transição, por exemplo. Tendo isto por base, este trabalho diz respeito ao preparo e posterior caracterização de filmes finos de silício amorfo hidrogenado (a-SiH) dopados com o íon E3+. Todos os filmes considerados neste estudo foram preparados pela técnica de sputtering de rádio freqüência, em uma atmosfera controlada de argônio e hidrogênio. Com o objetivo de se investigar a influência exercida pela temperatura na estrutura atômica e composição química nos processos ópticos destes filmes, todos foram submetidos a tratamentos térmicos cumulativos até 700 oC. Para isto, os filmes foram caracterizados pelas técnicas de espalhamento Raman, fotoluminescência, transmissão óptica, EDS (energy dispersive spectrometry) e RBS (Rutherford backscattering spetrometry), e ERD (elastic recoil detection). Os resultados experimentais indicam que os tratamentos térmicos até - 400 oC aumentam a intensidade de luminescência nestes filmes sem, contudo, alterar significativamente sua estrutura atômica e composição. Tratamentos térmicos a maiores temperaturas induzem uma diminuição no bandgap óptico dos filmes, e conseqüente decréscimo no sinal de fotoluminescência. Ensaios preliminares em filmes de a-Si:H dopados com Cr e co-dopados com Er+Yb também foram feitos. / As a result of their great technological potential (solar cells, thin film transistors, etc.), the study of amorphous semiconductors is attracting the attention of the scientific community since the 70\'s. More recently, such interest was renewed with the possibility to produce light emitting devices exclusively based on silicon and on its well-established (micro-) electronic technology. Amongst the principal approaches to obtain luminescent materials based on Si, stand out those involving the doping of Si with rare-earth ions and/or transition metals, for example. Based on the above ideas, this work refers to the synthesis and spectroscopic characterization of hydrogenated amorphous silicon (a-Si:H) films doped with Er3+ ions. All films considered in this work were prepared by the radio frequency sputtering technique in a controlled atmosphere of argon and hydrogen. In order to investigate the influence exerted by the atomic structure and chemical composition on the optical processes of these films, all of them have been submitted to cumulative thermal annealing treatments up to 700 oC. To that aim, the films were investigated by Raman scattering, photoluminescence, optical transmission, energy dispersive spectrometry (EDS), Rutherford backscattering spectrometry (RBS), and elastic recoil detection (ERD). The experimental results indicate that thermal treatments up to ~ 400 oC increase the photoluminescence intensity of the films, without significant changes in their atomic structure and composition. Thermal treatments at even higher temperatures induce an optical bandgap shrinkage and consequent decrease in the intensity of photoluminescence. Preliminary experiments with a-Si:H doped with Cr and with Er+Yb have also been carried out.
85

Estudo do silício amorfo hidrogenado produzido por descarga luminescente. / Study of hydrogenated amorphous silicon obtained by glow discharge

Jose Fernando Fragalli 14 July 1989 (has links)
Silício amorfo hidrogenado depositado por descarga luminescente tem adquirido posição de destaque entre os vários materiais foto-sensíveis, principalmente devido à sua fácil obtenção e versatilidade em propriedades. Neste trabalho, preparamos amostras de a-Si:H (Silício amorfo hidrogenado) utilizando o método de descarga de RF em atmosfera de gás SiH4, utilizando como substrato vidro e silício cristalino. As amostras depositadas sobre vidro foram utilizadas para estudo de formação de defeitos meta-estáveis no filme morfo devido a exposição à Raios-X. Os mecanismos de formação e recuperação dos defeitos foram analisados através do estudo da fotocondutividade, revelando a possível natureza de tais defeitos. Acreditamos que se trata da quebra de ligações Si-H e Si-Si, formando armadilhas para elétrons condutores. Analisamos a resposta espectral da fotocondutividade e absorção óptica, que forneceram informações a respeito do gap óptico do material. As amostras preparadas sobre c-Si foram utilizadas para a espectroscopia no infra-vermelho, onde analisamos o espectro das vibrações no material, bem como procuramos evidências da existência de hidrogênio molecular. / Hydrogenated amorphous silicon deposited by the glow discharge technique has been prominent among several photosensitive materials, mainly due to their easy obtention process and versatile properties. In this work, we have prepared hydrogenated amorphous silicon (a-Si:H) samples using the RF discharge method in SiH gaseous atmosphere. We have used glass and crystalline silicon as substrate. The samples which were deposited on glasses were used for the study on the creation of metastables defects in amorphous films due to X-Ray exposition. The creation and annealing process were analyzed through photoconductivity measurements which showed the possible origin of such defects. We believe that this behavior takes place due the breaking of Si-Si and Si-H bounds, which build up traps for free electrons. We have analyzed the photoconductivity spectral response and the optical absorption which give us information about the optical gap of this material. The samples which were prepared on crystalline silicon materials were used for infra-red spectroscopy, were we have analyzed the vibration spectra of a-Si:H, and also have been looking for evidences about the existence of molecular hydrogen.
86

Técnica de grade de fotoportadores em estado estacionário / Steady-state photocarrier grating techique

Lino Misoguti 17 August 1994 (has links)
Apresentamos neste trabalho uma técnica nova e simples para medida de propriedades de transporte e de cinética de portadores em semicondutores isolantes fotocondutivos. Determinamos propriedades importantes como comprimento de difusão e produto mobilidade-tempo de vida dos portadores no silício amorfo hidrogenado (a-SI:h). Esta técnica baseia-se no efeito de uma grade de concentração de fotoportadores em estado estacionário, criado pela luz de um laser, na condutância de um semicondutor. Assim é possível determinar indiretamente as propriedades de transporte ou de cinética pela simples medida da fotocondutividade na presença de grade de fotoportadores em diferentes condições. o a-S-:h é um semicondutor relativamente novo que merece destaque devido a sua potencialidade para aplicação. Ele é um excelente material fotocondutor produzido na forma de filmes finos. É atualmente largamente utilizado em células solares, fotosensores de grande área e transistores de filmes finos. A sua obtenção, apesar de ser simples, envolve processos complexos e empíricos no processo de formação dos filmes. Portanto é vital o conhecimento das propriedades de transporte e cinética deste material como uma referência da qualidade do material produzido. / In this work we present a new and simple technique to measure transport and kinetic properties in photoconductive insulator semiconductors. Important properties as diffusion length and mobility-lifetime product of hydrogenated amorphous silicon (a-SI:h) was determined. This technique is based on the effect of a steady-state photocarrier grating concentration in the semiconductor conductance created by laser light. It is possible to determine indirectly the transport and kinetic properties simply by measuring photoconductive in the presence of photocarrier grating under diferents condition. The a-SI:h is a reactive new semiconductor with an outstanding potenciality for applications. It is an excellent photoconductor material produced in thin-film forms. Nowadays it has been used in large scale in solar cells, big area photosensor and thin-¬film transistor. Although its production is simple, the formation process of the thin-films is complex and empirical. Therefore the value of the transport and kinetic properties of this material is essential as a reference of quality of the produced material.
87

Fabrication and characterization of a solar cell using an aluminium p-doped layer in the hot-wire chemical vapour deposition process

Kotsedi, Lebogang January 2010 (has links)
Philosophiae Doctor - PhD / When the amorphous silicon (a-Si) dangling bonds are bonded to hydrogen the concentration of the dangling bond is decreased. The resulting film is called hydrogenated amorphous silicon (a-Si:H). The reduction in the dangling bonds concentration improves the optoelectrical properties of the film. The improved properties of a-Si:H makes it possible to manufacture electronic devices including a solar cell. A solar cell device based on the hydrogenated amorphous silicon (a-Si:H) was fabricated using the Hot-Wire Chemical Vapour Deposition (HWCVD). When an n-i-p solar cell configuration is grown, the norm is that the p-doped layer is deposited from a mixture of silane (SiH4) gas with diborane (B2H6). The boron atoms from diborane bonds to the silicon atoms and because of the number of the valance electrons, the grown film becomes a p-type film. Aluminium is a group 3B element and has the same valence electrons as boron, hence it will also produce a p-type film when it bonds with silicon. In this study the p-doped layer is grown from the co-deposition of a-Si:H from SiH4 with aluminium evaporation resulting in a crystallized, p-doped thin film. When this thin film is used in the n-i-p cell configuration, the device shows photo-voltaic activity. The intrinsic layer and the n-type layers for the solar cell were grown from SiH4 gas and Phosphine (PH3) gas diluted in SiH4 respectively. The individual layers of the solar cell device were characterized for both their optical and electrical properties. This was done using a variety of experimental techniques. The analyzed results from the characterization techniques showed the films to be of device quality standard. The analysed results of the ptype layer grown from aluminium showed the film to be successfully crystallized and doped. A fully functional solar cell was fabricated from these layers and the cell showed photovoltaic activity. / South Africa
88

Fabrication and characterization of a solar cell using an aluminium p-doped layer in the hot-wire chemical vapour deposition process

Lebogang, Kotsedi January 2010 (has links)
Philosophiae Doctor - PhD / When the amorphous silicon (a-Si) dangling bonds are bonded to hydrogen the concentration of the dangling bond is decreased. The resulting film is called hydrogenated amorphous silicon (a-Si:H). The reduction in the dangling bonds concentration improves the optoelectrical properties of the film. The improved properties of a-Si:H makes it possible to manufacture electronic devices including a solar cell.A solar cell device based on the hydrogenated amorphous silicon (a-Si:H) was fabricated using the Hot-Wire Chemical Vapour Deposition (HWCVD). When an n-i-p solar cell configuration is grown, the norm is that the p-doped layer is deposited from a mixture of silane (SiH4) gas with diborane (B2H6). The boron atoms from diborane bonds to the silicon atoms and because of the number of the valance electrons, the grown film becomes a p-type film. Aluminium is a group 3B element and has the same valence electrons as boron, hence it will also produce a p-type film when it bonds with silicon.In this study the p-doped layer is grown from the co-deposition of a-Si:H from SiH4 with aluminium evaporation resulting in a crystallized, p-doped thin film. When this thin film is used in the n-i-p cell configuration, the device shows photo-voltaic activity.The intrinsic layer and the n-type layers for the solar cell were grown from SiH4 gas and Phosphine (PH3) gas diluted in SiH4 respectively. The individual layers of the solar cell device were characterized for both their optical and electrical properties. This was done using a variety of experimental techniques. The analyzed results from the characterization techniques showed the films to be of device quality standard. The analysed results of the ptype layer grown from aluminium showed the film to be successfully crystallized and doped.A fully functional solar cell was fabricated from these layers and the cell showed photovoltaic activity.
89

Traitement de couches minces et de dispositifs à base de a-Si : H par un plasma d'hydrogène : Etude in situ par ellipsométrie spectroscopique. / Hydrogen plasma treatment of a-Si : H based thin films and devices : in situ spectroscopic ellipsometry study

Larbi, Fadila 09 March 2014 (has links)
Ce travail est une contribution à l'étude de l'interaction entre des couches minces de silicium amorphe hydrogéné (a-Si:H) et un plasma d'hydrogène, dans un réacteur de dépôt par PECVD (Plasma Enhanced Chemical Vapor Deposition). Le suivi in situ de la cinétique de gravure par l'hydrogène atomique est réalisé par ellipsométrie UV-visble. Les différents paramètres de plasma (température, puissance radiofréquence, pression du gaz H2, type de dopage du matériau) pouvant impacter cette cinétique ont été sondés. L'analyse des spectres d'ellipsométrie spectroscopique, à l'aide d'un modèle optique approprié, a permis de mettre en évidence leurs effets sur le temps de formation de la couche modifiée par l'hydrogène, son épaisseur et son excès d'hydrogène, ont été analysés. Le même traitement au plasma d'hydrogène appliqué à des jonctions i/p et i/n, révèle un comportement particulier de la cinétique de gravure dans la zone de jonction. Ce comportement a été interprété dans le cadre d'un modèle simple de diffusion de l'hydrogène sous champ électrique. / This work is a contribution to the study of the interaction between hydrogenated amorphous silicon (a-Si:H) thin films and hydrogen plasma in a PECVD (Plasma Enhanced Chemical Vapor Deposition) reactor. The kinetics of silicon etching by atomic hydrogen is monitored in situ by UV - visble ellipsometry .Several plasma parameters (temperature, RF power, H2 gas pressure, the doping of the material) that may impact the kinetics were probed. An analysis of the spectroscopic ellipsometry spectra, thanks to an appropriate optical model, allowed evidencing their effects on the time constant, the thickness and the hydrogen excess of the H-modified layer.The same hydrogen plasma treatment repeated on i/p and i/n H base junctions revealed a particular behavior of the etching kinetics in the junction zone. This effect is interpreted in the frame of a simple of hydrogen diffusion model under an electric field.
90

Simulations of energy efficient windows in a historical building located in mid-Sweden

Medrano Eraso, Iñigo January 2023 (has links)
Amorphous silicon photovoltaic windows intend to not only improve thethermal bridge that windows represent but also to collect energy from theradiation incident on the windows themselves. This kind of windows can beapplied anywhere, however to maximize the benefit these can bring it isrecommended for sun-oriented façades. This research aims to investigate theimpacts that this type of windows can have on the energy performance andthermal comfort of a three-story historical stone building in the cold climateof Sweden using the simulation software IDA ICE. The model used for thesimulations had previously been developed and tested in other researches thatinvolved this same building. This research shows that the yearly energyconsumption for the townhall can be reduced down to 280000 kWh,representing a reduction of 5000 kWh compared to the base model, if theHigh transparency windows are applied, representing a reduction of 1,7%.The use of any of the four proposed windows has shown to increase thepercentage of best comfort hours by at least 5% and lowers the percentage ofunacceptable comfort hours at least by a 10%, even having cases with 0 hoursat this comfort level. The upper level of the South façade would be able toprovide the building with 800 kWh yearly, being the level with the highestenergy collection due to having more windows. Approximately every windowcould collect around 90 kWh yearly, which represents 20% of what a solarpanel of the same area correctly oriented could obtain in the same period oftime. Thus, the amorphous silicon photovoltaic windows do not seem to bethe best change despite offering a very promising thermal comfort. Theeconomical viability of this project is what prevents it from being feasiblesince the energy saving/obtaining characteristics are not of great magnitude.

Page generated in 0.0468 seconds